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Abstract: Let f be a transcendental entire function of hyperorder strictly less than 1, and let c be a nonzero
finite complex number. We prove that if ( )f z and ( )+f z c partially share 0, 1 ignoring multiplicity (i.e.,

( ( )) ( ( ))⊆ +E f z E f z c0, 0, and ( ( )) ( ( ))⊆ +E f z E f z c1, 1, ), then ( ) ( )≡ +f z f z c . This result is a generalization
and improvement of the previous theorem due to Li and Yi.

Keywords: entire function, shift, uniqueness, shared value

MSC 2020: 30D35, 39A10

1 Introduction and main results

We assume the reader is familiar with the fundamental concepts and standard notations of the classical
Nevanlinna theory [1,2], such as ( )T r f, , ( )N r f, , and ( )m r f, . In addition, we denote by ( )S r f, a quantity
of ( ( ))o T r f, as r tends to infinity outside of a possible exceptional set of finite logarithmic measure.

For a given value � { }∈ ∪ ∞a and two meromorphic functions f and g , we denote by ( )E a f, (or ( )E a f, )
the set of all zeros of −f a ignoring multiplicity (or counting multiplicity, respectively), and let us abbreviate
this with IM (or CM). If ( ) ( )=E a f E a g, , , then we say that f and g share a IM; if ( ) ( )=E a f E a g, , , then we say
that f and g share a CM; if ( ) ( )⊆E a f E a g, , , then we say that f and g partially share a IM; and if ( ) ⊆E a f,

( )E a g, , then we say that f and g partially share a CM.

In recent decades, by applying the difference analog of classical Nevanlinna theory [3–6] for meromorphic
functions ( )f z and their shifts ( )+f z c or difference operators ( ) ( )= + −Δ f f z c f zc , many uniqueness the-
orems between functions satisfying some certain shared conditions were obtained. Here, we recall some
previous results as follows.

Theorem 1.1. [7] Let f be a nonconstant meromorphic function of finite order, and let a1, a2, and a3 be three
distinct values in the extended complex plane. If ( )f z and ( )+f z c share a1, a2, and a3 CM, where c is a nonzero
complex number, then ( ) ( )≡ +f z f z c .

Corollary 1.2. [7] Let f be a nonconstant entire function of finite order, and let a1 and a2 be two distinct finite
complex values. If ( )f z and ( )+f z c share a1 and a2 CM, where c is a nonzero complex number, then

( ) ( )≡ +f z f z c .
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Themain idea of the proof of Theorem 1.1 is based on the difference analog of classical Nevanlinna’s theory for
meromorphic functions of finite order, which is established by Halburd and Korhonen [3,4], Chiang and Feng [5],
independently, and developed by Halburd et al. [6] to hyperorder strictly less than 1. Correspondingly, the assump-
tion “finite order” in Theorem 1.1 and Corollary 1.2 can naturally be replaced by “hyperorder ( ) <ρ f 1

2
.”

It is a natural question whether the shared conditions can be weakened or not. In 2017, one of the authors
[8] of this article improved the shared conditions of Theorem 1.1 from “3CM” to “2CM + 1IM.” In 2016, Li and Yi
[9] improved Corollary 1.2 from “2CM” to “2IM.” We recall those theorems as follows.

Theorem 1.3. [8] Let f be a nonconstant meromorphic function of hyperorder ( ) <ρ f 1
2

, and let a1, a2, and a3

be three distinct values in the extended complex plane. If ( )f z and ( )+f z c share a1 and a2 CM and a3 IM, where c
is a nonzero complex number, then ( ) ( )≡ +f z f z c .

Theorem 1.4. [9] Let f be a nonconstant entire function of hyperorder ( ) <ρ f 1
2

, and let a1 and a2 be two distinct
finite complex values. If ( )f z and ( )+f z c share a1 and a2 IM, where c is a nonzero complex number, then

( ) ( )≡ +f z f z c .

In this article, we shall replace the shared value conditions of Theorem 1.4 by two partially shared values.

Theorem 1.5. Suppose that f is a transcendental entire function of hyperorder ( ) <ρ f 1
2

, and let a1 and a2 be two
distinct finite complex values. If ( ( )) ( ( ))⊆ +E a f z E a f z c, ,1 1 and ( ( )) ( ( ))⊆ +E a f z E a f z c, ,2 2 , where c
is a nonzero complex number, then ( ) ( )≡ +f z f z c .

The following example shows that the word “entire function” cannot be replaced by “meromorphic
function.”

Example 1. Let ( ) = −f z
e

e 1

z

z and c be a given finite complex number except for kiπ2 , where k is an integer.

Then, ( )+ = −

+

+f z c
e

e 1

z c

z c , which implies that ( ( )) = ∅E f z0, and ( ( ))+ = ∅E f z c0, , i.e., ( )f z and ( )+f z c share
0 CM. Similarly, one can see that ( )f z and ( )+f z c share 1 CM. But ( ) ( )≢ +f z f z c .

2 Some lemmas

Next, we shall recall the following lemmas that are needed in the sequel.

Lemma 2.1. [6] Let f be a nonconstant meromorphic function of hyperorder ( ) <ρ f 1
2

and � { }∈c \ 0 . Then,

( )

( )

( )

( )
( )⎜ ⎟ ⎜ ⎟

⎛
⎝

+ ⎞
⎠

+ ⎛
⎝ +

⎞
⎠

=m r
f z c

f z
m r

f z

f z c
S r f, , , ,

for all �∈z .

Lemma 2.2. [6] Let [ ) [ )+∞ → +∞T : 0, 0, be a non-decreasing continuous function, and let ( )∈ ∞s 0, .
If the hyperorder of T is strictly less than one, i.e.,

( )
( )

= = <
→∞

+ +
ρ ρ T

T r

r
limsup

log log

log
1,

r
2 2

and ( )∈ −δ ρ0, 1
2
, then

( ) ( )
( )

+ = + ⎛
⎝

⎞
⎠T r s T r o

T r

r
,

δ

where r runs to infinity outside of a set of finite logarithmic measures.
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Remark 2.3. The following properties are immediate consequences of Lemma 2.2 for a nonconstant
meromorphic function ( )f z of hyperorder ( ) <ρ f 1

2
, i.e., we have ( ( )) ( ) ( )± = +T r f z c T r f S r f, , , ,

( )
( ) ( )

⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠ +± − −N r N r S r f, , ,

f z c a f z a

1 1 , and so on.

3 Proof of Theorem 1.5

The proof is based on the idea of Lin and Ishizaki [10]. Without loss of generality, we can suppose that =a 01

and =a 12 . Assume, on the contrary, that ( ) ( )≢ +f z f z c .
Set

( )
( )[ ( ) ( )]

( )( ( ) )
=

′ − +
−

φ z
f z f z f z c

f z f z 1
. (3.1)

According to the shared value conditions, we know that any zero of ( )−f f 1 is a regular point ofφ. And since f

is an entire function, one can see that φ is an entire function. In addition, using the lemma on logarithmic
derivatives and Lemma 2.1, we have

( )
( )

( )

( ) ( )

( )
( ) ( )⎜ ⎟ ⎜ ⎟≤ ⎛

⎝
′

−
⎞
⎠

+ ⎛
⎝

− + ⎞
⎠

+ ≤m r φ m r
f z

f z
m r

f z f z c

f z
O S r f, ,

1
, 1 , ,

which implies that

( ) ( )=T r φ S r f, , . (3.2)

Next, we denote by ⎛
⎝

⎞
⎠′N r,

h0

1 the counting function of those zeros of ( )′h z , which are not the zeros

of ( )( ( ) )−h z h z 1 . Noting that ≢φ 0 by the assumptions, from (3.1) and (3.2), we have

( )
( ) ( )⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝ ′

⎞
⎠

≤ ⎛
⎝

⎞
⎠

≤ ⎛
⎝

⎞
⎠

≤ =N r
f z

N r
φ

T r
φ

T r φ S r f,
1

,
1

,
1

, , .0 (3.3)

Rewrite (3.1) as

( )
( )[ ( ) ( )]

( )( ( ) )
+ =

′ + + − + +
+ + −

φ z c
f z c f z c f z c c

f z c f z c 1
. (3.4)

Then, we can deduce from (3.2), (3.4), and Lemma 2.2 that

( ) ( ) ( )
( ( )) ( ) ( )⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝ ′ +

⎞
⎠

≤ ⎛
⎝ +

⎞
⎠

≤ ⎛
⎝ +

⎞
⎠

≤ + + =N r
f z c

N r
φ z c

T r
φ z c

T r φ z c O S r f,
1

,
1

,
1

, 1 , .0 (3.5)

Set

( )
( ){ ( )[( ( ) )]}

( )[ ( )( ( ) )]
=

′ + + −
′ + −

F z
f z f z c f z c

f z c f z f z

1

1
. (3.6)

Immediately, we obtain

( )
( )

( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

⎜ ⎟ ⎜ ⎟ ⎜ ⎟≤ ⎛
⎝

′
′ +

⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

+ ⎛
⎝

+ −
−

⎞
⎠

≤ ′ + + − =

m r F m r
f z

f z c
m r

f z c

f z
m r

f z c

f z

S r f S r f S r f S r f

, , , ,
1

1

, , , 1 , .

Moreover, we claim that ( ) ( )=N r F S r f, , . Since f is an entire function, we know that all the poles of ( )F z

in (3.6) could only come from the zeros of ( )[ ( )( ( ) )]′ + −f z c f z f z 1 . We consider the following two cases.
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Case 1. Let z0 be a zero of ( )f z (or ( ) −f z 1, respectively) with multiplicity m, and of ( )+f z c (or ( )+ −f z c 1,
respectively) with multiplicity n. Then, z0 is a zero of ( )[ ( )( ( ) )]′ + −f z c f z f z 1 in (3.6) with multiplicity

− +n m1 , and a zero of ( )[ ( )( ( ) )]′ + + −f z f z c f z c 1 in (3.6) with multiplicity − +m n1 too. Thus, z0 is not
a pole of ( )F z .
Case 2. Let z1 be a zero of ( )′ +f z c . We consider the following subcases.
Subcase 2.1. If z1 is a common zero of ( )( ( ) )+ + −f z c f z c 1 and ( )( ( ) )−f z f z 1 , then z1 is not a pole of ( )F z

by the same argument as in Case 1.
Subcase 2.2. If z1 is a zero of ( )( ( ) )+ + −f z c f z c 1 but not of ( )( ( ) )−f z f z 1 , then since the multiplicity at z1 of

( )′ +f z c is less than the multiplicity of ( )( ( ) )+ + −f z c f z c 1 , it is obvious that z1 is also not a pole of ( )F z .
Subcase 2.3. If z1 is not a zero of ( )( ( ) )+ + −f z c f z c 1 , then it follows from (3.3) and the aforementioned
two subcases that ( ) ( )=N r F S r f, , .

Therefore, we have

( ) ( )=T r F S r f, , . (3.7)

In what follows, we rewrite (3.6) as

( ) ( )

( )[( ( ) )]

( )

( )( ( ) )

′ +
+ + −

=
′

−
F z f z c

f z c f z c

f z

f z f z1 1
. (3.8)

Denote by
( )( ( ) )

⎛
⎝

⎞
⎠+ + −N r,D f z c f z c

1

1
the reduced counting function of those zeros of ( )( ( ) )+ + −f z c f z c 1

but not of ( )( ( ) )−f z f z 1 . It follows from (3.7), (3.8), and ≢F 0 that

( )( ( ) ) ( )
( )⎜ ⎟ ⎜ ⎟

⎛
⎝ + + −

⎞
⎠

≤ ⎛
⎝

⎞
⎠

=N r
f z c f z c

N r
F z

S r f,
1

1
,

1
, .D

Now, we denote by ( ( ) ( )) ( )( ) ( )+ =N r a f z f z c N r a, ; , ,m n m n, , the reduced counting function of those
common zeros of ( ) −f z a with multiplicity m, and of ( )+ −f z c a with multiplicity n, and claim that

( ) ( )( ) =N r a S r f, ,m n, (3.9)

holds for any fixed pair ( )m n, and { }∈a 0, 1 . Otherwise, without loss of generality, we can assume there exists
some pair ( )m n, such that

( ) ( )( ) ≠N r S r f, 0 , .m n, (3.10)

Next, we discuss the following two cases. In the following, let z0 be a common zero of ( )f z and ( )+f z c

with multiplicity m and multiplicity n, respectively, and then, ( ) ≠ ∞F z 0,0 by (3.8), where we ignore those

points in
( )( ( ) )

⎛
⎝

⎞
⎠+ + −N r,D f z c f z c

1

1
.

Because the coefficients of the term ( )− −z z0
1 of the Laurent expansions of the both sides of (3.8)

are identical, we have

( )− = −F z n m.0 (3.11)

Case 1. Suppose that =m n. Then, we have ( ) =F z 10 by (3.11). If ( ) ≢F z 1, then it follows from (3.7) that

( )
( )

( )( )
⎜ ⎟≤ ⎛
⎝ −

⎞
⎠

=N r N r
F z

S r f, 0 ,
1

1
, ,m n,

which is a contradiction to (3.10). Hence, ( ) ≡F z 1, and it follows from (3.8) that

( )

( )[( ( ) )]

( )

( )( ( ) )

′ +
+ + −

≡
′

−
f z c

f z c f z c

f z

f z f z1 1
,

which implies ( )f z and ( )+f z c share 0, 1 CM by the assumptions of Theorem 1.5. In fact, from the afore-
mentioned identical equation (for convenience, notate this equation as ( )* ), we can derive ( ( )) ⊇E f z0,

( ( ))+E f z c0, . Otherwise, if there exists a point ξ such that ( )+ =f ξ c 0 but ( ) ≠f ξ 0, then we also have
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( ) − ≠f ξ 1 0. Moreover, ξ is a pole of the left side of (⁎) but is not a pole of the right of (⁎), which is
a contradiction. Therefore, we have ( ( )) ( ( ))= +E f z E f z c0, 0, . Similarly, we can obtain ( ( )) =E f z1,

( ( ))+E f z c1, . Next, by observing the Laurent expansions on both sides of (⁎), we can further deduce that
( )f z and ( )+f z c share 0, 1 CM.

Now, by applying Theorem 1.4 to this case, we know that ( ) ( )≡ +f z f z c , but this is a contradiction.
Case 2. Suppose that ≠m n. Then, we have ( ) =F z

m

n0 by (3.11). If ( ) ≢F z
m

n
, then it follows from (3.7) that

( )
( )

( )( ) ≤
⎛

⎝
⎜

−

⎞

⎠
⎟ =N r N r

F z
S r f, 0 ,

1
, ,m n m

n

,

which is a contradiction to (3.10). Hence, ( ) ≡F z
m

n
, and it follows from (3.8) that

( )

( )[( ( ) )]

( )

( )( ( ) )

′ +
+ + −

≡
′

−
mf z c

f z c f z c

nf z

f z f z1 1
,

which implies

( )

( )

( )

( )
⎜ ⎟ ⎜ ⎟
⎛
⎝

+ −
+

⎞
⎠

≡ ⎛
⎝

− ⎞
⎠

f z c

f z c
A

f z

f z

1 1
,

m n

0

for some nonzero constant A0. This together with the Valiron-Mohon’ko theorem yields

( ( )) ( ) ( )⋅ + = ⋅ +m T r f z c n T r f S r f, , , .

It follows from Lemma 2.2 immediately that =m n, which is a contradiction in this case.
Therefore, the claim of (3.9) is true.
Finally, we will derive a contradiction in the following, and complete our proof.
Since

( )
( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

∑

∑ ∑ ∑ ∑

⎜ ⎟
⎛
⎝

⎞
⎠

=

= + + +

≥
≥

≥ ≥
≥ ≥

≤
≥ ≥

≥ ≥
≤

≤
≤

N r
f z

N r

N r N r N r N r

,
1

, 0

, 0 , 0 , 0 , 0 ,

m
n

m n

m
n

m n
m

n

m n
m

n

m n
m
n

m n

1

1

,

11 1

11 1

,

12

11 1

,

11 1

12

,

12

12

,

what is more, we can deduce that

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( ) ( )

( )

( )

( )

∑

∑

∑

⎜ ⎟

⎜ ⎟

⎜ ⎟

≤ ⎛
⎝

⎞
⎠

≤ +

≤ ⎛
⎝ +

⎞
⎠

≤ +

≤ ⎛
⎝

⎞
⎠

≤ +

≤
≥ ≥

≥ ≥
≤

≤
≤

N r N r
f z

T r f S r f

N r N r
f z c

T r f S r f

N r N r
f z

T r f S r f

, 0
1

12
,

1 1

12
, , ,

, 0
1

12
,

1 1

12
, , ,

, 0
1

12
,

1 1

12
, , ,

m
n

m n

m
n

m n

m
n

m n

12

11 1

,

11 1

12

,

12

12

,

and from (3.9) that

( ) ( )( )∑ =
≥ ≥
≥ ≥

N r S r f, 0 , .
m
n

m n
11 1

11 1

,

Hence, we can obtain from the aforementioned formulas that

( )
( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠

≤ +N r
f z

T r f S r f,
1 1

4
, , . (3.12)
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Similarly, we can also obtain

( )
( ) ( )⎜ ⎟

⎛
⎝ −

⎞
⎠

≤ +N r
f z

T r f S r f,
1

1

1

4
, , . (3.13)

By (3.12) and (3.13), we have

( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( )

⎜ ⎟ ⎜ ⎟≤ + ⎛
⎝

⎞
⎠

+ ⎛
⎝ −

⎞
⎠

+

≤ + + = +

T r f N r f N r
f z

N r
f z

S r f

T r f T r f S r f T r f S r f

, , ,
1

,
1

1
,

1

4
,

1

4
, ,

1

2
, , ,

which is a contradiction.
Therefore, this completes the proof of Theorem 1.5.

4 Discussion

In 1989, Brosch [11] proved the following sufficient conditions for periodicity of meromorphic functions in his
doctoral dissertation.

Theorem 4.1. ([11] or [2], Theorem 5.14) Let ( )f z and ( )g z be two nonconstant meromorphic functions sharing
three values � { }∈ ∪ ∞a a a, ,1 2 3 CM. If ( )f z is a periodic function with period ( )≠c 0 , then ( )g z is also a periodic
function with period c.

As we know, one can apply the uniqueness theorems on meromorphic functions and their shifts to study
the periodicity of meromorphic functions. For example, the third author of this article improved Theorem 4.1
as follows.

Theorem 4.2. [12] Let ( )f z and ( )g z be two nonconstant meromorphic functions with ( )f z of finite order, and let
� { }∈c \ 0 , and let � { }∈ ∪ ∞a a a, ,1 2 3 be three distinct values. Suppose that ( )f z and ( )g z share a1 and a2 CM

and a3 IM. If ( ) ( )= +f z f z c for all �∈z , then ( ) ( )= +g z g z c for all �∈z .

An immediate consequence of Theorem 4.2 is the following result.

Corollary 4.3. Let ( )f z and ( )g z be two nonconstant entire functions with ( )f z of finite order, and let � { }∈c \ 0 .
Suppose that ( )f z and ( )g z share 0 CM and 1 IM. If ( ) ( )= +f z f z c for all �∈z , then ( ) ( )= +g z g z c

for all �∈z .

Now, using Theorem 1.4, we can obtain the following result.

Theorem 4.4. Let ( )f z and ( )g z be two nonconstant entire functions of hyperorder strictly less than 1, and let
� { }∈c \ 0 . Suppose that ( )f z and ( )g z share 0, 1 IM. If ( ) ( )= +f z f z c for all �∈z , then ( ) ( )= +g z g z c

for all �∈z .

Proof. By the assumptions of Theorem 4.4, it follows that

( ) ( ) ( ) ( )= ↔ = ↔ + = ↔ + =g z f z f z c g z c0 0 0 0

and that

( ) ( ) ( ) ( )= ↔ = ↔ + = ↔ + =g z f z f z c g z c1 1 1 1.

This implies ( )g z and ( )+g z c share 0, 1 IM, and hence, ( ) ( )≡ +g z g z c by Theorem 1.4. □
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Therefore, regarding Corollary 4.3, Theorem 4.4, and the main result Theorem 1.5 of this article, we give
the following question.
Question If the condition “ ( )f z and ( )g z share 0, 1 IM” of Theorem 4.4 is replaced with “ ( ( )) ( ( ))⊆E f z E g z0, 0,

and ( ( )) ( ( ))⊆E f z E g z1, 1, ”, does the conclusion of Theorem 4.4 still hold?
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