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Abstract: Let p be a prime that divides the order of a finite group G, and let P be a Sylow p-subgroup of G.
Assume that d is the smallest number of generators of P and define � ( ) { }=P P P P, , …,d d1 2

as a collection
of maximal subgroups of P such that ( )⋂ == P PΦi

d
i1

, the Frattini subgroup of P. This article focuses on the
exploration of the structure of a finite group G for which every element of � ( )Pd is either c#-normal
or S-quasinormally embedded in G. Our results improve and generalize many known results.
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1 Introduction

All groups are assumed to be finite. Our notation and terminology are standard (see, e.g., Robinson [1]).
Following Gaschütz [2], a CAP-subgroup of a group G is termed as a subgroup K of G, provided that K

either covers or avoids every chief factor ∕A B within G, namely, either =KA KB or ∩ = ∩K A K B. As a
generalization of CAP-subgroup, Wang and Wei [3] introduced the concept of c#-normal subgroup. A subgroup
H of a group G is said to be a c#-normal subgroup of G, provided that there exists a normal subgroup M of G

satisfying the conditions =G HM and ∩H M being a CAP-subgroup of G [3, Definition 2.3]. They investigated
the impact of c#-normality of certain subgroups of prime power order on the p-supersolvability and p-nilpo-
tency of a group. They proved the following: let N be normal subgroup of a p-solvable groupG with ∕G N being
p-supersolvable. If every maximal subgroup of a Sylow p-subgroup P of G is c#-normal in G, then G itself is
p-supersolvable [4]. Furthermore, they also considered the special case, and they obtained the following result:
consider a normal subgroup N of a group G with ∕G N being p-nilpotent, and denote by M a Sylow p-subgroup
of N , where p is the smallest prime factor of dividing the order of G. Suppose that every maximal subgroup of
M is a c#-normal subgroup of G, then G is p-nilpotent. It has been proved that the c#-normal subgroups
provided better tools for us to study the structure of finite groups (e.g., [3–5]).

A subgroup L of a groupG is termed S-quasinormal inG whenever it permutes with all Sylow subgroups of
G. Since Kegel [6] introduced the concept of S-quasinormal subgroup, there has been much interest in
investigating the topic on the S -quasinormality. In 1998, Ballester-Bolinches and Pedraza-Aguilera [7] intro-
duced the concept of S-quasinormally embedded subgroups as a generalization of S-quasinormal subgroups. A
subgroup L of a groupG is termed S -quasinormally embedded in G if each Sylow subgroup of L is also a Sylow
subgroup of an S-quasinormal subgroup ofG [7, Definition]. It is proved in [7] that a groupG is supersolvable if
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all of its Sylow subgroups’ maximal subgroups are S -quasinormally embedded in G. Motivated by the result,
Asaad and Heliel [8] showed that a group G is a p-nilpotent group if and only if each maximal subgroup of its
Sylow p-subgroup is S -quasinormally embedded in G, where p is the smallest prime dividing ∣ ∣G . These results
have been generalized in several studies such as [7–13]. We note that S-quasinormally embedded subgroups
and c#-normal subgroups are two different concepts.

Example 1.1. Let =G A
5
be the alternating group of degree 5, and let X be a Sylow subgroup of G. It is evident

that X is an S -quasinormally embedded inG. We can see that =G XG and ∩ =X G X . But X neither covers ∕G 1

nor avoids ∕G 1. Thus, X is not a c#-normal subgroup of G.
Let =G S

4
be the symmetric group of degree 4 and ⟨( )⟩=X 12 . Then, =G XA

4
and so ∩ =X A 1

4
, which

implies that X is c#-normal in G. But X is not S -quasinormally embedded in G.

It is a natural question to ask how much information about the structure of a finite group we can obtain
when a small quantity of c#-normal or S-quasinormally embedded maximal subgroups of Sylow subgroups. In
order to use fewer c#-normal or S-quasinormally embedded subgroups to characterize the structure of a finite
group G, we employ the following definition (refer to [14]).

Definition 1.2. Let P be a p-group with the smallest generator number d, and denote by � ( )Pd a collection of
maximal subgroups { }P P P, , …, d1 2

of P, which satisfies ( )⋂ == P PΦi
d

i1
, the Frattini subgroup of P .

For a given P, it is evident that � ( )Pd is not uniquely determined. We know that P contains −
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In this article, we use the c#-normality or S -quasinormally embedding of maximal subgroups of Sylow sub-
group P in � ( )Pd to characterize the structure of a group G. We obtain results concerning the p-super-
solvability, p-nilpotency, and supersolvability of G and generalize many known results.

2 Preliminaries

In this section, we show some lemmas, which are required in the proofs of our main results.

Lemma 2.1. [3, Lemma 2.5] Let N be a normal subgroup of a group G, and let H be a c#-normal subgroup of G.
Then, HN N/ is a c#-normal subgroup of ∕G N if one of the following holds:
(a) ≤N H .
(b) (∣ ∣ ∣ ∣) =H N, 1, where ( )− −, denotes the greatest common divisor.

Lemma 2.2. [7, Lemma 1] Suppose that U is an S-quasinormally embedded subgroup of a group G, and K
is a normal subgroup of G. Then,
(a) For any subgroup H of G such that ≤ ≤U H G, U is S-quasinormally embedded in H .
(b) The subgroup UK is S-quasinormally embedded in G and the quotient group ∕UK K is S-quasinormally

embedded in ∕G K .

The following lemmas are related to S -quasinormal subgroups.
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Lemma 2.3. [15, Theorem 1] Given that H is an S-quasinormal subgroup of a group G, the quotient group ∕H HG

is nilpotent.

Lemma 2.4. [16, Proposition B] For a nilpotent subgroup H a group G, the equivalence of the following two
statements holds:
(a) H is S-quasinormal within G.
(b) The Sylow subgroups of H are S-quasinormal within G.

Lemma 2.5. [8, Lemma 2.6] Let Gp be a Sylow p-subgroup of a group G, and let P be a maximal subgroup of Gp.
The equivalence of the following two statements holds:
(a) P is normal within G.
(b) P is S-quasinormal within G.

Lemma 2.6. [6] and [16] Let H be an S-quasinormal subgroup of a group G. Then,
(a) If K is an S-quasinormal subgroup of G, then ∩H K is also an S-quasinormal subgroup of G.
(b) If H is a p-subgroup, then ( ) ( )≤O G N Hp

G .

Lemma 2.7. [17] Given that P is a Sylow p-subgroup of a group G and N is a normal subgroup of G with
( )∩ ≤P N PΦ , it follows that N is p-nilpotent.

Lemma 2.8. [18, I, Satz 17.4] Let N be a normal abelian subgroup of a group G. Assume that ≤ ≤N M G, where
∣ ∣N and the index of M in G are coprime. If N is complemented in M, then N is complemented in G.

Lemma 2.9. [19, Lemma 2.6] Assume that N is a non-trivial solvable normal subgroup of a group G. If every
minimal normal subgroup of G that is contained in N is not contained in ( )GΦ , then the Fitting subgroup ( )F N

of N is given by the direct product of those minimal normal subgroups of G contained in N .

Lemma 2.10. [1, Theorem 9.3.1] Assume G is a π-separable group and ( ) =′O G 1π , and it follows that
( ( )) ( )≤C O G O GG π π .

Lemma 2.11. [20, Lemma 2.8] Suppose G is a group and p is a prime number that divides the order of ∣ ∣G such
that (∣ ∣ )− =G p, 1 1:
(1) If N is normal in G of order p, then ( )≤N Z G .
(2) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.
(3) If ≤M G and ∣ ∣ =G M p: , then ⊴M G.

3 Main results

In this section, we first study the p-supersolvability of a group G when all members of � ( )Pd assumed to be
c#-normal or S-quasinormally embedded in G.

Theorem 3.1. Assume G is a group that is p-solvable, and denote by P a Sylow p-subgroup of G for a prime p
dividing the order of G. Then, G is p-supersolvable if and only if all members in some fixed � ( )Pd are either
c#-normal or S-quasinormally embedded in G.

Proof.We only need to prove the sufficiency by [4, Theorem 3.1]. Assume the theorem to be false, and consider
G as a counterexample of minimal order. Let

� ( ) { }=P P P P, , …, .d d1 2

Finite group with c#-normal and S-quasinormally embedded subgroups  3



By our hypothesis, each Pi of � ( )Pd is either c#-normal or S -quasinormally embedded in G, where =i d1,…, .
Without loss of generality, we assume that there exists an integer k with ≤ ≤k d1 such that for every m with

≤ ≤m k1 , Pm is c#-normal in G, and for every n with + ≤ ≤k n d1 , Pn is S-quasinormally embedded in G.
We split the proof into the following steps:

(1) ( ) =′O G 1p .
Otherwise, ( ) ≠′O G 1p . Since ( ) ( )∕′ ′PO G O Gp p is a Sylow p-subgroup of ( )∕ ′G O Gp and ( ) ( )∕ ≅′ ′PO G O G Pp p ,

we can see that ( ) ( )∕′ ′PO G O Gp p has the same smallest generator number d as P. Set

� ( ( ) ( )) { ( ) ( ) ( ) ( )}∕ = ∕ ∕′ ′ ′ ′ ′ ′PO G O G P O G O G P O G O G, …, .d p p p p d p p1

Then, each ( ) ( )∕′ ′P O G O Gi p p for { }∈i d1, …, is either c#-normal or S-quasinormally embedded in ( )∕ ′G O Gp

by Lemmas 2.1 and 2.2. Consequently, ( )∕ ′G O Gp fulfills the requirements stipulated in our theorem. Given
the minimality of G, it is compelled that ( )∕ ′G O Gp be p-supersolvable, which in turn implies that G must
be p-supersolvable, leading to a contradiction.

(2) ( ) =PΦ 1G , in particular, ( ( )) =O GΦ 1p .
Suppose that ( ) ≠PΦ 1G . Then, it is clear that

�{ ( ) ( ) } ( ( ) )=P P P P P P/Φ , …, /Φ /Φ .G d G d G1

Also, each ( )P P/Φi G for { }∈i d1, …, is either c#-normal or S -quasinormally embedded in ( )G P/Φ G by Lemmas
2.1 and 2.2. Thus, the hypothesis of our theorem is automatically satisfied for ( )G P/Φ G. So ( )G P/Φ G is p-super-
solvable by the minimality of G. By [18, III, Satz 3.3], we have that ( ) ( )≤P GΦ ΦG and so G is p-supersolvable,
which contradicts the minimality of G.

(3) Any minimal normal subgroup of G that is contained within ( )O Gp possesses an order of p.
By statement (1) and the p-solvability of G, it follows that ( ) >O G 1p . Consider N to be a minimal normal

subgroup ofG that is contained within ( )O Gp . By hypotheses, every Pm is c#-normal inG, and hence, there exists
a normal subgroup Km of G such that =G P Km m and ∩P Km m is a CAP-subgroup of G for all { }∈m k1, …, , i.e.,

∩P Km m covers or avoids ∕N 1. Suppose that there exists some Pm such that ∩P Km m avoids ∕N 1. Then,
∩ ∩ =P K N 1m m . By the minimal normality of N , we can see that either ∩ =N K 1m or ∩ =N K Nm . If

∩ =N K 1m , then NK K/m m is a minimal normal subgroup of ∕G Km. But ∕G Km is a p-group as =G P Km m, which
means that ≅N NK K/m m is of order p. If ∩ =N K Nm , then ∩ =N P 1m . This derives that = ×P P Nm , and thus,
∣ ∣ =N p. Now we may assume that every ∩P Km m covers ∕N 1 for all { }∈m k1, …, . Then, ≤ ∩N P Km m and so

( )≤ ⋂
=

N P ,

m

k

m G
1

where ( )Pm G is the core of Pm in G.
By our assumption, for each { }∈ +n k d1, …, , Pn is S-quasinormally embedded in G, and consequently,

there exists an S-quasinormal subgroup Mn ofG for which Pn serves as a Sylow p-subgroup. Therefore, we may
apply Lemmas 2.3 and 2.4 to see that ( )M M/n n G is nilpotent and all Sylow subgroups of ( )M M/n n G are S -qua-
sinormal in ( )∕G Mn G. In particular, ( ) ( )P M M/n n G n G is S-quasinormal in ( )G M/ n G. It follows from Lemma 2.5 that

( ) ( )P M M/n n G n G is normal in ( )G M/ n G. We obtain that ( )≤P Mn n G and so ( )∩ =P M Pn G n.
Let

( ) ( )= ⎛
⎝ ⋂ ⎞

⎠ ∩ ⎛
⎝ ⋂ ⎞

⎠= = +
T P M ,

m

k

m G
n k

d

n G
1 1

then ⊴T G. By the minimal normality of N , we have that ( )∩ =N M Nn G or 1. If ( )∩ =N M Nn G for all
{ }∈ +n k d1, …, , then ( )≤N Mn G, and consequently, ≤N T . We obtain that

( ) ( ) ( ) ( )

( ) ( )

∩ = ⎛
⎝ ⋂ ⎞

⎠ ∩ ⎛
⎝ ⋂ ⎞

⎠ ∩ = ⎛
⎝ ⋂ ⎞

⎠ ∩ ⎛
⎝ ⋂ ∩ ⎞

⎠

= ⎛
⎝ ⋂ ⎞

⎠ ∩ ⎛
⎝ ⋂ ⎞

⎠ ≤ ⋂ =

= = + = = +

= = + =

T P P M P P M P

P P P PΦ .

m

k

m G
n k

d

n G
m

k

m G
n k

d

n G

m

k

m G
n k

d

n
i

d

i

1 1 1 1

1 1 1
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From Lemma 2.7, we deduce that T is p-nilpotent, and hence, by statement (1), T is a p-group. Statement (2)
implies that = =T N 1, which is a contradiction. Therefore, there exists some Mi such that ( )∩ =N M 1i G ,
where { }∈ +i k d1, …, . Therefore, ∣ ∣ =N p.

(4) No counterexample exists.
Consider N as a minimal normal subgroup of G such that ( )≤N O Gp . Then, statement (3) and Lemma 2.8

are combined to give that N is complemented in G. We obtain that ( )∩ =N GΦ 1 and so ( ) ( )∩ =O G GΦ 1p .
We apply Lemma 2.9 to give that

( ) = × × ×O G N N N… ,p s1 2

where each Ni (for =i s1, …, ) is a minimal normal subgroup of G of order p. Since

( ) ( )≅G C N N/ AutG i i

and ( )NAut i is a cyclic group of order −p 1, we conclude that

( ( )) ( )= ⋂
=

G C O G G C N/ /G p
i

r

G i
1

is p-supersolvable. Given that G is p-solvable and ( ) =′O G 1p , it follows that

( ( )) ( )≤C O G O GG p p

by Lemma 2.10. It follows that ( )∕G O Gp is p-supersolvable. Now, every chief factor ofG contained in ( )O Gp is of
order p; and hence, every p-chief factor of G is cyclic. It follows that G is p-supersolvable, which is a final
contradiction. □

As immediate consequences of Theorem 3.1, we have the following.

Corollary 3.2. [4, Theorem 3.1] Consider G as a p-solvable group, and denote by P a Sylow p-subgroup of G, where
p is a prime number that divides the order of G. Then, G is p-supersolvable if and only if all members in some fixed
� ( )Pd are c#-normal in G.

Corollary 3.3. Consider G as a p-solvable group, and denote by P a Sylow p-subgroup of G, where p is a prime
number that divides the order of G. Then, G is p-supersolvable if and only if all members in some fixed � ( )Pd

are S-quasinormally embedded in G.

Remark 3.4. The assumption of “G is p-solvable” in Theorem 3.1 is indispensable. Indeed, =G A
5
is a counter-

example for =p 5.

Revising the method used in the proof of Theorem 3.1, we can obtain some results. In the following
theorem, we replace the condition “G is p-solvable” in Theorem 3.1 by “(∣ ∣ )− =G p, 1 1.”

Theorem 3.5. Let G be a group, p be a prime divisor of ∣ ∣G with (∣ ∣ )− =G p, 1 1, and P be a Sylow p-subgroup
of G. Then, G is a p-nilpotent group if and only if all members in some fixed � ( )Pd are either c#-normal
or S-quasinormally embedded in G.

Proof. Applying [4, Theorem 3.2], it is only the sufficiency of the condition that is in doubt. Assume the result
is incorrect and consider G as a counterexample possessing the smallest possible order. Let

� ( ) { }=P P P P, , …, .d d1 2

With the same arguments as in the proof of Theorem 3.1, we can obtain the statements (1)–(4).
(1) ( ) =′O G 1p .
(2) ( ) =PΦ 1G , in particular, ( ( )) =O GΦ 1p .

Finite group with c#-normal and S-quasinormally embedded subgroups  5



(3) Let N be a p-group. If N is a minimal normal subgroup of G, then ∣ ∣ =N p.
(4) Any minimal normal subgroup of G is a subgroup of ( )O Gp .

Let N be a minimal normal subgroup of G. Then, statement (1) means that ∣∣ ∣p N . Let � ( )∈P Pi d . By
hypotheses, Pi is either c#-normal or S-quasinormally embedded inG. Given that Pi is c#-normal inG, a normal
subgroup K of G exists, satisfying =G P Ki and ∩P Ki being a CAP-subgroup of G, i.e., ∩P Ki covers or avoids

∕N 1. If ∩P Ki covers ∕N 1, then ≤N Pi and so ( )≤N O Gp . If ∩P Ki avoids ∕N 1, then ∩ ∩ =P K N 1i . By the
minimal normality of N , we can see that either ∩ =N K 1 or ∩ =N K N . If ∩ =N K 1, then ∕NK K is a minimal
normal subgroup of ∕G K . It follows that N has order p and so ( )≤N O Gp . If ∩ =N K N , then ∩ =N P 1i .
Consequently, ∣ ∣ ∣ ∣∣ ∣=P N P Ni p i p and so ∣ ∣ =N pp . Lemma 2.11 and (∣ ∣ )− =G p, 1 1 are combined to give that N

is p-nilpotent. Thus, N is a p-group by statement (1). Hence, ( )≤N O Gp .
Now, we may assume that all members of � ( )Pd are S -quasinormally embedded in G and =Np

( )∩ ≰N P PΦ by Lemma 2.7. Without loss of generality, we assume that � ( )≰ ∈N P Pp d1
. Hence, there exists

an S -quasinormal subgroup H of G, for which P
1
is a Sylow p-subgroup. Therefore, P H H/G G1

is a Sylow
p-subgroup of H H/ G. By Lemmas 2.3 and 2.4, H H/ G is nilpotent and P H H/G G1

is an S -quasinormal subgroup
of H H/ G. Since P H H/G G1

is a maximal subgroup of a Sylow p-subgroup of G H/ G, we see that P H H/G G1
is normal

inG H/ G by Lemma 2.5. Hence, P HG1
is normal in G, which implies that ≤P HG1

. By the minimal normality of N ,
we obtain that ∩ =N H NG or 1. If ∩ =N H NG , then ≤ ∩ =N P H Pp G 1

, which is a contradiction. Therefore,
∩ =N H 1G and so ∩ =N P 1

1
. Consequently, ∣ ∣ =N pp . It means that N is p-nilpotent, and we apply statement

(1) to give that ( )≤N O Gp .
(5) The final contradiction.
By statements (2) and (4), we obtain that ( ) ≠O G 1p and ( )O Gp is elementary abelian. Applying Lemmas 2.8

and 2.9, we can see that

( ) = × × ×O G N N N… ,p r1 2

where Ni is a minimal normal subgroup of G with ∣ ∣ =N pi . Furthermore, ( )O Gp has a complement K in G, i.e.,

( )= ⋊G O G K .p

Let

( )= ⋂
=

T C N .

i

r

G i
1

Since ( )≤N Z Pi , we have ≤P T . If ∩ ≠T K 1, then there exists a minimal normal subgroup L of G such that
≤ ∩L T K and ( )≰L O Gp , which contradicts with statement (4). Hence, ∩ =T K 1. Moreover, we obtain that

( )=P O Gp . Set

= × × × × × ×− +P N N N N N… … .i i i r1 2 1 1

Then, Pi is normal in G and ∣ ∣∕ =G P pi p . By Lemma 2.11, ∕G Pi is p-nilpotent. Furthermore,

⋂
=

G P/

i

r

i
1

is p-nilpotent, but ⋂ == P 1i
r

i1
. It follows that G is p-nilpotent, which a final contradiction. □

Therefore, from Theorem 3.5, we obtain

Corollary 3.6. [4, Theorem 3.2] and [5, Theorem 3.1] Let p be a prime divisor of the order of a group G with
(∣ ∣ )− =G p, 1 1, and let P be a Sylow p-subgroup of G. Then, G is a p-nilpotent group if and only if all members in
some fixed � ( )Pd are c#-normal in G.

Corollary 3.7. [10, Theorem 3.1] Let p be a prime divisor of the order of a group G with (∣ ∣ )− =G p, 1 1, and let P
be a Sylow p-subgroup of G. Then, G is a p-nilpotent group if and only if all members in some fixed � ( )Pd

are S-quasinormally embedded in G.

Combining Theorems 3.1 and 3.5, we obtain the following result.
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Theorem 3.8. Consider an arbitrary prime divisor p of the order of a group, and denote by P a Sylow p-subgroup
of G. A group G is supersolvable if and only if all members in some fixed � ( )Pd are either c#-normal or
S-quasinormally embedded in G.

Proof. Only the sufficiency needs to be shown. Let p be the smallest prime of the order of G. Then, from
Theorem 3.5 G is p-nilpotent. It follows thatG is solvable. We apply Theorem 3.1 to see that for arbitrary prime
divisor of ∣ ∣G , G is p-supersolvable, and thus, G is supersolvable. □

In view of Theorem 3.8, we have the following.

Corollary 3.9. [4, Theorem 3.5] A group G is supersolvable if and only if all members in some fixed � ( )Pd

are c#-normal in G, for every Sylow subgroup P of G.

Corollary 3.10. [10, Theorem 3.2] A group G is supersolvable if and only if for each Sylow subgroup P of G,
all members in some fixed � ( )Pd are S -quasinormally embedded in G.

It is recalled that a formation F is defined as a class of groups that is closed under the operations of taking
homomorphic images and subdirect products. A formation F is termed saturated if F∈G holds whenever

F( )∕ ∈G GΦ is satisfied. Let � be the class of all groups that are supersolvable. It is evident that � constitutes
a saturated formation. We also discover that aforementioned results cannot be extended to saturated forma-
tion, specifically:

Define F as a saturated formation encompassing � . Consider K as a normal subgroup of a group G with
the property that F∕ ∈G K . Assume that for every prime p dividing the order of K , ( )∈P KSyl

p
, and all

members in some fixed � ( )Pd are either c#-normal or S-quasinormally embedded in G. But F∉G .

Example 3.11. The formation function, denoted by ( )f p , is defined as follows:

( ) { }= ′-f p p pthe class of groups for any prime .

Furthermore, let F be the locally defined formation based on the set { ( )}f p . Suppose that ∕K L is a p-chief
factor of a supersolvable group X , then ( )∕X C K L/ X is a cyclic group of order dividing −p 1 and so

( ) ( )∕ ∈X C K L f p/ X . It follows that F∈X , and hence, F� ⊆ . The inclusion of F∈A
4

is evident.
Let ⟨ ⟩=P a b c, , be an elementary abelian group of order 3

3, and let ( )∈u v P, Aut such that

= ⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠− −u

a b c

c a b
v

a b c

b c a
and .

1 1

Then, ( )= = =u v uv 1

3 3 2 , which means that ⟨ ⟩= ≅A u v A,
4
. Set = ⋊G P A, the semidirect product of P and A.

We can see that P is an irreducible and faithful A
4
-module over ( )GF p , implying that P is a minimal normal

subgroup of G with ( ) =C P 1A . Given that F∈A
4

and ∕ ≅ ≅G P A A
4
, we conclude that F∕ ∈G P . Define =M PS ,

with S is a Sylow 2-subgroup ofG. Note that ( ) ≤ ⊴O G M G3 . Since S is an elementary abelian group of order 4,
we derive that any minimal normal subgroup of M contained in P has order 3. Invoking Maschke’s theorem
[1, Theorem 8.1.2], we deduce that P is a completely reducible S-module. Consequently, P admits a decom-
position as ⟨ ⟩ ⟨ ⟩ ⟨ ⟩= × ×P a a a

1 2 3
, with ⟨ ⟩ai (i = 1, 2, 3) being S-invariant. Let ⟨ ∣ ⟩= ≠P a j ii j . Then,

� ( ) { }=P P P P, , ,d 1 2 3

and each Pi in � ( )Pd is S -quasinormally embedded within G. Furthermore, P is identified as a 3-chief factor
of G and ( ) ≅G C P A/ G 4

, which is not a ′3 -group. Thus, F∉G .
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