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Abstract: In this article, we give a representation of multi-Cauchy mappings on groupoids as an equation and
then establish the (Hyers and Găvruţa) stability of such mappings on groupoids. In the case that the range
is a subset of Banach space, the stability result will be different.
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1 Introduction

The first stability problem regarding the Cauchy functional equation from a groupG into a metric group H has
been proposed by Ulam [1] in 1940. One year later, Hyers [2] was the first author who answered Ulam’s
problem when G and H are Banach spaces as follows:

Let G and H be Banach spaces. Suppose that ⟶φ G H: fulfills

+ − − ≤φ a b φ a φ b δ,‖ ( ) ( ) ( )‖

for all ∈a b G, and for some ≥δ 0. Then, there exists an additive mapping ⟶G H:� such that −φ x‖ ( )

≤x δ�( )‖ for all ∈a G. Next, some generalizations of Hyers’ result for additive and linear mappings have
been studied by Aoki [3], Rassias [4], and Găvruţa [5]. More information about the stability of miscellaneous
functional equations on various spaces is available, for instance, in books [6–8].

Throughout this article, �, �, and � are the sets of all positive integers, rationals, and real numbers,

respectively, ≔ ∪ ≔ ∞+0 , 0,0� � �{ } [ ). Moreover, for the set E , we denote × × ×
-

E E E…

n times  
by En.

Over the last two decades, the stability problem for functional equations has been studied by the authors
for multiple variables mappings like multi-additive mappings. Here, we indicate their definitions:

LetV be a commutative group,W be a linear space over �, and ∈n � with ≥n 2. A mapping ⟶f V W:
n

is called multi-additive if it satisfies

+ = +x y x y ,� � �( ) ( ) ( ) (1.1)

in each variable. It is shown in [9, Theorem 2] that a mapping f is multi-additive if and only if it satisfies

∑+ =
∈

f x x f x x, …, ,

i i

i i n1 2

, … , 1,2

1

n

n

1

1
( ) ( )

{ }
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where = ∈x x x V, …,i i in
n

1( ) with ∈i 1, 2{ }. For more information about the structure of multi-additive map-
pings and their Ulam’s stability, we refer to [9–11] and [12, Sections 13.4 and 17.2].

Let G, •( ) and ∗H ,( ) be groupoids equipped with binary operations. A mapping ⟶ϕ G H: is a homo-
morphism between groupoids if

= ∗ ∈ϕ a b ϕ a ϕ b a b G• , , .( ) ( ) ( ) ( ) (1.2)

A particular case of (1.2) is the famous Cauchy (additive) functional equation (1.1), where G and H are two
semigroups with the operation +.

The stability of the Cauchy functional equation on square-symmetric groupoids was investigated by Páles
et al. [13] who generalized the classical theorem of Hyers for the first time. Moreover, Kim [14] established
some stability results of the Cauchy functional equation from square-symmetric groupoids into metric square-
symmetric groupoids based on the control function proposed by Găvruţa. Some results on the stability of
Cauchy and Jensen equations through a fixed point method were investigated in [15]; for more results on the
stability of Cauchy equation, we refer to [16–18].

In this article, we introduce the multi-Cauchy mappings as a system of the Cauchy functional equations.
Then, we reduce such system to obtain a single equation. Finally, we prove the stability of the multi-Cauchy
functional equations on the powers of a square-symmetric groupoid.

2 Representation of multi-Cauchy mappings

Let G, •( ) and ∗H ,( ) be groupoids equipped with given binary operations. For each ∈a G, set ≔a a a2 • . Similarly,
for each ∈h H , put ≔ ∗h h h2 . The binary operation • is said to be square-symmetric if ≔a b a b2 • 2 • 2( ) .
It is obvious that a commutative semigroup is a square-symmetric groupoid. The converse, however, is not true
in general. For example, put ≔G �, >r 1 a fixed element in G, the binary operation ≔ +a b a rb• ∈a b G,( ).
Then, G, •( ) is a square-symmetric groupoid and • is not associative.

Recall that a groupoid G, •( ) is divisible (• is divisible) if for each ∈a G, there exists a unique element

′ ∈a G such that ′ =a a2 . For convenience, we will write ≔ ′a
a

2
or ≔ ′a a

1

2
. To simplify the notation, for each

a in a groupoid ≔G G, •( ) and each ∈n �, we write ≔a a2
0 and ≔+ a a2 2 2

n n1 ( ). If, in addition, G is divisible,

then we also write ≔ a
a

2
0

and ≔ ⎛
⎝

⎞
⎠+

a a

2

1

2 2
n n1

for all ∈n �. To reach our aims in this article, we consider the following

mapping:

⟶ ↦ ⟶ ↦∗σ G G a a λ H H h h: ; 2 and : ; 2 .•

Note that the square-symmetric of • implies that the mapping σ• is an endomorphism. According to the
aforementioned fact, the binary operation • such that σ• is an automorphism (bijective) is divisible.

For each ∈t t s s G, …, , , …,n n
n

1 1( ) ( ) , we define the pointwise binary operation on Gn as follows:

=t t s s t s t s, …, • , …, • , …, • .n n n n1 1 1 1( ) ( ) ( )

Consider the mapping ⟶G GΓ :
n n

• defined by ≔s s σ s σ sΓ , …, , …,n n• 1 • 1 •( ) ( ( ) ( )). Moreover, for each ∈m �,
we have

≔ =s s σ s σ s s sΓ , …, , …, 2 , …,2 .
m

n
m m

n
m m

n• 1 • 1 • 1( ) ( ( ) ( )) ( )

From now on, we denote s s2 , …,2
m m

n1( ) by s s2 , …,
m

n1( ) when no confusion can arise. It is easily seen that if σ•

is an automorphism, then so is Γ•.
A mapping ⟶f G H:

n is called multi-Cauchy (multi-additive) if, for each ∈j n1, …,{ } and all ∈a Gi ,
the mapping ↦ − +a f a a a a a, …, , , , …,j j n1 1 1( ) satisfies equation (1.2), i.e., for each ≤ ≤j n1 ,

′ = ∗ ′− + − + − +f a a a a a a f a a a a a f a a a a a, …, , • , , …, , …, , , , …, , …, , , , …, .j j j j n j j j n j j j n1 1 1 1 1 1 1 1 1( ) ( ) ( )

Let ∈n � with ≥n 2 and = ∈a a a a G, , …,i

n
i i in

n
1 2( ) , where ∈i 1, 2{ }. We shall denote ai

n by ai when there
is no risk of ambiguity. For ∈a a G,

n
1 2 , we write ∗ ≔ ∗ ∈f a f a f ak k1 2 1,2( ) ( ) ( ){ } .
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Assume that a square-symmetric groupoids G and H have the identities eG and eH , respectively.
We consider the following condition on H :
(K) For ∈m � and ∈h H , if =mh eH , then =h eH .

There are plenty of known examples of groups with the condition (K), e.g., the group +,�( ). A mapping
⟶f G H:

n has the identity condition, if =f a eH( ) for any ∈a Gn with at least one variable that is equal
to eG. It is easily checked that every multi-Cauchy mapping ⟶f G H:

n has identity condition provided that H

has condition (K).
Set ≔ nn 1, …,{ }. For a subset =m j j, …,

i1
{ } of n with ≤ < < ≤j j n1 …

i1
and = ∈g g g V, …,

n

n

1
( ) ,

≔ ∈g e e g e e g e e G, …, , , , …, , , , …,m G G j G G j G G
n

i1

( )

denotes the vector that coincides with g in exactly those components, which are indexed by the elements
of m and whose other components are set equal eG.

Lemma 2.1. Let G, •( ) be a groupoid and and ∗H ,( ) be a commutative group. Suppose that a mapping
⟶f G H:

n satisfies

= ∗ ∈f a a f a a• , …, .j j j j n1 2 , … , 1,2 1
n n1 1

( ) ( ){ } (2.1)

If H has the condition (K), then f has the identity condition.

Proof.We argue by induction onm that =f mg eH( ) for ≤ ≤ −m n0 1. Let =m 0. Substituting = =a a e e, …,G G1 2 ( )

into (2.1), we have

=f e e f e e, …, 2 , …, .G G
n

G G( ) ( )

Our assumption implies that =f e e e, …,G G H( ) . Assume that =−f a e
m H1

( ) . We will prove that =f a e
m H( ) .

Without loss of generality, we assume that the first m variables are not equal to eG. Replacing a a,1 2( )

by a e,
m G( ) in equation (2.1), we obtain = −f a f a2m

n m
m

( ) ( ) and so =f a e
m H( ) . This completes the proof. □

Proposition 2.2. Let G, •( ) be a groupoid and and ∗H ,( ) be a commutative group. If a mapping ⟶f G H:
n

is multi-Cauchy, then it fulfills (2.1). The converse is true if H has the condition (K).

Proof. Let f be multi-Cauchy mapping. We prove by induction on n that it satisfies equation (2.1). For =n 1,
f fulfills (1.2). Assume that (2.1) is valid for some positive integer −n 1. We will show that it is true for n. We have

= ∗
= ∗ ∗ ∗
= ∗

− − − −

∈ − ∈ −

∈

− −

f a a f a a a f a a a

f a a a f a a a

f a a

• • , • ,

, …, , , …, ,

, …, ,

n n n n
n

n n
n

j j j j n n j j j j n n

j j j j n

1 2 1

1

2

1

1 1

1

2

1

2

, … , 1,2 1 , 1 1 , … , 1,2 1 , 1 2

, … , 1,2 1

n n n n

n n

1 1 1 1 1 1

1 1

( ) ( ) ( )

( ( )) ( ( ))

( )

{ } { }

{ }

which shows that (2.1) holds for n. For the converse, by substituting =a e e a e e, …, , , , …,H H j H H2 2( ) into (2.1)
and using Lemma 2.1, we obtain

= ∗− −f a a a a a f a f a a a a, …, , • , …, , …, , , …, ,j j j n j j n11 1, 1 1 2 1 1 11 1, 1 2 1( ) ( ) ( )

and so the proof is now complete. □

3 Stability results for (2.1)

In this section, we prove some stabilities regarding equation (2.1).
Let X d,( ) be a metric space. The Lipschitz modulus of a mapping ⟶ϕ X X: is denoted by Lip(ϕ)

and defined by

≔ ⎧
⎨
⎩

∈ ≠ ⎫
⎬
⎭

ϕ
ϕ x ϕ y

x y
x y X x yLip sup

d ,

d ,

, , .( )
( ( ) ( ))

( )
∣
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It is simply to check that Lip ∘ ≤ϕ ψ Lip( ) (ϕ)Lip(ψ).
One of the main goals of this article is the upcoming theorem, which is the Găvruţa stability of equation (2.1).

Theorem 3.1. Let G, •( ) be a square-symmetric groupoid and ∗H d, ,( ) be a complete metric divisible semigroup.
Suppose that a mapping ⟶f G H:

n fulfills

∗ ≤∈d f a a f a a φ a a• , , …, , ,j j j j n1 2 , … , 1,2 1 1 2
n n1 1

( ( ) ( )) ( ){ } (3.1)

for all ∈a a G,
n

1 2 in which × ⟶ +φ G G:
n n � is a function that satisfies

∑ < ∞
=

∞

∗
−

λ φ a aLip 2 , 2 ,

m

m m m

0

1 2( ) ( ) (3.2)

for all ∈a a G,
n

1 2 . Then, for each ∈a Gn,

≔ ∘
→∞

∗
− +

F a λ f alim 2

m

m m1( ) ( ) (3.3)

converges and the mapping ⟶F G H:
n is a solution of (2.1) such that

≤ ∗
−

d f a F a λ Φ a, Lip ,
1( ( ) ( )) ( ) ( ) (3.4)

for all ∈a Gn, where ≔ ∑ =
∞

∗
−

Φ a λ φ a aLip 2 , 2m

m m m
0

( ) ( ) ( ). In addition, if ∗
−

∗λ λLip Lip
m m{ ( ) ( )} is bounded, then F

is a unique solution of (2.1) for which the mapping ↦a d f a F a,( ( ) ( )) is bounded with bound ∗
−

λ Φ aLip
1( ) ( ).

Proof. Consider a family of mappings ⟶F G H:m
n defined via ≔F f0 and ≔ ∘ ∘∗

−
F λ f Γm

m m

•
, for all ∈m �.

We shall show that for each fixed and arbitrary ∈a Gn, the sequence Fm{ } is convergent. Replacing a1 and a2

by a2
m

1 in (3.1), we obtain

∗ ≤d f a a f a f a φ a a2 • 2 , 2 2 2 , 2 ,
m m m m m m

1 1 1 1 1 1( ( ) ( ) ( )) ( )

for all ∈a Gn
1 . For the rest of proof, we set a1 by a unless otherwise stated explicitly. The last inequality can

be rewritten as form

∘ ≤+
∗d f a λ f a φ a a2 , 2 2 , 2 .

m m m m1( ( ) ( )) ( ) (3.5)

It follows from (3.5) that

= ∘ ∘ ∘
≤ ∘
≤
≤

+ ∗
− + +

∗
− +

∗

∗
− +

∗

∗
− +

∗
−

∗
−

d F a F a d λ f a λ λ f a

λ d f a λ f a

λ φ a a

λ λ φ a a

, 2 , 2

Lip 2 , 2

Lip 2 , 2

Lip Lip 2 , 2 ,

m m
m m m m

m m m

m m m

m m m

1

1 1 1

1

1

1

( ( ) ( )) ( ( ) ( ))

( ) ( ( ) ( ))

( ) ( )

( ) ( ) ( )

( )

( )

( )

for all ∈a Gn. It concludes from the aforementioned relation that for each ∈l k, � with >k l,

∑ ∑≤ ≤
=

−

+
=

−

∗
− +

d F a F a d F a F a λ φ a a, , Lip 2 , 2 .k l

j l

k

j j

j l

k

j j j

1

1

1

1( ( ) ( )) ( ( ) ( )) ( ) ( )( )

The convergence of series (3.2) implies that the last term in the aforementioned inequalities goes to zero as
→ ∞l , which shows that Fm{ } is a Cauchy sequence, and hence, it converges to mapping ⟶F G H:

n as defined
in (3.3), which is also well defined. Furthermore, for each ∈m �, we have

∑

∑

∑

≤

≤

≤

+
=

+

=
∗
− +

∗
−

=
∗
−

d F a f a d F a F a

λ φ a a

λ λ φ a a

, ,

Lip 2 , 2

Lip Lip 2 , 2 .

m

j

m

j j

j

m

j j j

j

m

j j j

1

0

1

0

1

1

0

( ( ) ( )) ( ( ) ( ))

( ) ( )

( ) ( )

( )
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Taking → ∞m , we reach to (3.4). Replacing a a,1 2( ) by a a2 , 2
m m

1 2( ) in (3.1) and using the endomorphism of Γ•,
we find

∘ ∗ ≤∈d f a a f a a φ a aΓ • , 2 , …,2 2 , 2 ,
m

j j
m

j
m

j n
m m

• 1 2 , … , 1,2 1 1 2
n n1 1

( ( ( )) ( )) ( ){ }

for all ∈a a G,
n

1 2 . On the other hand, ∗λ is an automorphism of ∗H ,( ) and so ∗
−

λ
m is an automorphism as well,

for all ∈m �. This discussion necessitates that

∗
= ∘ ∗ ∘ ∘
= ∘ ∗ ∘
≤ ∘ ∗ ∘
≤

∈

∗
−

∈ ∗
−

∗
−

∗
−

∈

∗
−

∈

∗
−

d F a a F a a

d λ f a a λ f a a

d λ f a a λ f a a

λ d f a a f a a

λ φ a a

• , , …,

Γ • , Γ , …,

Γ • , Γ , …,

Lip Γ • , Γ , …,

Lip 2 , 2 .

m j j m j j n

m m
j j

m m
j j n

m m m
j j

m
j j n

m m
j j

m
j j n

m m m

1 2 , … , 1,2 1

• 1 2 , … , 1,2 • 1

• 1 2 , … , 1,2 • 1

• 1 2 , … , 1,2 • 1

1 2

n n

n n

n n

n n

1 1

1 1

1 1

1 1

( ( ) ( ))

( ( ( )) ( ))

( ( ( )) ( ( )))

( ) ( ( ) ( ))

( ) ( )

{ }

{ }

{ }

{ }

Letting the limit as → ∞m in the aforementioned relation and applying the definition of Fm, we see that F

satisfies (2.1). For the uniqueness of F , assume that � is an arbitrary solution of (2.1) such that the mapping
↦a d f a a, �( ( ) ( )), is bounded with bound ∗

−
λ Φ aLip

1 ( ). Substituting = ≔a a a1 2 into (2.1), we obtain

∘ = ∘ ∘ = ∘∗ ∗F λ F λΓ , Γ .• •� �

One can prove by induction that

∘ ∘ = ∘ ∘ =∗
−

∗
−

λ F F λΓ , Γ .
m m m m

• •
� �

Now, for each ∈a Gn we have

∑

∑

∑

= ∘ ∘
≤
≤ +

≤

≤

=

∗
−

∗
−

∗
−

∗
−

∗
−

=

∞

∗
− +

∗
−

∗
=

∞

∗
− + + + +

∗
−

∗
=

∞

∗
− +

d F a a d λ F a λ a

λ d F a a

λ d F a f a d f a a

λ λ φ a a

λ λ λ φ a a

λ λ λ φ a a

, 2 , 2

Lip 2 , 2

Lip 2 , 2 2 , 2

2Lip Lip Γ Γ , Γ Γ

2Lip Lip Lip 2 , 2

2Lip Lip Lip 2 , 2 .

m m m m

m m m

m m m m m

m

j

j j m j m

m m

j

m j m j m j

m m

j m

j j j

0

1

• • • •

0

1

1

� �

�

�

( ( ) ( )) ( ( ) ( ))

( ) ( ( ) ( ))

( )[ ( ( ) ( )) ( ( ) ( ))]

( ) ( ) ( ( )( ) ( )( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

Due to the boundedness of ∗
−

∗λ λLip Lip
m m{ ( ) ( )}, it follows that =F � , when → ∞m . This completes the

proof. □

The next corollary is a direct consequence of Theorem 3.1 concerning the stability of equation (2.1).

Corollary 3.2. Let G, •( ) be a square-symmetric groupoid and ∗H d, ,( ) be a complete metric divisible semigroup.
Let ⟶f G H:

n satisfy (3.1) and × ⟶ +φ G G:
n n � be a function such that for some real number L with

≤ <L0 1, the inequality

≤∗
−

∗
−

∗
− +

∗
− + − −d λ h λ h φ a a Ld λ h λ h φ a a, 2 , 2 , 2 , 2 ,

m m m m m m m m
1 2 1 2

1

1

1

2

1

1

1

2( ( )) ( ) ( ) ( ( )) ( ) ( ) (3.6)

holds for all ∈a a G,
n

1 2 , ∈h h H,1 2 , and ∈n �. Then, for each ∈a Gn, limit (3.3) exists and the mapping
⟶F G H:

n is a unique solution of (2.1) such that

≤
−

d f a F a
L

φ a a,

1

1

, ,( ( ) ( )) ( )

for all ∈a Gn.
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Proof. Substituting = =a a a1 2 and =m 1 into (3.6), we have

≤∗
−

∗
−

d λ h λ h φ a a Ld h h φ a a, 2 , 2 , , ,
1

1

1

2 1 2( ( )) ( ) ( ) ( ) ( )

or equivalently,

≤∗
−

λ φ a a Lφ a aLip 2 , 2 , ,
1( ) ( ) ( )

for all ∈a Gn. By induction and using (3.6), one can obtain

≤∗
−

λ φ a a L φ a aLip 2 , 2 , ,
m m m m( ) ( ) ( )

for all ∈a Gn. Therefore, the bound of (3.4) defined in Theorem 3.1 does not exceed − ∗
−

λ φ a aLip ,
L

1

1

1( ) ( ). □

In the following result, we show Hyers’ stability of equation (2.1).

Corollary 3.3. Let >δ 0. Let G, •( ) be a square-symmetric groupoid and ∗H d, ,( ) be a complete metric divisible
semigroup. Suppose that a mapping ⟶f G H:

n fulfills

∗ ≤∈d f a a f a a δ• , , …, ,j j j j n1 2 , … , 1,2 1
n n1 1

( ( ) ( )){ }

for all ∈a a G,
n

1 2 . Then, for each ∈a Gn,

≔ ∘
→∞

∗
− +

F a λ f alim 2

m

m m1( ) ( )

converges, and the mapping ⟶F G H:
n is a solution of (2.1) such that

∑≤ ∗
−

=

∞

∗
−

d f a F a δ λ λ, Lip Lip ,

m

m1

0

( ( ) ( )) ( ) ( )

for all ∈a Gn. Moreover, F is a unique solution of (2.1) such that the mapping ↦a d f a F a,( ( ) ( )), is bounded.

Proof. Let =φ a a δ,1 2( ) . Then, the result will be found by Theorem 3.1. □

In analogy with Theorem 3.1, we have the next alternative result for the stability of (2.1). In this theorem,
we add the condition divisibility for the square-symmetric groupoid G, •( ).

Theorem 3.4. Let G, •( ) be a square-symmetric divisible groupoid and ∗H d, ,( ) be a complete metric divisible
semigroup. Suppose that a mapping ⟶f G H:

n fulfills

∗ ≤∈d f a a f a a φ a a• , , …, , ,j j j j n1 2 , … , 1,2 1 1 2
n n1 1

( ( ) ( )) ( ){ } (3.7)

for all ∈a a G,
n

1 2 in which × ⟶ +φ G G:
n n � is a function satisfying

∑ < ∞
=

∞

∗
− −λ φ a aLip 2 , 2 ,

m

m m m

0

1 2( ) ( ) (3.8)

for all ∈a a G,
n

1 2 . Then, for each ∈a Gn,

≔ ∘
→∞

∗
+ −F a λ f alim 2 ,

m

m m1( ) ( ) (3.9)

converges and the mapping ⟶F G H:
n is a solution of (2.1) such that

≤ ∗
−

d f a F a λ Ψ a, Lip ,
1( ( ) ( )) ( ) (3.10)

for all ∈a Gn, where ≔ ∑ =
∞

∗
− −Ψ a λ φ a aLip 2 , 2m

m m m
0

( ) ( ) ( ). In addition, if ∗
−

∗λ λLip Lip
m m{ ( ) ( )} is bounded, then F

is a unique solution of (2.1) for which the mapping ↦a d f a F a,( ( ) ( )), is bounded with bound ∗
−

λ Ψ aLip
1 ( ).

6  Choonkil Park et al.



Proof. Define the mappings ⟶F G H:m
n defined via ≔F f0 and ≔ ∘ ∘∗

−
F λ f Γm

m m

•
, for all ∈m �. Replacing

a1 and a2 by − a2
m

1 in (3.7), we have

∗ ≤− − − − − −d f a a f a f a φ a a2 • 2 , 2 2 2 , 2 ,
m m m m m m

1 1 1 1 1 1( ( ) ( ) ( )) ( )

for all ∈a Gn
1 . For the rest of proof, we set a1 by a unless otherwise stated explicitly. We reform the last

relation as follows:

∘ ≤− +
∗

− − −d f a λ f a φ a a2 , 2 2 , 2 .
m m m m1( ( ) ( )) ( ) (3.11)

By (3.11), we have

= ∘ ∘ ∘
≤ ∘
≤

− ∗
− − +

∗
−

∗
−

∗
− − +

∗
−

∗
− − −

d F a F a d λ f a λ λ f a

λ d f a λ f a

λ φ a a

, 2 , 2

Lip 2 , 2

Lip 2 , 2 ,

m m
m m m m

m m m

m m m

1

1 1 1

1 1

1

( ( ) ( )) ( ( ) ( ))

( ) ( ( ) ( ))

( ) ( )

for all ∈a Gn. A direct result from the aforementioned relation shows that for each ∈l k, �,

∑

∑

∑

≤

≤

≤

+
=

−

+ + +

=

−

∗
+ − − − − − −

=

+ −

∗
−

∗
+ − − − −

d F a F a d F a F a

λ φ a a

λ λ φ a a

, ,

Lip 2 , 2

Lip Lip 2 , 2 .

k k l

j l

l

k j k j

j

l

k j k j k j

j k

k l

j j j

1

1

0

1

1 1

1

1 1 1 1

( ( ) ( )) ( ( ) ( ))

( ) ( )

( ) ( ) ( )

It follows from the convergence of series (3.8) that the last term in the aforementioned inequalities intends to
zero as → ∞k , which shows that Fm{ } is a Cauchy sequence in H . Therefore, a mapping ⟶F G H:

n as defined
in (3.9) is well defined. Moreover, for each ∈m �, we have

∑

∑

∑

∑

≤

≤

≤

≤

+
=

+

=
∗

− − − −

=

∞

∗
− − −

∗
−

=

∞

∗
− −

d F a f a d F a F a

λ φ a a

λ φ a a

λ λ φ a a

, ,

Lip 2 , 2

Lip 2 , 2

Lip Lip 2 , 2 .

m

j

m

j j

j

m

j j j

j

j j j

j

j j j

1

0

1

0

1 1

1

1

1

1

( ( ) ( )) ( ( ) ( ))

( ) ( )

( ) ( )

( ) ( )

Letting → ∞m , we obtain (3.10). Replacing a a,1 2( ) by − −a a2 , 2
m m

1 2( ) in (3.7) and using the endomorphism
of Γ

m

•
, we obtain

∗
= ∘ ∗ ∘ ∘
= ∘ ∗ ∘
≤ ∘ ∗ ∘
≤

∈

∗
−

∈ ∗
−

∗
−

∗ ∈
−

∗
−

∈
−

∗
− −

d F a a F a a

d λ f a a λ f a a

d λ f a a λ f a a

λ d f a a f a a

λ φ a a

• , , …,

Γ • , Γ , …,

Γ • , Γ , …,

Lip Γ • , Γ , …,

Lip 2 , 2 .

m j j m j j n

m m
j j

m m
j j n

m m m
j j

m
j j n

m m
j j

m
j j n

m m m

1 2 , … , 1,2 1

• 1 2 , … , 1,2 • 1

• 1 2 , … , 1,2 • 1

• 1 2 , … , 1,2 • 1

1 2

n n

n n

n n

n n

1 1

1 1

1 1

1 1

( ( ) ( ))

( ( ( )) ( ))

( ( ( )) ( ( )))

( ) ( ( ) ( ))

( ) ( )

{ }

{ }

{ }

{ }

Taking → ∞m in the aforementioned relation and using the definition of Fm, we find that F fulfills (2.1).
Here, we show the uniqueness of F . Assume that � is an arbitrary solution of (2.1) such that the mapping

↦a d f a a, �( ( ) ( )), is bounded with bound ∗
−

λ Ψ aLip
1 ( ). Similar to the proof of Theorem 3.1, one can prove by

induction that

∘ ∘ = ∘ ∘ =∗
−

∗
−

λ F F λΓ , Γ .
m m m m

• •
� �

Approximate multi-Cauchy mappings on certain groupoids  7



Note that ∗
−

∗λ λLip Lip
m m{ ( ) ( )} is bounded and it is assumed that � is another solution of (2.1) such that

↦a d f a d a, �( ( )) ( ( )) is bounded with bound ∗
−

λ Ψ aLip
1 ( ). Thus, for each ∈a Gn, we have

∑

∑

∑

= ∘ ∘
≤
≤ +

≤

≤

=

∗
−

∗
−

∗
− −

∗
− − − −

∗
−

∗
=

∞

∗
− − − −

∗
−

∗ ∗
−

=

∞

∗
+ − − − −

∗
−

∗ ∗
−

= +

∞

∗
− −

d F a a d λ F a λ a

λ d F a a

λ d F a f a d f a a

λ λ λ φ a a

λ λ λ λ φ a a

λ λ λ λ φ a a

, 2 , 2

Lip 2 , 2

Lip 2 , 2 2 , 2

2Lip Lip Lip Γ Γ , Γ Γ

2Lip Lip Lip Lip 2 , 2

2Lip Lip Lip Lip 2 , 2 .

m m m m

m m m

m m m m m

m

j

j j m j m

m m

j

m j m j m j

m m

j m

j j j

1

0

• • • •

1

0

1

1

� �

�

�

( ( ) ( )) ( ( ) ( ))

( ) ( ( ) ( ))

( )[ ( ( ) ( )) ( ( ) ( ))]

( ) ( ) ( ) ( ( )( ) ( )( ))

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Since the sequence ∗
−

∗λ λLip Lip
m m{ ( )} is bounded, this proves that =F � , and therefore, the proof is fin-

ished. □

Corollary 3.5. Let G, •( ) be a square-symmetric groupoid and ∗H d, ,( ) be a complete metric divisible semigroup.
Let ⟶f G H:

n satisfy (3.7) and × ⟶ +φ G G:
n n � be a function such that for some real number L with

≤ <L0 1, the inequality

≤∗ ∗
− −

∗
−

∗
− − + − +d λ h λ h φ a a Ld λ h λ h φ a a, 2 , 2 , 2 , 2

m m m m m m m m
1 2 1 2

1

1

1

2

1

1

1

2( ( )) ( ) ( ) ( ( )) ( ) ( ) (3.12)

holds for all ∈a a G,
n

1 2 , ∈h h H,1 2 , and ∈n � Then, for each ∈a Gn, limit (3.9) exists and the mapping
⟶F G H:

n is a unique solution of (2.1) such that

≤
−

d f a F a
L

L
φ a a,

1

, ,( ( ) ( )) ( )

for all ∈a Gn.

Proof. Substituting = =a a a1 2 and =m 1 into (3.12), we obtain

≤∗ ∗
− −d λ h λ h φ a a Ld h h φ a a, 2 , 2 , , ,1 2

1 1

1 2( ( )) ( ) ( ) ( ) ( )

for all ∈a Gn. It follows from the aforementioned equality that

≤∗
− −λ φ a a Lφ a aLip 2 , 2 , ,

1 1( ) ( ) ( )

for all ∈a Gn. By induction, we obtain, due to (3.12)

≤∗
− −λ φ a a L φ a aLip 2 , 2 , ,

m m m m( ) ( ) ( )

for all ∈a Gn. Hence, the bound of (3.4) defined in Theorem 3.4 does not exceed − ∗
−

λ φ a aLip ,
L

L1

1( ) ( ). □

In analogue to Corollary 3.3, equation (2.1) has Hyers’ stability as follows.

Corollary 3.6. Let >δ 0. Let G, •( ) be a square-symmetric groupoid and ∗H d, ,( ) be a complete metric divisible
semigroup. Suppose that a mapping ⟶f G H:

n fulfills

∗ ≤∈d f a a f a a δ• , , …, ,j j j j n1 2 , … , 1,2 1
n n1 1

( ( ) ( )){ }

for all ∈a a G,
n

1 2 . Then, for each ∈a Gn,

≔ ∘
→∞

∗
+ −F a λ f alim 2 ,

m

m m1( ) ( )

8  Choonkil Park et al.



converges, and the mapping ⟶F G H:
n is a solution of (2.1) such that

∑≤ ∗
−

=

∞

∗d f a F a δ λ λ, Lip Lip ,

m

m1

0

( ( ) ( )) ( ) ( )

for all ∈a Gn. Moreover, F is a unique solution of (2.1) for which the mapping ↦a d f a F a,( ( ) ( )), is bounded.

Proof. Letting =φ a a δ,1 2( ) , we obtain the desired result from Theorem 3.4. □

Let X be a Banach space over � , which is either � or � . We define the binary operation ∗ on X by ∗ =x y

+rx sy, where ∈r s, � , which are fixed. For the element ∈a a G, …,l l n
n

1 n1
( ) , we put = =t l lCard : 1i j j{ }.

Clearly, ≤ ≤s n0 i . With these explanations, for a multi-Cauchy mapping ⟶f G X:
n , equation (2.1) converts

to

∑=
∈

−
≤ ≤

f a a r s f a a• , …, ,

l l

t n t
l l n1 2

, … , 1,2

1

n

ti n

i i

n

1

0

1
( ) ( )

{ }

(3.13)

for all ∈a a G,
n

1 2 .

Corollary 3.7. Let G, •( ) be a square-symmetric groupoid and X be a Banach space over � . Suppose that
a mapping ⟶f G X:

n fulfills

∑− ≤
∈

−
≤ ≤

f a a r s f a a φ a a• , …, , ,

l l

t n t
l l n1 2

, … , 1,2

1 1 2

n

ti n

i i

n

1

0

1
( ) ( ) ( )

{ }

for all ∈a a G,
n

1 2 in which × ⟶ +φ G G:
n n � is a function satisfying one of the following conditions:

(i) + ≠r s 0∣ ∣ and ∑ + < ∞=
∞ −r s φ a a2 , 2m

m m m
0 1 2∣ ∣ ( ) ;

(ii) G, •( ) is divisible and ∑ + < ∞=
∞ − −r s φ a a2 , 2m

m m m
1 1 2∣ ∣ ( ) ,

for all ∈a a G,
n

1 2 . Then, there exists a uniquely determined solution of (3.13) such that

− ≤f a F a T ,∥ ( ) ( )∥

for all ∈a Gn, where

∑

∑
≔

⎧

⎨
⎪

⎩
⎪

+

+

=

∞
−

=

∞
−

T

r s φ a a if i holds

r s φ a a if ii holds

2 , 2 , ,

2 , 2 , .

m

m m m

m

m m m

0

1 2

1

1 2

∣ ∣ ( ) ( )

∣ ∣ ( ) ( )

Proof. It is easily checked that = +∗λ r sLip
m m( ) ∣ ∣ and = +∗

− −λ r sLip
m m( ) ∣ ∣ . Therefore, the desired results can

be obtained by Theorems 3.1 and 3.4. □

Approximate multi-Cauchy mappings on certain groupoids  9
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