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Abstract: Consider an autonomous ordinary differential equation in R", which has a heteroclinic loop. Assume
that the heteroclinic loop consists of two degenerate heteroclinic orbits y;, y, and two saddle points with different
Morse indices. The degenerate heteroclinic orbit in the sense that variational equation along the heteroclinic orbit ); has
d; (d; > 1,1 = 1, 2) linearly independent bounded solutions. By the different Morse indices and d;, the heteroclinic loop
is a heterodimensional loop, at the same time, it has high codimension in this situation. Applying Lin’s method to the
heteroclinic loop, we derived the bifurcation function. The zeros of this function correspond to the conditions under
which periodic or homoclinic orbits can bifurcate from the high-codimension heteroclinic loop in the perturbed system.
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1 Introduction

Homoclinic and heteroclinic bifurcations play an important role in dynamical systems. More and more mathe-
maticians have devoted themselves to study the bifurcation problems of homoclinic or heteroclinic orbits.
An overview of homoclinic and heteroclinic bifurcation is given in [1]. A heteroclinic loop consists of two distinct
hyperbolic saddle points and two heteroclinic orbits connecting them. When there are two saddle points with
different Morse indices, this heteroclinic loop is called a heterodimensional loop. Otherwise, the heteroclinic loop
is called a equidimensional loop [2]. Numerical and explicit examples of a heteroclinic loop are given in [3,4].
There is rich and complex recurrent dynamics near homoclinic or heteroclinic orbits. Hence, a central
task is to find all orbits that stay near the homoclinic orbits or heteroclinic loop for all times. There are two
different approaches to treat those problems. The first approach is to use Poincare or first-return maps. The
existence of these special orbits is equivalent to the existence of the fixed points of Poincare or first-return
maps. These methods are called geometric approaches. The second is the analytical approach. The core is using
Lyapunov-Schmidt reduction. The heart of Lyapunov-Schmidt method is the Fredholm property. Chow et al.
studied the persistence of the homoclinic orbit of the Duffing equation by the Fredholm property [5]. Following
this work, many people have helped to develop the analytical approach to homoclinic or heteroclinic bifurca-
tion problems. In 1990, Lin investigated the existence of periodic or aperiodic solutions near the heteroclinic
chains for systems of ordinary differential equations and delay equations by analytical approach. This method
was generalized by Fiedler, Vanderbauwhede, Sandstede, and many others as Lin’s method [6]. The idea of
Lin’s method is to construct a sequence of piecewise continuous solutions near the original heteroclinic chain,
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and the bifurcation function can be obtained from these solutions. If the bifurcation function has zeros, then
there exist periodic or aperiodic solutions near the heteroclinic chain. Lin’s method can also be used in
discrete dynamical systems, singularly perturbed systems, and numerical computation, cf. [7-9].

For the periodic or aperiodic solutions bifurcated from homoclinic orbit by analytical approach, refer
[10-12]. Chow et al. [13] considered the equidimensional heteroclinic loop, which is the equilibria that form the
heteroclinic loop that has the same dimension of the unstable manifold. Meanwhile, the authors considered
non-degenerate heteroclinic orbit. They used geometric approach to seek homoclinic or periodic orbit bifur-
cated from a heteroclinic loop. Rademacher [14], studied the homoclinic orbit bifurcated from a heteroclinic
loop with one equilibrium and one periodic orbit. They assumed that the unperturbed heteroclinic orbits are
one- or two-dimensional. By exponential trichotomy and Lin’ method, they found 1-homoclinic orbits near the
heteroclinic loop. Jin et al. [15] considered an equidimensional loop for high-dimensional systems. They used
local coordinate systems in a neighborhood of a heteroclinic loop to construct the Poincare maps and the
bifurcation equations and then obtained the coexistence and coexistence regions of the 1-homoclinic loop,
1-periodic orbit, 2-homoclinic loop, and 2-periodic orbit near the heteroclinic loop. Zhu and Sun [16] considered
the same subject that is homoclinic and periodic orbits bifurcated from the heteroclinic cycle connecting
saddle-foci and saddle. Bykov cycle is a special heteroclinic cycle between two hyperbolic equilibria of saddle
types pl and p2, where one of the connections is transverse and isolated. Labouriau and Rodrigues [17]
considered a differential equation in a three-dimensional manifold having a heteroclinic cycle that consists
of two saddle-foci of different Morse indices whose one-dimensional invariant manifolds coincide and whose
two-dimensional invariant manifolds intersect transversely. So, the heteroclinic cycle is defined by the pre-
sence of the Bykov cycle. They showed the existence of mixed dynamics in the neighborhood of the Bykov
cycle. In the recent work by Knlbloch [18], this subject was extended to higher dimensions using Lin’s method.
Long and Xu [19] investigated the persistence of a heterodimensional loop under periodic perturbation. Under
some conditions, the perturbed system can have a heteroclinic loop near the unperturbed heterodimensional
loop. For more research results regarding the recurrent dynamic near heteroclinic loop, refer [20-24].

Based on the above background, we apply Lin’s method to investigate periodic or homoclinic orbits near
the heterodimensional loop under periodic perturbation for a high-dimensional system. We consider the
following autonomous differential equation:

x(0) = f(x(®)) (%))

and its periodic perturbed equation is as follows:
2
X(t) = f(X(©) + Y g (x(t), 1, 1), (1.2)
j=1

where x € R, i = (4, t,) € R? and we give the following assumptions:

(H) fe s

(H,) The unperturbed equation (1.1) has two distinct hyperbolic equilibria P. and P.. Namely, f(2.) = 0 and the
eigenvalues of Df (R,) lie off the imaginary axis, where D denotes the derivative operator.

(H;) The unperturbed equation (1.1) has two heteroclinic solutions y,(t) and y,(t), which are asymptotic
to equilibria B and P, respectively. That is, yi(t) = f()u(t)), i = 1, 2 and

lim y,(6) = B, lim y(t) = P,
t—+00 t—-o
lim y,(t) = P, lim y,(¢t) = P.
t—+o0 t—-c0
(Hy) g € C% g(P, 1, 1) = 0, g(x,0,1) = 0, and gi(x, u, t +2) = g(x, , O).
(Hs) dim(WS(R)) = d., dim(W*(R.)) = d_, where W*(R.) and W*(R.) are the stable manifolds of the equilibria

P. and P, respectively.
(He)

dim(T,, o W5(R) N T, W4R)) = d;
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and
dim(T,,W3(R) N T, W (R.)) = dy,

where I"Vi(o)WS/ “(R) is the tangent spaces of the corresponding invariant manifolds at y,(0) and d; > 1,
i=1,2

From (H3), we know that the unperturbed equation (1.1) has a heteroclinic loop I'. Refer Figure 1, where
F={P}U{y(6) : t ER}U{RI U {y,(t) : t ER}.

From (H5), the hyperbolic equilibria P. and P can have different saddle point indices or Morse indices
when d, # d_ [14,18]. Long and Yang [25] defined the splitting index of heteroclinic orbit in the unperturbed
heteroclinic chain. Analogously, we define splitting index of heteroclinic orbit y; as S();), which are expressed
as follows:

Sy)=di-d-=s, S(y)=d--d.=-s.
The variational equation of (1.1) along the heteroclinic orbit ), is:
u(t) = Df (R(O)u(®). (13)

Since y,(t) is the heteroclinic solution of equation (1.1), y,(¢) is situated at the intersection of the stable
manifold and the unstable manifold. From (H6), we know equation (1.3) has d; (d; > 1) linearly independent
bounded solutions, i = 1, 2. And the dimension of the intersection of the correspondence stable manifold and
unstable manifold is d;. If the intersection is non-transversal, the bifurcation phenomenon will occur in the
original heteroclinic loop under periodic perturbation. By the definition of the splitting index of heteroclinic
orbit y; and a simple calculation, we have the codimension of ); as

COdlm(]/l) =n - dim(TVi(O)Ws/”(R) + Tyi(o)Wu/s(P_))
= 1 - dim(Ty o W*/H(B) - dim(TyqW/S(R)) + dim(TyoW*B) N (ToWH(B)
=d;i + (-D)'s,

for i =1, 2. When d; + (-1)is > 0, the intersection of the stable and unstable manifolds is non-transversal,
i = 1, 2. The heteroclinic loop has high codimension in this situation. Therefore, under small perturbation, the
heteroclinic loop is broken. So, in this study, we are mainly concerned with the heterodimensional loop
bifurcation of high codimension under periodic perturbation. We will apply Lin’s method to construct the
periodic solution and homoclinic solution near the unperturbed heteroclinic loop.

The structure of this study is organized as follows. In Section 2, we first study the variational equation of
(1.1) along the degenerate heteroclinic orbit ); and establish two-side exponential dichotomies. We introduce
some notations and present the main result. In Section 3, we provide the proof of the main result. First, we
study the existence of periodic solution near the heteroclinic loop I in Section 3.1. In Section 3.2, we construct
the homoclinic solution near the heteroclinic loop I'. Hence, under some conditions, periodic or homoclinic
solution can bifurcated from heteroclinic loop I' under periodic perturbation.

Figure 1: Heteroclinic loop T'.
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2 Preliminaries and main result

2.1 Lin’s method

We give a brief description of the idea of Lin’s method in this section, refer [6] for details. Lin’s method is an
analytical tool to deal with heteroclinic loop bifurcation.

We assume that for ¢ = 0, a system in R" has saddle points 2, P. and the heteroclinic orbits are asymptotic
to P. and P, respectively. The system is as follows:

X)) = f(x(@), w). 2.1

By the assumptions, we know that the system has a heteroclinic loop consisting of saddles P, P. and hetero-
clinic solutions y,(£), y,(t).

We apply Lin’s method to construct Lin orbits x, X, that are composed of piecewise continuous orbits
X1, X2, X1, Xo.2 near the heteroclinic loop, which is characterized by a gap ont = 0 in a distinguished direction.
When gaps ¢; disappear, Lin orbits can glue together. So, we can obtain the existence of homoclinic or periodic
orbits equivalent to the existence of the zeros of the corresponding bifurcation function. That is,

X1 = fi, ), tE([-T,0]

X{ =2 w), te][0,T],

Xi,1(0), Xi2(0) € Zp-p,

x12(T) = %1(=T), x1(=T) = x2(-T),
[IXa(®) -yl <&, te[-T,0]
[IX2(t) -yl <&, tE€[0,T],

x1(0) — x;2(0) € Ry, (0).

There are constants 0 < € < 1, T > 1, such that the boundary-value problem has a unique solution {x;};-12
with T > Ty and |x| < &, and the solution is smooth. we can obtain the bifurcation function as follows:

G = (¥(0), xa(0) = xi2(0)).

That is, the existence of perodic orbits is equivalent to the existence of ¢; = 0.

2.2 Exponential dichotomy

Since P. and P are hyperbolic equilibria of equation (1.1), at the same time
lim Df (y(0)) = Df(R),  lim Df(1(1)) = Df (P.),
lim Df (y,(6)) = Df(R),  lim Df (1)) = Df ).

By the exponential dichotomy roughness theorem, we know (1.3) has two-side exponential dichotomies on R~
and R*. Most of our analysis depends on the exponential dichotomy of the linear variational equation around
the heteroclinic orbit y;, so these basic properties are given in detail, respectively. For a detailed analysis,
we refer Coppel [26] and Palmer [27]. We start with the following lemma (refer [28] for similar results in
a different setting).

Lemma 2.1. Assume that (H5) and (H6) hold. There exists a fundamental matrix solution U; for the variational
equation

u(t) = Df (n(O)u(o), (2.2)
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where constants M > 0, Ky > 0, n x n nonsingular matrix C, projections PL, Pi, P, P. with PL + P} +
P, + P}, =1, I be the n x n unit matrix, and the following hold:

) |U1(t)(Psls + PJS)U{ 1(s)| < Kge2MG- 0 <sgt,
(i) |Uy(t)(Py, + PLOUTY(S)| < Kee™M©3), 0 <t<s,
(itd) |U(6)(PL + PR)UT(s)| < KoM, t<5<0,
(v) [U()(Pys + PLOUT(S)] < KoeMGD, s <t <0,
W) lim UGO@ + POURO = | e,
t—+00 00
2.3)
00
i) lim Uy(6)(Py, + PLOUTY(D) = 6[0 Il]c-l,
t—+oo u

00
(vid) lim U(O)(Pls + Po)U;(0) = C[o I‘]C_l’
t—)—OO u

1
(i) Tim Ty(0)(P}, + PLYUT(E) = C[IS g]c-l,
t——00

where I}, I}, I, I} are the d. x di, (n—d--s)x (n-d--s), (n—-d-) x (n-d.), (d - 5) x (ds — 5) unit
matrixes, respectively.
Moreover, rank(PL) = d;, rank(P.,) = d; - s.

For the variational equation
u(t) = Df (y,(D)u(o), 2.4)

we have analogous two-side exponential dichotomies on R~ and R*. Without loss of generality, we take these
constants to be the same as above. Then, we have the following Lemma.

Lemma 2.2. Assume that (H5) and (H6) hold. There exists a fundamental matrix solution U, for (2.4), constants
M >0, Ky >0, n x n nonsingular matrix C, projections P%, Py, P%, Py such that P% + Py + P% + P} =1,
I be the n x n unit matrix, and the following hold:
() [U()(Pss + Pi)U3 ()] < Koe™C™0, 0 <s <,
(i) |Uy(t)(Py, + PEOUFY(S)| < Kge™M®9), 0 <tgs,
(iff) |U(t)(P + Po)Us (5)] < Koe™M(©™9),  t<5<0,
(W) |T(t)(Pys + P)U5 ' (8)] < Koe™70, s <t <0,
(¥) lim (0P + Pi)U5'(0) = c[’s O]c-l,

00 25)

N 13 + 2 -1 00 =
(vi) im Uy(t)(Pg, + P2 U () = C 0 12 c,
t—o o u
N 13 2 +\77-1 00 -1
(Vll) thm UZ(t)(Pss + Psu)UZ (t) =C 0o It C 5
——00 u
T SN U S 1] B
(viit) lim Uy(t)(Pys + P )Uy () = C 0 0 c,
t——00
where I, I, I, I? are the d-x d-, (n - ds + s) x (n — d, + 5), (n—dy) x (n - d,), (d- + s) x (d- + s) unit

matrixes, respectively.
Moreover, rank(P%) = d,, rank(P%) = d, + s.
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2.3 Statement of the main result

Before presenting the main result, we introduce some notations. Let uj denote the kth column of U
Renumbering if necessary, we can assume that

o Hawens 0001 [0gucays 000
Pl;ll = 0 Odi 0f, Psls = 0 Idi 0f,
0 0 0 0 00

where Iy, qys and 04, s are (d; + (-1Dis) x (d; + (-1)is) identity and zero matrixes, respectively, fori = 1, 2.
Then, we have

PLU = (uf, u}, ... 0, ...,0),

i )
a1y
PiU: = (0, ...,0, Ugis(—1)is+10 Udpr(-1)is+20 o Udi+(-1)'s+dp 0, ...,0),

fori=1,2.

Let U7 denote the inverse of U. Then, we have U;'U; = I. Differentiating with respect to ¢, we obtain
U;'U; + U7'0; = 0 and hence, U = ~U; U™ = ~U;7'DF (). Then, (U; )T = ~DF (3)7 (U7, where T denotes the
transpose of a matrix. Hence, (U; 1) is a fundamental matrix solution of the adjoint equation (2.4). Let (u]'f)l
denote the jth row of Ui . (u]’:)l can be obtained from the fundamental matrix solution of the adjoint equation.

Clearly, ((uy)*, uj) = 8pq, the Kronecker delta. By the definition of P},, we have
PLUT = (@D, @ oy Wl )T 0,00,

fori=1,2.
Let

a (a) = I((u})l(S), & (), 0,5 + ap))ds

Bipg = [ (@)(s), Duf Gy )ui(s))ds,

i=1,2j=1..,d+(-1is,p,q = d; + (-1)s + 1,...,d; + (-1)s + d; - 1. Using those notations, we let
‘ 2 qdctdct

Mj(B, 1, @) = 3 i@ty + 5 2 2 b pab

k=1 p=1 ¢q=1

fori=1,2 j=1..,di+(-D's,p,q=di + (-1)'s + 1,...,d; + (-1)'s + d; - 1. And define M'(B, y, @;) : R4*%2
x R% x R —» R4*(D's by
MB, 1, @) = M, 1, @), o, M, i (B 1, @)
Further, we let M : R4*%72 x R2 x R? -» R%™S x R%*S he given by
M(B, u, @) = (M'(B, w, ar), M*(B, 1, @), 2.6)
where a = (@, ay).

Our main result can be stated as follows.

Theorem 1. Assume that (H1)-(H5) hold. Let M(B, u, a) be as in (2.6). If there are some points (B, tiy, ay) €
R4+%-2 x R2 x R2, such that

M(ﬁo; Uys ap) =0
and
D(ﬁ,#m(ﬁo: ‘u0) aO)
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is a nonsingular (d; + d;) x (d; + d;) matrix, then there exists constants Ty > 0, 1, > 0 and a differentiable
function " : By(ag, 1) % (T, +®) — By(ry), where By(ag, o) € R% By(1y) C R%4*%, such that the perturbed equa-
tion (1.2) has periodic or homoclinic solution y(t) near the unperturbed heteroclinic loop I when u = yi, + "

The proof establishing the existence of a periodic solution bifurcating from the heteroclinic loop T is
detailed in Section 3.1. Figure 2 illustrates the associated bifurcation phenomenon. The proof of the homoclinic

solution bhifurcated from heteroclinic loop I' is given in Section 3.2. And, the Figure 3 illustrates the associated
bifurcation phenomenon.

Y,(H)

Y (t)

Figure 2: The periodic solution bifurcated from heteroclinic loop T

1 (t) i (t)
O O
£ P P
% Y )
(a) (b)

Figure 3: The homoclinic solution bifurcated from heteroclinic loop I'. (a) Homoclinic solution y(t) asymptotic to hyperbolic equilibrium
P near the unperturbed heteroclinic loop I' and (b) homoclinic solution y(t) asymptotic to hyperbolic equilibrium P. near the unper-
turbed heteroclinic loop T'.

3 Proof of Theorem 1

For the proof of the conclusion of Theorem 1, we apply Lin’s method for constructing Lin orbits x;, i = 1, 2 that
are composed of piecewise continuous orbits x; 1, X; 2, i = 1, 2 near the heteroclinic loop, which is characterized
by a gap {; on Xp_p, in a distinguished direction Z. The orbit x = {X1, X2} starts in Xp_p, follows Zp_p until it
reaches a neighborhood of P. follows then Zp_p, and X, = {X 5, X1} starts in £p_p, stays further close to Zp_p
until it reaches a neighborhood of P, follows then Zp_.p, again, and terminates finally in Xp_p. Because the
periodic and homoclinic solutions are constructed in different ways, we divide the proof of Theorem 1 into two
parts, which prove that the periodic solution can be bifurcated from heteroclinic loop I in Section 3.1 and the
homoclinic solution bifurcated from heteroclinic loop I' in Section 3.2, respectively. First, we seek the periodic
solution near the unperturbed heteroclinic loop I'.

3.1 Periodic solution bifurcated from heteroclinic loop T

In this section, our objective is to find periodic solution near the unperturbed heteroclinic loop I' for equation
(1.2). The Lin orbits have been glued together at¢ = T and t = —T, with a gap at¢ = 0. When the gap disappears,
they can be glued together to form a periodic solution near the heteroclinic loop I'.
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We define functions b; : R@*%72 x (0, +) - R" by
bi(B, t) = =(1(O) = (=) = (1 (=) =y, (1))

dl—l dz—].
- z ﬁilu{}rsﬂ(t) - z Bi2u52+s+i(_t)
i=1 i=1

di-1 dy-1
—| 2 Bludosei(=0) = Y BAudsni(®)],
i=1 i=1

and b, : R4*%2 x (0, +00) - R™ by
ba(B, ) = =1y () = y,(=0) + (1 (=0) = y,(1)

di-1 dy-1

- [ Z ﬁilu(}l—sﬁ(t) - Z ﬁi2u§2+s+i(_t)y
i=1 i=1
-1 dy-1

+ [ éﬁilut%l—sﬂ(_t) - ;ﬁizuc%ﬁsﬂ(t)y:
= 1=

where = (B, ....B 1, B{: B4 1) For i = 1, 2, note that
(B, )] = 0(e™),
uniformly with respect to 8 from any bounded subset of R%*¢2,
Fori =1ori = 2, we suppose x;(t) is a solution of equation (1.2). Fix T € N and take the change in variable
dl—l 1
n(t+ @) = () *+ Y0+ T Blud-s() + 5B, 1), 3D
i=1

dy-1 1
X+ @) = (0 + 3,0 + Y Bl s + Sba(B, T 3.2)
i=1

Then, y;(t) satisfies the following equation:
% = DF Gy + &0 B 1, @), (3.3)
with
&0 B 1, TH(O)

di-1 1

= OO + 3,0+ 3 Bludsi(®) + 551, T) = F((D)
i=1

o . (34
= DF(OW1(©) = 2 BIDf (O -ri()
i=1

2 di-1
3 1
+ Zy]g}lyl(t) +y1 (t) + z leuél—sﬂ'(t) + Ebl(ﬁx T)x u, t+o
j=1

i=1

and

gz@z s B, u! az, T)(t)

=f = (1)

dr-1
< 1

Vo0 + 35 (0) + 3 Bl esui(t) + Soba(B, T
i=1

dy-1

1 (3.5
= DFOWAO = Y B GO s0i(0) = 5ba(B.T)
i=1

2 dy-1
1
+ Zﬂ]g][yz(t) +y2 (t) + Z ﬁi2u¢%2+s+i(t) + ﬁbz(ﬁx T)ta ll, t + aZ .
j1

i=1
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By the definition of the function bi(p, t), if y,(T) = y,(-T) and y,(-T) = y,(T), then (T + o) = x(-T + az)
and x(T + @) = x(-T + ay). Hence, under the above change in variable, we will seek solution y.(t) of equation

(3.3) satisfying y,(T) = y,(-T) and y,(-T) = y,(T).
Let Dig or Dyh denote the derivatives of a multivariate function g with respect to its ith or the i

jth variables. Based on the formula of g(y., B, 4, a;, T), the following lemma is derived through a straightfor-
ward computation.
Lemma 3.1. For any i = 1 or i = 2, the function g(y,, B, u, a;, T) satisfies the following properties:
(1) limg(0,0,0, a;, T) = 0; lim D15,(0,0,0, a;, T) = 0
T—o T—o
(ll) hm Dllg(o)oaoa a;, T) = Dllf(V,),

(iii) lim 6_(0 ,0,0, a;, T)(t) = g](yl, t+ ay);

T—o

(iv) hm 6—'81(0 0,0,a;, T) =

2~

lim

o aﬂlﬂk (0 0 O a;, T) an(yl)u uk

Let C'([a, b], R™) be the Banach space of C! functions, which take [a, b] into R?, and we equipped norm
||lz|| = max,e(qpz(t)], for z € CY([a, b], R™). Assume

Xr = CY[-T,0],R", Y =CY]0,T],R").

For any ;, € R" and §; € R", i =1, 2, 3, 4, consider the functions z, z; € Xr and 2, z4 € Yr by

t

z(t) = B(OPg &1 + Ul(t)I(Psls + Po)UT ()8, (21, B, 1, @, TY($)ds + Ty(O)(Pyy + Pi)UL (=T,
0

+ U0 [ @l + POUT OB (@, B, 1, @, TYS)ds,
-T
t

2(0) = i(t)Pyskz + U1(t)_[(Psls + Pi)Ur ()82, B, 1, @, TY($)ds + Ti()(Pyy + PR)U (T,
+ U@L + PRV (9)Z 20 B it TY(S)dSs,
T

z3(t) = Uy(OP3, 85 + UZ(t)J-(PsZs + Po)U; (8)8y(z3, B, b, @, T)(8)ds + Un()(Pyy + Pis)Uz (=T
0

+ U(0) [ (BF, + P U7 ()82, B, 1, o, T)(s)ds,
-T
t

24(t) = Up(t)Pys8a + Uz(t)_[(Pszs + P)Us (8)8y(24, B, 1, @z, TY($)ds + Up(t)(Py, + Py)Us (T,
0

+ U0 [ B, + B)U; (9082, B it 0o, TY(s)ds.

Lemma 3.2. Given n; and &, the functions z, z, z3, z4 are solutions of equation (3.3) fori =1, 2, 3, 4.
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Proof. For given n; and ¢, by the definition of z(t), if z(t) is a continuous solution of the above integral
equation, then taking derivatives with respect to t, a simple computation shows that z;(t) is a solution of
equation (3.3) near the heteroclinic loop I', i = 1, 2, 3, 4.

Next we will prove that the above integral equation has a continuous solution. Using the equation z;, we
define the operator F; by the right hand side of equation z;. Next we will show that the operator F; has a fixed
point in the space Xy or Yr for i =1, 2, 3, 4. We only prove the situation of the operator F, in the space Xy. Other
proofs are similar.

Let the constants Ko and M be given in (2.3). By Lemma 3.1 and smoothness of f and g;, there are constants

8, 61, 8, and Ty such that
= SM
”gl(zlx B; ,uy a1, T)H < EO
~ o M ~
18z, B, 1, 1, T) — (2, B, 1, a, T)|| < m”Zl |

fort € [_T) 0]1 (Zb Zl) € E(O, 6)1 and (ﬁ) ‘l.l, ay, T) € B_l(oi 61) x EZ(O, 62) xR x (Tb) +°°)) Where E(O’ 6)) El(oy 81):
and B,(0, §,) are closed subsets with radius § > 0, §; > 0, and &, > 0 centered at the origin of X7, R&*®%2

and R?, repetitively.

5

With this choice of § and for any n, € R" and & € R™ with||n,|| < o and ||&]| <

s

Ky define a Banach space

(&, ny) = {a®|za() € B(0,8), Ppa(0) = P&, and (Py + Pi)za(-T) = Uy(-T)(Py + Pi)UT (-T)n,}

For any z(t) € %7(&, n,), define

t
F@)(©) = TP + T [P + PRIV (9Fi (1, B, 1, ca, T)ds + T(OP, + Pa)U7 (=T,
0

t
+ Ui) [ (Bl + POUT OB (@, B, 1, @, TY(s)ds,
-T

for t € [-T, 0]. It is easy to see that Py, Fi(z)(0) = Pyé& and (Pay, + Pi)Fi(z)(-T) = Ui(-T)(PL, + Pi)Ui (-T)n,.
By the exponential dichotomy of the variational equation, we obtain

IFi@)(ON < 1TOP&I| + Uy + Pi)Us (=T

t

+ [Ioo@ + PUT©)F @, B, 1, @, TYS)ds
0
t

+ [0k + POV E @, B, 1@, TYS)]ds,
-T
. . (3.6)
< Ko™ & + [Koe g Ids + Ko MT0l| + [ Koe2C-0)|ds
0 -T
Ko Ky
< Koll&all + 2 plI8I1+ Kollmll + 2 gl

§ & 6
S—+—+—+—=,
4 4 4

for t € [-T, 0]. Thus, ||[Fi(2)(8)|| £ 8, so Fy : Xr(&, ny) — Xr(&, ny).
For any (z, ) € %r(&, n,), we have

[|Fi(z)(t) — Fi(Z)(®)||

t
[oo@s + P g @, b @, TXS)ds
0
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t
- [o@s + P E G B 1 @, T)As
0

t
+ [UO@L + PO E @, B 1, @, TYs)ds
-T

t
- [UO@L + POV OB B 1, @, TYs)ds

-T
t
< I”Ul(t)(Psls + Ps_u)Ul_l(s)” ||gi(zl; )Bx .u: ay, T) - gi(zl! B: ,u) a, T)Hds
0
t
+ J’”Ul(t)(PL}u + PIIS)Ul_l(S)” ||g“1(zls B: .uy al) T) - g’l(Zi; ﬁ) ‘ux al: T)”ds
-T
ko ~ =
S Mngl(zlr ﬁ’ l’l’ a, T) - gl(zlx ,B) ;u’ ay, T)”
<

1 -
“lz - 7|,
2||1 Al

fort € [-T, 0]. Thus, F; is a contraction on X(;, n,) and there is a unique fixed point z{*(8, 1, a1, T) € Xr(&, ),
for (B, u, @, T) € By(0, 8;1) x By(0, 55) x R x (Tp, +»). Therefore, we can prove that there exists a solution
z;{" of equation (3.3) on [-T, 0]. Similarly, we can prove that there exists a solution z;* of equation (3.3) on [0, T,
and a solution z3* of equation (3.3) on [-T, 0], and a solution z; of equation (3.3) on [0, T].

Thus, we conclude that z, z, 73, z, are said to be four piecewise continuous solutions of equation (3.3) near
the heteroclinic T' (Figure 4).

The proof is complete. O

If we can seek some 1j; and &; such that z(0) = 2,(0), z3(0) = z4(0), then z () and z(t) stick together att = 0
and z(t) and z4(t) stick together att = 0. So, z(t) and z,(t) can form a solution y, (t) of equation (3.3) in[-T, T]
near the heteroclinic orbit y;, and z;(t) and z4(t) form a solution y,(t) of equation (3.3) in [-T, T] near the
heteroclinic orbit y,. Moreover, if z4(T) = z(-T) and 2z(T) = z(-T), then y,(t) and y,(t) satisfy y,(-T) =
¥,(T) and y,(T) = y,(-T). Hence, equation (3.3) has a periodic solution y(t) with 4T period consisting of
7 (1), 2(t), z3(t), and z4(t).

Zl(ﬁ) U, ag, T)(t)’ te [_T’ 0];

yl (B’ [1, a, T)(t) - ZZ(B) Au) ay, T)(t): te [0’ T]:

Y(B, 1, @, TX(E) =

ZS(ﬁ’ u, as, T)(t)) te [_T) 0];
yz (ﬁ’ [.1, @G T)(t) - Z4(ﬁ: xu: ay, T)(t): te [01 T]

Figure 4: z(t)
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By the definition of b;(8, t) and the change in variables (3.1) and (3.2), we have x(T + a;) = %(-T + ay),
X(-T + a;) = (T + a;). Hence, equation (1.2) has a periodic solution with 4T period consisting of x(t)
and x,(t) near the heteroclinic loop.

Next we will seek some n; and &; such that z(0) = z,(0), z3(0) = z4(0), z(T) = z3(-T), and z4(T) = z(-T)
hold. We can decompose 7(0) = 2z(0) into the following three equations:

0
Poi = PLUT(TOn, + [PLUT()Eds, 37)
T
0
Pir = PLUT-n, + [ PAUT9)5ds, (338)
-T
T
[PLUT)gds + PLUT-Tn, - PLUT(TIn, = 0. (3.9)
-T

From z(0) = z4(0), we can obtain something similar

0
PiEs = PLUs (D, + [PLU5(9)gds, (310)
T
0
P = PU =Ty + [ PoUs(9)Z,ds, (3.11)
-T
T
[P2us)gds + P2 (-, - PN, = 0. 3.12)
-T

From z,(T) = z3(-T) and z4(T) = z(-T), we can obtain

U(T)(Byy, + PR)UTN(TOn, = Un(=T)(PE, + Pe)Us (=T,

I T
(3.13)
= Uz(‘T)J(Pfs + P)U; \($)gyds - U1(T)I(P§s + PL)UT(s)g,ds + Uy(-T)Pi&s - Uy(T)PLE,
0 0
and
Uy(T)(PE, + Po)Us (T, = Ui(=T)(Py, + Pr)U (=T,
_T T
- 1 - -1 ~ 2 - -1 _ _ _ (314)
= U-T) [ B + PRUT)8ds - Ui (B + Pp)U; (9)8ds + Ui(-T)Py&i - U(T)Pi
0 0

In (3.13), taking T approach infinity, we have

00 IZ 0
-1 _ S -1
C[0 IJ]C " Clo OJC "
oo o (3.15)
= Uy(-) [ (P2 + PUT)8ds - Ui [ (P + PLUT ()8 s,
0 0

where (2.3) and (2.5) are used to ensure the existence of the limit, I} and I are (n - d- - s) x (n — d- - s),
and (d- + s) x (d- + s) unit matrixes, respectively. Assume

- —U
C1’13=[ 0

0

_ U
Cp, = [uz ,

I u= uz
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From (3.15), we can solve

—00 0

u = CHU(-) [ (P4 + Po)U3 (9)Z,s — () [ (B + P U; (5)ds).
0 0

Then, there exists T > 0 so that we can solve 1, and n, in (3.13) whenever T > T;. We denote that the solutions
are n, = (B, u, a1, T) and 0, = (B, u, az, T). Applying the same method we can solve 1, and 7, in (3.14)
whenever T > Ty. We denote that the solutions are n* = n,*(8, u, @, T), n; = n;(B, u, @, T). And n* satisfies
limy- 7*(0,0,a;, T) =0 fora; €R and i = 1,...,4,j =1, 2.

Substituting n, 5, ", n; for ny, ny, 0z, 0y in 3.7), (3.8), (3.10), and (3.11), we can obtain &, &, &, &.
In addition, if nf*, n, n,, ny" satisfy (3.9) and (3.12), then z(0) = 2(0), z(T) = z3(-T), 23(0) = 24(0), z4(T)
= z(-T), that is, (3.3) has a periodic solution with 4T period consisting of z(t), z(t), z5(t), and z4(t). Hence,
we have the following result for equation (1.2).

Lemma 3.3. Assume Uy, Uy, P, PZ, be as in (2.3) and (2.5). There exists Ty > 0 and if

T
[PLUT ) ds + PLUT-Tony - PLUTTInS = 0, (3.16)
-T
T
[P2uits)gds + PLUT-Ton; - PAUTATIN = 0, (317)
-T

for T > T, then equation (1.2) has a periodic solution with 4T period near the unperturbed heteroclinic loop T,
where g, and g, be as in (3.4) and (3.5).

Next we will give a sufficient condition for the existence of zeros of (3.16) and (3.17). Based on g, &,
and n*, the left hand side of (3.16) and (3.17) depend on (B, 4, a;, T). To simplify, we define function

H'(B. @i, T) : R&*42 x R? x R — R by

T
H'(B, 1,0, T) = [PLUT)gds + PAUT-Ton* - PAUT(T)n,
-T

T
HY (B, 0, T) = [ PAUG)Z s + PR (-Tongt - PN}
-T
By the properties of g; and r]]?", i=12,j=1,2,3,4, we have
H'0,0,04,T)=0 and lim LU (=T = 0,
T—o
uniformly with respect to (8, u, a;) € B1(0, 1) x By(0,8;) xR, fori=1,2, j=1,2,3,4, B0, §), and B0, &,)

are closed subsets with radius & > 0 and &, > 0 centered at the origin of R4*®%2 and R?, repetitively.
Fori =1, 2, assume

M1 ) = [PLUTSZ0 B it @, )ds, (318)

and by
PLUT = (@, @), s Wi 0T, 0, 00,
hence

Mi(ﬁ; uy ai) = (Mll(ﬁ) ‘1) ai)) eeey M(;H'(—l)is(ﬁ’ [1, ai)) 0) ...,O), (319)
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where
M, 1 ar) = () ), GO, B 1, @i, )(s))ds, (3.20)
where j = 1,2,..., d; + (-1)’s. By Lemma 3.1, we have
) 2 ) 1d1‘—l di-1 ) o
Mj(B, u, ai) = kzla/l',k(ai)llk *y 21 Zlb},pqﬁzlvﬁf;’
= p=1 ¢=

where
aj (@) = I((u})l(S), &((5), 0,5 + a;))ds

By = [ (), D fOiui(s)ui())ds,

i=1,2j=1..,di+ (-1is,p,q=d; + (-1)is + 1,...,d; + (-1)is + d; - 1. Hence,

H'(B, u, @, T) = M'(B, u, ;) + hot,
for i = 1, 2. Define M(B, , @;) : R4*%2 x R2 x R — R&*CD's [y

MB, 1, @) = (MI(B, t, @), s M, i (B 1, ).

Let

H'B, u, @, T) = M'(B, u, ;) + hot.
It follows from the definition of the projection P}, that

H'(B, 1, @, T) = (H'(B, 1, @, T), 0, ...,00).

Hence, H'(B, i1, a;, T) = 0 is equivalent to Hi(B, g, a; T) = 0. Define a function H : R%*%2 x R? x R x R
— Rai+d; by

H(:B’ u, a, T) = (Hl(ﬁ! u, ag, T), Hz(ﬁ’ u, az, T));

where a = (ay, ay). So if there exists some (B, u, a, T) such that H(B, u, a, T) = 0, then (3.16) and (3.17) are valid.
By Lemma 3.6, equation (1.2) then has a periodic solution with 4T period. Define a function M : R4*%2 x R2 x
R% - R%*®% by

M(ﬁ’ u, a) = (Ml(ﬁ’ u, m), MZ(B: u, a)),
where a = (@, ay). So

HQB,u,a,T)=M(B, u,a) + hot. (3.21)

Lemma 3.4. If there exists (B, 1y, @) € R4*%72 x R2 x R? such that M(By, iy, @) = 0 and Dg ., M(By, 1y, @o)
is a nonsingular (d; + dy) x (dy + d;) matrix, then there exist constants Ty > 0, r, > 0, and a differentiable

function y* = (%, ¥™) : By(ag, 1) * (T, +) — By(n), where By(ry) C R%*® and By(ag, i) C R%, such that
limr—o(*(a, T), ¥*(a, T)) = 0 and H(B, + $*(a, T), uy + $*(a, T), @, T) = 0 for (a, T) € By(ag, i) x (T, +).

Proof. Let wo = (B, Uy), @ = (B, 1) — wo, and A = Dg yM(B,, Uy, a) L. Define

M(w,a) = w - AM(wy + w, a),

3.22
Hw,a,T)=w- AH(wy + w,a, T). 3.2)
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By the definition of H, we know that the fixed points ¥* of H(:, a, T) correspond to H(wo + ¥*, a, T) = 0.
Through direct calculations, we obtain that

[IM(O0, ap)l| = 0, ||DuM(0, ap)|| = 0. (3.23)
From (3.21) and (3.22), it is easy to check that

lim [[H(0, ao, T) = M(0, @o)|| = lim [|AH (wo, a0, T) = M(wo, @)l = 0,

. . (3.24)
71,1_{2 ||Dw(H(0’ Ao, T) - DwM (0) aO)“ = }}_{2 ”ﬂ(DwH((A)o, Ao, T) - DwM(wO) aO))H =0.

Let By(r) € R%4*% be an open ball with radius r > 0 centered at the origin and By(ay, r) C R? be an open ball
with radius r > 0 centered at a,. From (3.23), we obtain that there exists 1y > 0 such that

1
[[DuM(w, a)|| € 1 for (w, a) € By(1y) x By(ay, 1p). (3.25)

Note that M(0, ag) = 0. We can obtain from (3.24) that there exists a constant Ty > 0 such that

T
|mm%1mwmm%%w&%mm$§

1 (3.26)
|IDyH(w, a, T) = DyM(w, Q)| € T
for (w, a, T) € By(ry) * By, 1y) % (Tp, ). Hence, we can obtain that
[[DyH(w, a, T)|| = ||DuM(w, @) + DyH(w, a, T) = DyM(w, a)||

< || DuM(w, @)|| + ||DyH(w, a, T) = DM (w, a)|| (3.27)

1

<7,

2

for (w, a, T) € By(ry) x By(ao, ) x (T, ).
For any (w, a, T) € Bi(ip) * Ba(ap, 1) x (Ty, ), define a map ¥, : [0,1] - R4*% by i,(s) = H(sw, a, T).
We obtain

1
@, & DI = [ = | $,©) + [(s)ds
0

1
<[40, & 7| + [IID#(w, & T)]||w]|ds
0

1

) 1

<—+ | -nds =n,
9 -([20 0

which implies that H(:, a, T) maps By(rp) into itself.
For wy, w; € Bi(n), (a, T) € By(ap, 1) x (T, @), define a map ¥, : [0,1] - R4*% by 1h,(s) = H(sw; +
(1 - S)wy, a, T). Clearly, Y, € C%. Then, there exists so € (0,1) such that

||7{(w17 a, T) - ﬂ(wb a, T)”

= [[,(D) - Y,(0)]| =

1
[s0as
0
< IDuH(w, @, || [|wr = wal
< Lor - wall

2

Hence, for any (a, T) € By(ag, Iy) * (Ty, @), H(:, a, T) is a uniformly contraction map in Bi(ry). By the con-
traction mapping principle, there exists a C? function ¥*(a, T) : By(do, 1) % (Ty, ®) = By(1ip) such that
limr-Y*(a, T) = 0 and

HY*(a, T),a,T) =y*a,T).
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By the definition of H, this equality is equivalent to
H(wo + Y*(@, T),a,T) = Hy + ¥ (@, T, gty + ¥ (@, T), @, T) = 0,
where y* = (§*, ") € R4*%"1 x R2 The proof is complete. O
By transformations (3.1) and (3.2), we know that for (a, T) € By(ao, 1p) % (Ty, ®), equation (1.2) has
a periodic solution y(t) with period 4T near the heteroclinic loop I' as follows:

_|a@®), t€lan-T,T+ aoml
T e, te€lan-T,T+apl,

y(®)
where x(t) and x,(t) are

1 o
z(wo + Y*, ap, T) + Eb(ﬁo + 9", T)
d-1
1, 7%y 01
+ Z By + Yy JUg-s+i(t = ao) + py(t — am), tE [ap1 = T, api]
i=1

x(t) = 1 -
n(wo + Y ag, T) + Eb(ﬁo +y,T)
-1
+ ) (ﬁol,i + lp:i)ut%rsﬂ(t —ap) + Yt - an), tE€[an T+ aml,
i=1
* 1 7k
z3(wo + Y*, agy, T) + ﬁb(ﬂo + 1", T)(t - ag)
dy-1
+ Z (Boz,,' + l/);i)u(§2+s+i(t —ag) * )t -aep), tE€[ap-T,ap]
i=1
x(t) =

1 -
zy(wo + ¥, agy, T) + ﬁb(ﬁo + 9", Tt - ap)
dy-1

~ %
+ z (ﬁ&i + lpz’i)u52+s+i(t —ag) t Yt - ag), tE[ap T+ ayl,
i=1

where " = (!,51*, 1,52*) € R4 x RE, ay = (ag, agy).

Next we seek homoclinic solution near the unperturbed heteroclinic loop T.

3.2 Homoclinic solution bifurcated from heteroclinic loop T

In this section, we consider the homoclinic solution bifurcated from heteroclinic loop I'. The homoclinic
solution can be asymptotic to hyperbolic equilibrium P or asymptotic to hyperbolic equilibrium P near
the unperturbed heteroclinic loop I'. No matter which equilibrium, the construct method of the homoclinic
solutions is similar. Hence, in these situations, one of those classes is chosen as the proof. The construction of
the homoclinic solutions is just a modification of the constructed above periodic solutions. For the complete-
ness of the study, we will give it briefly. Next we will find a homoclinic solution asymptotic to P. of equation
(1.2). On the other hand, the method can be referred in [25].
Define a function b : R4*%2 x (0, +®0) — R" by

dy-1 d-1
DB, 0) = y(=8) = yi(©) + Y BAUGsri(=0) = Y Blud_sui0),
i= i=1

i=1
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where = (B), ....B 1, B, B _,)- Note that
Ib(B, t)| = O(e™"),

uniformly with respect to B from any bounded subset of R%*%2 For i=1 or i = 2, we suppose x;(t)
is a solution of equation (1.2). Fix T € N and take the change in variable

d1—1
Xt + @) = py(O) + 3 (0) + Y Blug g6 + %b(ﬁ, T), (3.28)
i=1
dz—l 1
%(t+ @) = (0 + 3,0+ 2 Bludessi(D) = 5B T). (329)
i=1
Then, y,(¢) satisfies the following equation:
Y = DGy + &0h, B 1, aw), (3.30)
with
di-1 1
G0, By 1t a1, TYO) = Fy(0) +y,(0) + Y Blugei(D) + 2B, 1)) = F(n(®) = DfF (O, (O
i=1
-1 2 d-1
= Y BIDF O -s () + Y g () + 3 (O + 3 Blud (D) (331)
i=1 j=1 i=1
+ 2DB, Tt @)
and

dy-1
&0 B @, TYO) = F(0) + 3,(8) + Y BAUGsui(t) - %b(ﬁ, EIV)
i=1

dy-1

= DF (O, () = 3 BEDF (yy(0)UG sui() (3.32)
i=1

1

2 dy— 1
+ QU +y,(0) + Y BUufusi(O) - DB Dt + ).
j=1 i=

i=1
With regard to g(y;, B, 4, a;, T), a simple computation yields the same result as Lemma 3.1, so it is omitted.
By the definition of the function by(B, t), if y,(T) =y,(-T), then x(T + a;) = Xo(-T + ay). From (3.28)
and (3.29), if lim;. -y, () = 0 and lim;-.wY, (t) = 0, then lim;._wx(t + @) = lim;.+Xy(t + a3) = P.. Therefore,
to seek such solutions, define the following Banach spaces:
Z.={z € CY(R*,R") : sup|z(t)|eM < =},
teR*
Z_={z € C'(R",R" : sup|z(t)|e™™" < oo},
teER™
with the norm ||z,|| = sup,cg:|z(t)|eM!, for z. € Z,. And M be the same as in (2.3) and (2.5).
For any n,, n; € R™ and §; € R", i =1, 2, 3, 4, consider the functions z € Z_,z € Y,z € Xr, 2, € Z, by

t
4(t) = U(OPy& + Ul(t)J—(Psls + PL)UT ()8, (, B, 1, e, T(s)ds
0

t
+ U0 [ (Bl + POV (@, B, it TY(s)ds,

—00
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t
7(t) = ()P + Ul(t)J(Psls + POUT(8)8, (22, B, 1, ay, T)(s)ds
0

t
+ (0@ + PRUTDI, + U [Bl + Po)UT9)F 2 B 1, @, TY)ds,
T

t
z3(8) = Up(O)P383 + Uz(t)I(Pszs + Po)U3 ()82, B, i, @, T)(s)ds
0

t
+ DO, + PUT T, + U0 [ (B, + P)U7 ()82, B, 1, oo, TH(s)ds,
-T
t

24(t) = Up(t)Pys8s + UZ(t)J’(Pszs + P)U; ()82, B, 1, @z, TX(s)ds
0

t
+ U0 [ (B, + Pa)U; ()g(za, B 1, @, T(s)ds.

Lemma 3.5. Given n,, nj;, and &;, the functions z, z, z3, z4 are solutions of equation (3.30) fori =1, 2, 3, 4.

We only need to show that the definitions of z and z, are reasonable. And the others have the same proof
as Lemma 3.2, so it is omitted. It is needed to verify the infinite integral is convergence in the definition of z
and z4. By (2.3) and (2.5), we know

|Ui(t)(P), + PLOUTY(S)| < KopeMG-D, s <t <0,
us uu/%1
|Uy()(Pg, + P2OUFY(S)| < Koe™Mt5), 0 <t<s,

and g; is bounded in suitable regions. So the infinite integral

U0) [ (Bl + PUT (B, B it TY(S)ds,

—00

t
U B2, + PRV ()82, B it o, TY(S)ds,

are convergent. Hence the definition of z, z, are reasonable.

Here n,, n,, and &; are arbitrary. If we can seek some 1, 15, and &; such that z(0) = z,(0), z3(0) = z4(0), then
7 (t) and zy(t) stick together at¢t = 0 and form a solution y, (t) of equation (3.30) in (-, T] near the heteroclinic
orbit y;, z3(t) and z4(t) stick together and form a solution y,(t) of equation (3.30) in [-T, ) near the hetero-
clinic orbit y,. By the definition of b;i(B, t), (3.28), and (3.29), we have x(T + a;) = xo(-T + a;). Hence, equation
(1.2) has a homoclinic solution asymptotic to P. consisting of x(t) and x,(t) near the unperturbed heteroclinic
loop I'. From the above description, we know that the homoclinic solution consists of z(t), z,(t), zs(t), and z4(t)

G \&

Figure 5: Z;(t),...,.Z4(t) near the the heteroclinic loop T.
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near the heteroclinic loop I' (Figure 5). The construction of homoclinic solution asymptotic to P. near the
unperturbed heteroclinic loop T is similar, so it is omitted. We can decompose z(0) = z(0) into the following
three equations:

T
Podi = PRUT (T, - [PRUr(9)5ds, (333)
0
0
Pt = [PLUT()Zds, (3.34)
T
[Prurogds = PLUT T, (335)
From z(0) = z4(0), we can obtain something similar
0
Pigs = _[PSLUZ‘ '(5)8,ds, (3.36)
0
Puds = Pals (-Tons + [Pl (9)g,ds, (337
-T
LU =Ty, + [ PLU5(9)Z,ds = 0. (3.38)

-T
From z,(T) = z(-T), we can obtain
U(T)(Pay + Pe)Up (Tt = Us(=T)(Pyy + P)Us ' (=T
T T
= U(-T) [ (P + PRV (9)g0s - U(D) [ (L + PLUT ()8 ds (339)
0 0
+ Uy(-T)P; &3 - U(T)Pys&y,

In (3.39), taking the T approach infinity, we have

00 IZ 0
-1, — s
C[O IJ]C n, - C 0 o

]c-1n3 = Uy(-=) [ (B3 + P)U; (9)Fids - Ui(e) [P + POUT(9)Zids,  (3.40)
0 0

where (2.3) and (2.5) are used to make sure the existence of the limit, and I and I? are (n - d- - s) X
(n—-d--5s),(d-+s) x (d- + s) unit matrixes, respectively. Assume

_ 0 - -la k
1 = 1 = =
ensfh ene 3] el

From (3.40), we can solve

—00 0

k= CA(Uy(~) [ (P2 + P U3 (9)Z;ds - U() [ (B + PUT(9)Z,ds).
0 0

Then, there exists Ty > 0 so that we can solve 17, and 1 in (3.40) whenever T > Tj. We denote that the solutions
are 0, = n,; (B, u, i, T) and n" = n (B, u, ay, T). And n]?“ satisfies limTWn]?k(O, 0,a;, T)=0 forq; €ER and i =
1,2,j=2,3.

Substituting n,*, n,* for ny, n, in (3.33), (3.34), (3.36), and (3.37), we can obtain &, &, &, &. Furthermore if
n;', n, satisfy (3.35) and (3.38), then z(0) = z(0), 2(T) = z3(-T), z3(0) = z4(0), that is, (3.30) has a homoclinic
solution consisting of z(t), z,(t), zs(t), and z4(t). Hence, we have the following result for equation (1.2).
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Lemma 3.6. Assume Uy, Us, P, P%, be as in (2.3) and (2.5). There exists Ty and if

T

[Prurogds - pLUr N0 = 0, (3.41)
[Paus )z ds - PLUG =Ty = 0, (342
-T

for T > Ty, then equation (1.2) has a homoclinic solution near the unperturbed heteroclinic loop T, where g,
and g, are as in (3.31) and (3.32).

Next, in a similar way, we give a sufficient condition for the existence of zeros of (3.41) and (3.42) and
obtain the same bifurcation function as (3.21). Hence, the zeros of the bifurcation function correspond to the
existence of a homoclinic solution for the perturbed equation. So, under the conditions of Lemma 3.4, we know
that for (a, T) € By(ay, ry) x (Ty, ), equation (1.2) has a homoclinic solution y(t) near the heteroclinic loop I
as follows:

d-1
a(wo + V%, ap, T) + ) By * lp:i)u(%rsﬂ(t = Qo)
i=1
1 .
+p(t - agy) + Ebl(ﬁo + 95, T), te€ (-, apy]
x(t) = d-1
* 1 OGN | _
z(wo + ¥, apy, T) + Z (By; * ¥y -5+t — ao1)
i=1
1 .
+p(t - ag) + Ebl(ﬁo + 95, T), t€ [ap, T+ ay]

y() =

dy-1
z3(wo + Y%, a0, T) + ) (B + l/):i)u,§2+s+,-(t - ag)
i=1
1 -
+p,(t - agy) - Ebz(ﬁo + 9", T), t€lap-T,apl
X(t) = d-1
% 2 7 ¥V 2 -
Z4(0J0 + w » @02, T) + Z (.B(),i + wz’i)udz+s+i(t aOZ)
i=1

1 -
+ Vz(t - aOZ) - Ebz(ﬁo + w ’ T)7 te [a02) 00)

where §* = (§,, §,) € R4 x R&™L, g = (agy, ago)-
In summary, we have demonstrated the perturbed equation (1.2) has periodic or homoclinic solution y(t)
near the unperturbed heteroclinic loop I'.
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