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Abstract: This article studies the regularity of weak solutions to the 3D stationary tropical climate model.
We prove that when (U, V,0) belongs to the homogeneous Morrey space M*P(R3) with p >3, then
(U, V,0) € C*(R3).
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1 Introduction

In this article, we consider the following 3D stationary tropical climate model:

-AU+div(U® U) + div(V® V) + VP = 0,
-AV+diviU® V) +div(Ve U) + V0 = 0,
A0+ U-VO + divV =0,

divU = 0,

1D

where U(x) = (Uy, U, Us), V(x) = (W, V5, V5), 0 = O(x), and P = P(x) denote the barotropic mode of the velocity
field, the first baroclinic mode of the velocity field, the scalar temperature, and the scalar pressure, respec-
tively. The (i, j) component of matrix U ® V is U;V; with i,j =1, 2, 3.

System (1.1) becomes the standard stationary tropical climate model when the term div(V ® U) in (1.1),
is replaced by V- VU. For the time-dependent version related to the standard stationary tropical climate
model, i.e.,

ocu + u(=4)%u + div(u ® u) + div(v @ v) + VP = 0,

v+ v(-APv + diviu @ v) +v-Vu + V8 = 0,

00 + n(-A4)"6 + u-vo + divv = 0, 1.2)
divu = 0,

W, v, Dle=0 = (o, Vo, 6o)

with the parameters u, v, n, a, 8,y = 0, there have been many studies on well-posedness and regularity. For
the well-posedness results of system (1.2), when the viscosity depends on the temperature, Ye and Zhu [1]
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showed that there exists a global strong solution in R? for the case g = v = n = 0. In this case, it is worth
mentioning that system (1.2) reduces to the original tropical climate model derived by Frierson et al. [2]. For
u=v=14,n=0,0<a<l,Bfz2loraz1 =0, Ma et al. [3] obtained the local well-posedness of strong
solutions in R2. Li and Titi [4] showed the existence and uniqueness of strong solutions in R? with g, v > 0,
n=0,a=B=1 When g,v,n>0,a=p=5/4,y=0,Liet al. [5] obtained the global well-posedness in R3,
Zhang and Xu [6] established the global well-posedness of the classical solutions for system (1.2) with a full
Laplacian term in R3. More 2D and 3D well-posedness results for system (1.2) were studied in [7-9].

For the regularity results of system (1.2), Ye [10] proved the global regularity in R with g, v, > 0,a > 0,
B=y=1Whenyu,v>0,n-= 0,% <a<10<p<12a+ B =2,aregularity criterion obtained by Bisconti [11]
inR2. Wang et al. [12] and Wu [13] proved the global regularity for system (1.2) with a full Laplacian term in R3,
respectively. For more 2D and 3D regularity results related to system (1.2), one could see [14-16].

It is worth mentioning that when d,u =9,v =0, =0, and g =v =a = f =1, system (1.2) reduces to
a system, which is similar to the standard stationary MHD system. Let us mention that Jarrin [17] obtained
a criterion to improve the regularity of weak solutions to the standard stationary MHD system, provided
that (1, v) € M*P(R3).

To the best of our knowledge, with respect to the regularity of solutions to system (1.1), there are no
corresponding results, which is our motivation in this article. Inspired by [17], we study the regularity of weak
solutions to system (1.1) in the homogeneous Morrey space.

In this article, we write [|(f;,f,)llx = Iillx + Illx + I5llx and use |'[x to denote [-|[xg3.
The notation D’(R3) is the dual space of D(R?) = C;°(R3), where Cy(R®) represents the set of infinitely
differentiable functions with compact support in R3. The derivative of the multi-index a of the function f

. 0% 9% 9%
af —
is 9% = oxT ax " oxn

from line to line.

f with a = (a, @y, ...,ap) and |a| = @4 + @, +...+ a,. The positive constant ¢ may change

Our main result can be stated as follows. Here, the definitions of weak solutions, M*? (R3) and ‘Wk+2P(R3)
will be given in the next section.

Theorem 1.1. Let (U, V, 8) be a weak solution to system (1.1). Assume that (U, V,0) € M*P (R3) with p >3
and P € D'(R3), then, for all k 2 0 we have

(U, V, 0, P) € WK2I(R3)
and

(09U, 8V, 8%0, 3°P) € C13/P(R3), |a| <k +1.
Remark 1.1. In fact, the function (U, V, 6, P) belongs to C*(R?) since the exponent k could be large enough.

In order to prove Theorem 1.1, we need to overcome a difficulty, which is the estimation associated with
VO and divV in system (1.1). In fact, Jarrin gave a way to deal with (div(F), div(G)) (see [17], pp. 6-7), i.e.,

t
J’e@-S)A(div([F ), div(G))ds
0

sup
0<¢t<T

e

IN

t
sup I||e(t—s)A(diV(F), diV(G))||Mz,pds

0<t<T 0

t

Ids

0

A

< csup [|(div(F), div(G))||,,.2e

0<t<T

CT||(div(F), div(G))]],2r

IA
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and

t
_[e(f-SM(div([F), div(G))ds
0

3
sup tw
0<t<T

e

IA

sup £ I e (div(F), div(G))||-ds

0<t<T

IA

csup t _[(t ~ 5)|(AivV(F), div(G))2ods

0<tsT
I(t sy Zpds'

IA

csup t2p||(d1v([F) div(G))|ly2»
0<tsT

< cT||(div(F), div(G))||2e,

where (F, G) denote the external force and p > 3. However, if we follow the above estimates, namely,
t
[et==1cvp, div)as

sup < cT[|(VO, divV)|| 2
0st<T | ey
and
t
sup t5 || [e94(v0, divV)ds || < TI|(Y8, div)]| 0,
0<¢<T 0 Lo

then the condition (V6, divV) € M 2P (R3) is required. To avoid this additional condition, in this article, we will
choose another way to deal with these two terms, see the estimates of J, and K; below.

The rest of this article is divided into two sections. In Section 2, we will introduce some lemmas, definitions
of weak solutions and function spaces. In Section 3, we will give the proof of Theorem 1.1 by three steps.

2 Preliminaries

In this section, we first recall the definitions of homogeneous Morrey space M"?(R%) and weak solutions
to system (1.1). Then, we introduce the Sobolev-Morrey space ‘W*P(R?%) and some lemmas.

Definition 2.1. The function (U, V, 8) € L2.(R3) is called a weak solution to system (1.1) if it satisfies

j(—U~A¢+(U® U): Vo + (Ve V): Ve + P(V- ¢))dx = 0,

j(—v-A¢+(U® V):Vo+ (Ve U):Vp+0(V- ¢))dx =0,

[R3

I(—G-Aq) +(U-V0): Y + V- (V- ¢))dx =0,
[R3

divU = 0,

for any test function ¢ € Cy'(R3).

Definition 2.2. Let1 < r < pand1 < p < +o, The homogeneous Morrey space M"*(R3) is the set of all functions
f € Lj,.(R3) such that

Voo = swp R [ froorax] <o

Xo€ER3R>0 B(X R)

where B(Xy, R) is a ball of radius R centered at xq.
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The space M"?(R3) is a homogeneous space of degree —% and satisfies the embedding relation LP(R3) C

LPA(R3) € M"P(R3). Here, LP4(R3) is the Lorentz space and for more details of this space, one could refer
to [18].
Definition 2.3. Let p > 2, k = 0. The Sobolev-Morrey space WkP(R?) is defined by

WP(R?) = {89f € M>P(R3) for all |a] < k}.
Lemma 2.1. [17] Let f € M"P(R3) N L*(R3). For all 1 < g < +oo, there holds
1 1
Wfllzrore < cllfllgre U117 -

Lemma 2.2. [19] The space M""’(R3) is stable under convolution with functions in the space L'(R®), and we have

IVF*8llare < cllfllxz# 1]l -

x-yl2

Lemma 2.3. [19] Lett > 0 and h; be the heat kernel: hi(x, y) = (47'[1’)_‘218_‘ w ,where(x,y) € R4 withd = 1, 2,..., n.
Then, there holds

3
tw|lhe* flle= < cllfllyre-

aiA denotes the ith Riesz transform. Then,

Lemma 2.4. [20] Fori=1,2,3,R; = N
IR:R;(llygre < cllf Iy

Lemma 2.5. [21] Let f € S’ such that Vf € M LP(R3) with p > 3, where S’ is the collection of all continuous linear
functional defined on S, ie., the tempered distributions space. There exists a constant ¢ > 0 such that for all
X,y € R3, we have |[f(x) = f(Y)| < c||[Vfllrelx =y ['73/P. Here, M"P(R3) is defined as the space of locally finite
Borel measures du such that

[ o] < +e.

B(xo,R)

3 1
sup Re|———
XoER3R>0 |B(X0’ R)I

Now, we introduce the following lemma, which is a simple result of the Banach fixed point theorem.

Lemma 2.6. [22,23] Let Y be a Banach space. Given a bilinear from H:Y x Y - Y such that |H(x, x)|ly <
collXlly ||%2lly for some constant ¢, > 0 and for all x, X, € Y, we have the following assertions for the equation:

u=z+Hu,u). 2.1

Suppose that z € B,(0) = {f€ Y : |[flly <&} for some ¢ € (0, 4%0

{fE€Y:|flly <2&}. It means that the unique solution lies in the ball B,.(0). Moreover, the solution u depends
continuously on z, that is, when Z € B,(0), I € By.(0), and T = Z + H(, &), it follows that

), then (2.1) has a solution u € By(0) =

lJu - ally < llz = Zlly- 22)

1 - 4ecy

We can conclude the local well-posedness of the solution from (2.2) when ¢y = ¢T* for some a > 0.
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3 The proof of main result

Proof of Theorem 1.1. For the sake of clarity, the proof is divided into three steps. In step 1, we prove the local
existence and uniqueness of solution (u, v, ) to system (3.1), i.e., Proposition 3.1. In step 2, we focus on system
(1.1) and obtain the boundedness of (U, V, 8) in R3, i.e., Proposition 3.2. In step 3, we first study the regularity
of the solution (U, V, 0) to system (1.1), then from the relation between (U, V) and pressure P (see (3.17)),
we are able to obtain the regularity of P.
Step 1. The local existence and uniqueness of solution (u, v, 8) to system (3.1).

We consider the following time-dependent version of system (1.1):

Ou — Au + div(u @ u) + div(v ® v) + VP = 0,

v - Av + div(u ® v) + div(v @ u) + V0 = 0,

0,0 - A0 + u-Vo + divy = 0, 3.1)
divu = 0,

(W, v, 0)le=0 = (o, Vo, 6o).

Now, we give the following proposition:
Proposition 3.1. Let (uo, vy, 8y) € Mz’p(fR3) with p > 3. There exists a unique solution (u, v, 8) € C([0, Tp],
M*(R3)) to system (3.1), where Ty is a positive time, depending on ||(uo, Vo, 0)||,;2» such that

sup t2]|(w, v, 0)(t, )||= < +oo.
0<t<Ty

Here, C.([0, T], M 2P (R)) denotes the functional space of bounded and weak-+continuous functions on [0, T with
values in the homogeneous Morrey space M*P(R3).

Proof. Applying Leray’s projector P = I + V(-A)"'div to (3.1);, then by Duhamel’s formulae, we obtain

t t
u(t, -) = euq + Ie“‘”“[P(div(u ® 1)(s, -)ds + J'eﬂ-s)A[P(div(v ® V))(s, )ds

(3.2)
0 0
=h+L+kh,
t t t
v(t, *) = etdyy + Ie(“s)ﬂ(div(u ® V))(s, -)ds + J—e(t‘s)“(div(v ® w)(s, -)ds + Ie(“s)AVG(s, ds
0 0 0 (33)
=h+h+h+
and
t t
N = oth (t-5)0(; . . (t-)A; .
o(t, -) = e, + ‘(I:e S(u - Vo)(s, -)ds + ‘(I:e SAdivv(s, -)ds (34)
=K+ K+ K,

where (I, J;, K) is the linear term and (I, L, J,, 5, J, , K2, K3) is the bilinear term.
Exploiting Picard’s fixed point argument, we introduce the following Banach space:

ET =

f€ C([0, T], M*P(R3)) : sup ta||f(t, )|~ < +oo],

0<t<T

with the norm

fllez = sup [FCE, e + sup Eallf (e, e

0<t<T 0<t<T
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We will estimate (h, b, I, J;, ., Js» J Ki, Ko, Ko) in the space Er. As (ug, Vo, 6p) € M>P(R?), by Lemma 2.2
and Lemma 2.3, it is easy to obtain

||(Il)]1’ I<l)||ET S C”(uOs Vo, GO)HMZP (35)
Next, we will show that
12, B Jo Ty Jor Koo Kl < €T278]|(w, v, O)|E, + cT2|(v, O)]le; (3.6)

where p > 3.
We first give the following estimate, which will be used frequently in subsequent estimates:

t t/2 t
I = I L —ds + I%ds
o (€~ s)zsq o (L= s)2st 2 (t - s)2s1
t/Z t
<ct‘7J ds+th -ds
r/z(t -5y
< ctz‘q,

where 0 < g < 1. For L, recalling that P is continuous in M*P (R3), then by Lemma 2.2 and the well-known

estimate on the heat kernel ||[Vh( ()|l < . )1, we obtain
=S)2

t
J'eﬂ-sm[P(div(u ® w)(s, -)ds
0

< csup Ille(‘ DA(div(u ® w))(s, -)|lzeds
0<t<T 0

sup [[Ellyz = sup
0<t<T 0<t<T

M

t
1
<csup J‘i1 3
osesT 3 (t = S)zsw

3
swl|us, -)||=|luds, -)||Mz,p]ds
< cTi‘E||u||ET.

Using the Hélder inequality, the facts that e~9P (div(-)) can be written as a matrix of convolution operators

and||Ki;(t - s, )|t < ﬁ, with K;j being the kernel of e"4P (div(-)) (see Proposition 11.1 of [23]), we obtain
t-s)2

t

Ie“‘”“[P(div(u ® 1))(s, -)ds
0

sup t23p||12||Lw= sup t»
0<t<T 0<t<T

I

< sup tzpj||e<f AP (div(u ® w))(s, -)||z-ds
0<t<T

t
1 3 :
<c sup I%J’(—[“PHU(& ')||L"“] ds

3
0stsT t — S)28p

—
=

< cT o |ul,,

which together with the estimate of ||L]|,2» yields ||b|p, < CT%‘%HuH%T. Observing that U - V6 = div(U0)
in K5, then similar to the estimate of I, we have

1_3
15, Jp» S5 KDlley < T2 ]I(u, v, O)|[E,-
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As stated above, the estimation of J, cannot follow directly from the estimate given by Jarrin (see pp. 6-7
in [17]), and we deal with J; as

t

Ie(t‘s)“VG(s, ds
0

sup ||y |[yz» = sup
0<t<T 0<t<T

Ve

t
< sup I||e(“s)AV9(s, Iz ds
0<t<T 0

t

sup I T
osesT 3 (E = 5):

1
¢

dS'H@IIET

1
< cT2||0)|g,
and

t
Je“‘”“VG(s, ds
0

t

<csup t» J‘%[S%IIG(& ')IIL"“]dS

1 3
ostst 3 (£ = 8)2sw

3 3
sup tw||f,|[z» = sup t»
0<t<T 0<t<T

I

t

1
<csup ti [————ds|6]ls,
0stsT (t - 8)s»

1
< cT2)|6[g,

which yields that ||, ||z, < cT%||6||ET. Similarly, we directly obtain ||K;||g, < cT%||v|| Er-

The above estimates show that (3.6) holds. This together with (3.5) and Lemma 2.6 gives the local existence
and uniqueness of solution (u, v, 8) to system (3.1) for a time 0 < Ty(uy, vy, ) < +o small enough, which
completes the proof of Proposition 3.1. O

Step 2. The boundness of (U, V, 0).

Proposition 3.2. Let (U, V, 0) be a weak solution to system (1.1). If (U, V, 8) € M*’(R3) with p > 3, then we
have (U, V, 0) € L™(R3).

Proof. First, applying Leray’s projector P to system (1.1);, we obtain

0.U - AU + P(div(U ® U)) + P(div(V® V)) = 0,
OV-AV+diviU® V) +div(Ve U) + VO = 0,
0,0 - A0+ U-VO+divV =0,

divU = 0,

(3.7

where 0,U = 6,V = 0 and 9.0 = 0 due to (U, V, 0) being the time-independent function.
Next, operating (3.7)s, (3.7),, and (3.7); by e(" and integrating over [0, t] with respect to s, we obtain

t t

U= e4U + e (div(U ® U))ds + [P (div(V ® V))ds, (3.8)
0 0
t t t
V= ety + _[e(f-SMdiv(U ® V)ds + _[e(f-SMdiv(V ® U)ds + _[e(f-SMVGds, (3.9)

0 0 0
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and

t t
0 = et4g + je<t-S>A(U -V6)ds + je<t-S>Adides. (3.10)
0 0

Since (3.8), (3.9), and (3.10) are structurally similar to (3.2), (3.3), and (3.4), respectively, we could obtain
the existence and uniqueness of solution (U, V, 8) to system (3.7) by the same method as in Step 1. Then,
by Proposition 3.1, we have

sup t=||(U, V, 0)||z= < +oo.

0<t<Ty

As (U, V, 0) does not depend on the time variable, hence (U, V, 8) € L*(R3). O

Step 3. The regularity of weak solution (U, V, 6) and pressure P.
Applying Leray’s projector P to system (1.1);, then we can write (1.1)1, (1.1)2, and (1.1)3 as, respectively,

1 1
U =~ P(Uiv(U ® U) - — P(Udv(V ® V) = Ay + A,
1 1 1
3V = -J(aadiV(U ® V) - J(aadiV(V ®U)) - J(G“VB) = By + By + Bs,
and
1 1 .
00 = —q(aa(U Vo)) - q(aaleV) =Dy + D,.

Claim: The following estimates hold:

109U || 2000 < +o0, (3.11)

109V || 2000 < +o0, (3.12)
and

[1096]| 2000 < +e0, (3.13)

wherel<g<+oand1<|al <k+2withkz20.

Proof of Claim. The proof is divided into four cases: |a| =1, 2, k + 1 and k + 2 with k > 0. We first consider
the cases |a] =1 and 2, and then we complete the proofs of the cases |a| = k + 1 and k + 2 with the aid of

a recurrence hypothesis that (89U, 8V, 3%0) € M**P°(R3) for all1 < ¢ < +c and 1 < |a| < k.
In the case of |a] = 1. For A4;, by Lemmas 2.1, 2.4, Hélder inequalities, Proposition 3.2, and the fact that P
is continuous in M"?(R3), we obtain

1 o1
1 A1llyz00 < cl[U @ Ullygzene < cl|UJI% 20| UJl=" < +oo. (314)

Similar to (3.14), we infer

1 1
= 2_7
142 llypzove < |V ® Vl|ypoes < Cl[VI[T2p[|V][=7 < +oo.

Regarding B;, we conclude from Lemmas 2.1, 2.4, Holder inequalities, and Proposition 3.2 that

[[Billyy2o00 =

- %(aadiv(U V) ‘

MZU,pa
<c||U® Vl|yom
< ||U||yzoee || V]| (3.15)

1 1
< cllUlT 2o U= IV ][

< +o00,
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By a similar argument to (3.15), B, and B; are handled as

1

1 1 1
= = 1_7
1Bz, Bo)lljy2eve < C[HU”;[Z:P“U“LWG”V”Lw * 11611320 116][= | < +oo.

With respect to Dy, applying Lemmas 2.1, 2.4, Holder inequalities, and Proposition 3.2, one deduces
1 ) 1 11
||D1||Mza,po = —qaadIV(Ua) o0 < C||U||X-42,p||U||LmG||6||L°° < +o00,
Similarly, it holds that
1 -1
IDzllygzore < cl|Vilyzore < cl|VIG2 V=7 < +eo.
In the case of |a| = 2. We splita = @y + @, with || = 1, and |a;| = 1. For Ay, By, and D,, we write
1 .
A = —qﬂ)(aaldlvaaz(U ® U)),

1
By = —q(aaldiva“Z(U ® V), (3.16)

1
Dy = ~—(2%diva"(U6)).

Recalling the Leibinz rule, for i, j = 1, 2, 3, we obtain 0%(U;V;) = V;0%U; + U;0%V;. Using Lemmas 2.1, 2.4, Holder
inequalities, and Proposition 3.2, it follows that

141, By, Dy)llypzono < cl|(UB%U, Ud%V, VO%U, Ud%0, 03%U)|| 2000
< c[|0%U]| o0 (| 0%V || yy2200 [|0%0]| 2000 || U = || V][ [16] =

< +00,
Similarly, the following estimate holds:

(A2, Ba, B3, Dy)llyyeve < c||(VO%RV, Ud%V, VA%U, %0, %V )|y 2000
< cl|0%Ul yzowe [|0% V]| 2000 || 06| | yyze e || Ul | V1=
< +o00,

In the case of |a| = k + 1. We splita = a; + a; with |a;] = 1 and |ay| = k. For A4y, By, and Dy, we deduce
A = —%[P(a“ldiva‘%(U ® U)),

B, = —%(aaldiva“Z(U ® V),

D, = —%(aaldiva“Z(UO)).

Applying the Leibinz rule, one has

0UUL) = ). pdP U0 U,

|Bl<k

0%(UV)) = ) Copp@PUia% PV,
|BI<k

0%UB) = ) oy p0P L% PO,
IBI<k

wherei,j = 1,2, 3 and ¢4,p > 0. Making use of the recurrence hypothesis, Lemmas 2.1, 2.4, Hélder inequalities,
and Proposition 3.2, we obtain

ICA1, By, D)llyoae < || Y (0PUR%PU;, 9PL0% PV, 0P U0 P6)

|BI<k

MZc.pa
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<S¢ Y (10PUlym[|0% PU|yz000 | 0%V goo0e
1<|Bl<k-1

x [|0%7P6|ypore + 194U, XV, 3%0) |00 1Tl V |z (16|

< 400,

Similarly, it holds that

1Az, B2, Bs, Do)llypome < || Y (0PVia™PV;, 0PV;0%7FL), 920, 9%V

IBI<k e
sc Y ([10PV]lyp000 (|09 PU|yy2ora |0% PV yam00
1<|Bl<k-1
+[5U, V)| ypos [ U= V= + [12%V, 8%0)]| a0

< +o00,

In the case of |a| = k + 2. We repeat again the above estimates to obtain (3°U, 89V, 890) € M*7P°(R?) for
la] = k + 2. Therefore, the claim holds. ([l

Next, we study the pressure term in system (1.1). Applying the operator 8%div to system (1.1)y, it holds that
1 1
9P = q(diva“div(U ®U)) + q(diva“div(V ® V), 317

where |a| < k + 2 with k 2 0. By (3.11), (3.12), the Leibinz rule, Lemmas 2.1 and 2.4, Hélder inequalities,
and Proposition 3.2, we obtain 8P € M*7P°(R?) for all 1 < g < +oo,

The above estimates show that (U, V, 8, P) € W¥**>P(R3) with p > 3, k = 0. Moreover, we can conclude
from the embedding M>?(R%) € M*P(R3) and Lemma 2.5 that (3U, 3V, 30, 39P) € C13/P(R3) for all p > 3
and |a| < k + 1 with k = 0. The proof of Theorem 1.1 is completed. O
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