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Abstract: We investigate the existence of local minimizers for the nonlinear Schrödinger (NLS) equation with
localized nonlinearity on noncompact metric graphs. In the absence of ground states, we prove that normal-
ized local minimizers of the NLS equation do exist under suitable topological and metric assumptions of the
graphs. In particular, we provide a criterion for the existence of local minimizers for the NLS equation in this
article. Our results rely on the variational method and an application of Gagliardo-Nirenberg inequalities.
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1 Introduction and main results

In this article, we deal with the so-called L2 mass-critical nonlinear Schrödinger (NLS) energy functional with
localized nonlinearity
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where >μ 0, G is a noncompact metric graph and � is the compact core of the graph G.
We briefly recall that the noncompact metric graph G has finite number of edges =ej j

n

1{ } (bounded or
unbounded) and vertices (that not at infinity), with a metric structure on any edge. A bounded edge e is
identified with an interval =I l0,e e[ ], where le denotes the length of e. Any unbounded edge e is referred to as
the positive half-line = = +∞+I 0,e � [ ).G is noncompact, which means that it has at least one unbounded edge.
The compact core � is defined as the subgraph by removing all the half-lines of the metric graph G (see [1–4]
for more details). It is clear that � is connected. We refer the interested readers to [5–9] for different kinds
of graphs that have infinite many edges and vertices.

A function =u u x( ) on the graph G can be defined as a vector

= = ∈ =u u u u u u x x e j n, , …, , with , , for every 1, 2,…, .e e e e e jn j j1 2
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The continuity of u in the interior of any edge e is the normal continuity, while the continuity of u at a inter-
section x0 of any two different edges e1 and e2 means that =u x u xe e0 01 2

( ) ( ). The Lebesgue spaces L Gp( )
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with the corresponding norm
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In a similar way, we can define the Sobolev spaces
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with the corresponding norm
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In this framework, Dovetta and Tentarelli have studied the existence of ground states (global minimizers)
of NLS energy functional (1.1) under the mass constraint (1.2) in [10] and [11], namely, the minimization
problem
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where E u G, , �( ) is the energy functional in (1.1).
Precisely, Dovetta and Tentarelli first proved the existence and nonexistence of ground states for

μ G, ,� �( ) on a special metric graph – the tadpole graph in [10]. Ground states existed when the given
mass μ belonged to a suitable interval, whereas for large masses and small masses, ground states did not exist.

Subsequently, Dovetta and Tentarelli [11] had a full discussion of the existence and nonexistence of ground
states influenced by the topological and metric properties of the graphs (we will provide these conclusions in
the following text of this section). It is worth mentioning that the discussion in [11] involves the classification of
the noncompact metric graphs. We point out that the classification method in [11] is borrowed directly from
[12], where all of the metric graphs are divided into four mutually exclusive types.

The main purpose of this article is to investigate, under what topology and metric conditions, the existence
of local minimizers for the energy functional E u G, , �( ) in the space H Gμ

1( ) when the ground states do not
exist. The inspiration for this article comes from Pierotti et al. [13], where they showed that, under suitable
topology and metric assumptions, the energy functional (2.4) did have local minimizer under the mass con-
straint (1.2) in the absence of ground states.

As is known, critical points (including ground states and local minimizers) of energy functional E u G, , �( )

in the space H Gμ

1( ) satisfy the following NLS equation:
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�
∣ ∣ (1.4)

where χ
�

is the characteristic function of � and the parameter ω plays the role of a Lagrange multiplier
(which is the same on every edge, but may be different for different solutions). Through the usual ansatz
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=x t e u xΦ , iωt( ) ( ), the solutions of (1.4) correspond to solitary wave solutions of the time-dependent NLS
equation:

∂ + ∂ + = ∈ >i χ x G tΦ Φ Φ Φ 0, , 0.t xx
4

�
∣ ∣ (1.5)

The study of the differential models on metric graphs has recently become a quite popular topic and has
been witnessing a significant growth. For the linear case, we refer the readers to [14–17] and references therein
for some of the most recent developments. For the nonlinear case, an obvious preference has been devoted
to the Schrödinger equations, and we refer the readers to [6,13,18–20] and references therein. We also mention
two other nonlinear models, [21] for the Korteweg-de Vries equation and [22,23] for the nonlinear Dirac
equation. In particular, previous works [24–26] are devoted to the NLS equations with L2 mass-subcritical
localized nonlinearities (the exponent of the nonlinearity belongs to the interval 2,6( )), while Borthwick et al.
[27] dealt with the L2 mass-supercritical localized nonlinearities (the exponent of the nonlinearity is greater
than 6).

Due to the characteristics of the energy functional E u G, , �( ) in this article, we limit ourselves to the non-
compact metric graphs G satisfying
A( ): G is connected, noncompact, with a finite number of edges and with nonempty compact core � .

In this case, some special metric graphs (such as the half-line +� , the real line � , and the general star
graphs) are not within the scope of our discussion. A general star graph is made up of ≥N 3 half-lines that
meet at a unique vertex (see an example in Figure 1). In order to better state our main results in the following,
we assume without loss of generality that any vertex of G has a degree different from 2 unless G is (isometric
to) � , which can be decomposed into two half-lines only allowing a vertex of degree 2. See Remark 5.9 in [13]
for more about the discussion of the “fake vertex” (with degree 2) of the metric graph G.

With respect to this article, it is worth recalling some results in [11] that deal with the existence (or
nonexistence) of ground states on noncompact metric graphs. If G satisfies condition A( ), then there exists
a so-called reduced critical mass ∈ +μ μ μ,� ��

[ ] such that
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and C� denotes the best constant of the following Gagliardo-Nirenberg-type inequality
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Figure 1: N -star graph ( =N 3).
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Moreover,
i( ) if G has at least one terminal edge (Figure 2 (a)), then

= = −∞ >+μ μ μ G μ μ, , , , for all ,� � �
� �

( )

and ground states never exist;
ii( ) if G admits a cycle covering (Figure 2 (b)), then

=μ μ ,��

and ground states never exist;
iii( ) if G has exactly one half-line and no terminal edges (Figure 2 (c)), then

< <+μ μ 3 ,� �

and ground states of mass μ exist if and only if ∈μ μ μ, ��
[ ];

iv( ) if G does not belong to any of the previous cases (Figure 2 (d)), then

< ≤+μ μ μ ,� ��

and ground states of mass μ exist if and only if ∈μ μ μ, ��
[ ], provided that ≠μ μ��

(by Proposition 4.3 of [11],
we know that ≠μ μ��

when G is the sign-post graph in Figure 2 (d) accompanied by the “cut edge” l long
enough).

In this article, we do not intend to have a comprehensive discussion on all types of the metric graphs
mentioned earlier. Throughout this article, we focus on the first two types:
(1) G has at least one terminal edge;
(2) G admits a cycle covering.

A terminal edge means an edge that ends with a vertex of degree 1. A metric graph G admits a cycle covering
if and only if every edge of G belongs to a cycle, which is either a loop (a closed path of consecutive bounded
edges) or an unbounded path joining the finite endpoints of two distinct half-lines.

Our main results are the following.

Theorem 1.1. Let G satisfy A( ) and have at least a terminal edge. If G has at least two half-lines, then there exists
∈μ μ0,

1 �
( ) such that for every ∈μ μ μ,

1 �
( ), the energy functional (1.1) has a critical point in the space H Gμ

1( ),
which is a local minimizer.

Theorem 1.2. Let G satisfy A( ) and admit a cycle-covering. If G l\ admits a cycle-covering for any half-line l,
then there exists ∈μ μ0,

2 �
( ) such that for every ∈μ μ μ,

2 �
( ), the energy functional (1.1) has a critical point

in the space H Gμ

1( ), which is a local minimizer.

Figure 2: Examples of the four mutually exclusive kinds of metric graphs: (a) a graph with a terminal point, (b) a graph with a cycle-
covering, (c) a tadpole graph, and (d) a sign-post graph.
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Remark 1.3. Note that the simplest metric graph described in Theorem 1.1 is in Figure 2 (a), which is made up of
one bounded edge and two half-lines. The symbolG l\ in Theorem 1.2 denotes the remaining graph by removing
any half-line l from G. By the definition of metric graph G admitting a cycle covering, we know that G has at
least two half-lines. As a consequence, the graphs described in Theorem 1.2 have at least three half-lines
(Figure 3).

Remark 1.4. Based on the aforementioned results in cases (i) and (ii) of [11], it is clear that there are no ground
states for μ G, ,� �( ) when the given mass ∈μ μ0,

�
( ). Actually, the ground states do not exist for any >μ 0. As

a consequence, it is meaningful to investigate the existence of local minimizers in Theorems 1.1 and 1.2 because
the local minimizers are natural candidates to correspond to orbitally stable solitary waves [28]. Finally, we
point out that there are some interesting open problems, such as the search for local minimizers of E u G, , �( )

in the space H Gμ

1( ) when ∈μ μ0,
�

( ) and the metric graph G belongs to case (iii) or (iv).

This article is organized as follows. In Section 2, we introduce some preliminary results that will be helpful
for the subsequent proof and briefly state the idea of searching for the local minimizers. In Section 3, we give
a criterion for the existence of local minimizers by the variational principle. Finally, Section 4 is devoted to
the proofs of Theorems 1.1 and 1.2 using the criterion established in Section 3.

2 Preliminaries

In this section, we first recall a classic Gagliardo-Nirenberg inequality on noncompact metric graph and the
corresponding critical mass.

As is known, for any >q 2 and any non-compact metric graphG, there exists an optimal constant >C G 0q( )

depending on the exponent q and the metric graph G such that (see [29])

≤ ′ ∀ ∈
+ −

u C G u u u H G, ,
L G

q

q L G

q

L G

q

2
1

2
1

1
q 2 2‖ ‖ ( )‖ ‖ ‖ ‖ ( )( ) ( ) ( )

(2.1)

where C Gq( ) is characterized as

≔
′∈

+ −C G

u

u u

sup .q

u H G

L G

q

L G

q

L G

q

\ 0

2

2

2

2

q

1

2 2

( )
∥ ∥

∥ ∥ ∥ ∥
( ) { }

( )

( ) ( )

When =q 6, it reads

≤ ′ ∀ ∈u C G u u u H G, ,
L G L G L G

6
6

4 2 1
6 2 2‖ ‖ ( )‖ ‖ ‖ ‖ ( )
( ) ( ) ( ) (2.2)

where the sharpest constant C G6( ) depends only on G. In [12], the definition of μ
G
is
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3
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Figure 3: Metric graph with a compact core � (a loop) and three half-lines.
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which is the L2-critical mass. Comparing μ
G
and μ

�
defined in (1.7), then for a general noncompact metric

graph G satisfying A( ), one can check that

≥μ μ .
G�

In addition, let us also mention some useful results on the L2-critical problem with the nonlinearity
extended on the whole metric graph G, namely (see [12]),

≔
∈

μ G E u G, inf , ,
u H Gμ

1
�( ) ( )

( )
(2.3)

where

∫ ∫≔ ′ −E u G u x u x,
1

2
d

1

6
d .

G G

2 6( ) ∣ ∣ ∣ ∣ (2.4)

When =G � , it holds

=
⎧
⎨
⎩

≤
−∞ >μ

μ μ

μ μ
,

0, if ,

, if ,
�

�

�

�( ) (2.5)

where =μ
π3

2� and μ, ��( ) is achieved if and only if =μ μ� . In this case, the ground states, called solitons,
can be written as
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whose expressions are also (2.6). It is obvious that
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For a general metric graph G, the critical mass μ
G
satisfies (see Proposition 2.3 in [12])
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This follows that the energy functional E u G, , �( ) is always bounded from below in the space H Gμ

1( ). Without
loss of generality, throughout this article we can restrict ourselves to the non-negative real functions.

Although the lower boundedness is satisfied, there are still two difficulties in obtaining the critical point
of the energy functional E u G, , �( ) in the space H Gμ

1( ). On the one hand, G is noncompact and this will lead to
a failure of convergence of the minimizing or Palais-Smale sequences. On the other hand, G has a nonempty
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compact core � and this feature will prevent us from using the scaling method to obtain solutions of
given mass.

In order to search the local minimizers (critical points) for this article, in Section 3, we construct a suitable
subspace � of H Gμ

1( ) using the compact core � of graph G. Then, by the variational principle, we find a special
minimizing sequence in � and prove its strong convergence in � . We know that ground states never exist for
every ∈μ μ0,

�
( ), and thus, the strong limit of the special minimizing sequence is a local minimizer in the set � .

3 Criterion for the existence of local minimizers

In this section, we deal with a general compactness discussion for suitable locally minimizing sequences and
give a criterion for the existence of local minimizers. Then, the criterion will be applied directly in the proof of
our main results in Section 4.

Let G satisfy A( ). Throughout this section, we denote the finite number of vertices of G as v v v, , …, m1 2{ },
the bounded edges as e e e, , …, p1 2{ }, and the half-lines as l l l, , …, s1 2{ }. Any function ∈u H G1( ) is identified with
a vector

≔u u u u v, , …, , ,s1 2( )

where ∈u H li i
1( ) is the restriction of u on the half-line li and ∈v H 1 �( ) is the restriction of u on the compact

core � . Analogously, we can denote ∈v H ek k
1( ) as the restriction of v on every bounded edge ek .

Then, function u can be denoted as

≔u u u u v v v, , …, , , , …, .s p1 2 1 2( )

If any edge li or ek is incident to the vertex vj, we record it as ≻l vi j or ≻e vk j.
Let us consider < < < >ζ μ μ δ0 , 0

�
such that

− < + <+μ ζ μ δ ζ μand 1 .� ( ) (3.1)
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where � is the compact core of G. It is clear that

⊆ ⊆ H G .μ

1
� � ( )

Then, we can obtain a variational principle as follows.

Proposition 3.1. Let (3.1) hold and

−∞ < <
∈ ∈

E u G E u Ginf , , inf , , .
u u

� �
� �

( ) ( ) (3.2)

Then, the energy functional ⋅E G, , �( ) constrained in the space H Gμ

1( ) has a critical point, which is a local
minimizer in set � .

Remark 3.2. According to the argument in Section 2, the energy functional ⋅E G, , �( ) is bounded from below
for every ∈μ μ0,

�
( ). Naturally, it is also bounded from below in � .
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Let ūn{ } be a minimizing sequence for the energy functional ⋅E G, , �( ) in set � . Then, by the Ekeland
variational principle, Theorem 1.1 in [30], there exists a (possibly different) minimizing sequence un{ }

in � such that

− → → ∞u u n¯ 0, as .n n H Gμ

1∥ ∥ ( )

Let us define the tangent space of H Gμ

1( ) at un as

∫≔
⎧
⎨
⎩
∈ =
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⎬
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T H G v H G u v x: d 0 .u μ

G

n
1 1

n
( ( )) ( )

In light of Proposition 5.1 in [30], we have

→ → ∞∗E u G nd , , 0, as ,n �∥ ( )∥

where ⋅ ∗∥ ∥ denotes the norm in the dual space of T H Gu μ

1

n
( ( )) (see [24] for more details).

Based on the aforementioned discussion, we call un{ } the minimizing Palais-Smale sequence of the energy
functional ⋅E G, , �( ) in � and denote

≔u u u u v v v, , …, , , , …, .n n n s n n n p n1, 2, , 1, 2, ,( )

By the way, we point out that the assumption of the second strict inequality in (3.2) is to ensure that the
minimizing sequence in � maintains a certain distance away from the boundary of � .

The proof process of Proposition 3.1 is somewhat complex, and we will divide it into the following lemmas.

Lemma 3.3. Let ūn{ } be a minimizing sequence for the energy functional ⋅E G, , �( ) in � , then there exists
a minimizing Palais-Smale sequence un{ } for the energy functional ⋅E G, , �( ) in � . Moreover, un{ } is bounded
in H G1( ), and thus, up to a subsequence, there exists a function ∈u H G1( ) such that

⎧
⎨
⎩

⇀ → ∞
→ → ∞∞

u u u in H G as n

u u u in L G as n

¯ , , , ,

¯ , , , .

n n

n n

1

loc

( )

( )
(3.3)

Proof. By the argument in Remark 3.2, we are left to show that un{ } is bounded in H G1( ). The results in (3.3) are
a direct consequence of the boundedness of un{ } in H G1( ). Indeed, by (3.2) and (2.9), one can check that

⎟⎜
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⎝
⎜ −

⎛
⎝
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⎠

⎞

⎠
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2
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u
n

2

2
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∥ ∥ ( )
( )

which implies that un{ } is bounded in H G1( ) since ∈μ μ0,
�

( ). □

Lemma 3.4. Let un{ } be the minimizing Palais-Smale sequence for the energy functional ⋅E G, , �( ) and u be the
weak limit in Lemma 3.3, then there exists ∈ω � such that

∑ ∑

⎧

⎨
⎪

⎩
⎪

− ″ = > =
− ″ = + > =

′ + ′ = =
≻ ≻

u ωu u on l for every i s

v ωv v v on e for every k p

u v v v for every j m

, 0, , 1, 2, …, ,

, 0, , 1, 2, …, ,

0, 1, 2, …, ,

i i i i

k k i k k

l v

i j

e v

k j

5

i j k j

( ) ( )
(3.4)

and

>u v for every vertex v0, .j j( ) (3.5)

Proof. Let us preliminarily do some explanations for Lemma 3.4. The symbol ′v vk j( ) in (3.4) is a shorthand
notation for ′ +v 0k( ) or − ′ −

v lk ek
( ), according to whether the coordinate is equal to 0 or lek

at vj. Similarly,
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′u vi j( ) represents ′ +u 0i ( ) excluding the vertex at infinity. We say >u v 0j( ) means that

= >u v v v 0,i j k j( ) ( )

for every =i s1, 2,…, or =k p1, 2,…, as long as the edge li or ek is incident at vj.
First, we show that the three equations in (3.4) hold, namely,

∑ ∑
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− ″ = =
− ″ = + =
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u ωu l i s
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, on for every 1, 2, …, ,
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i i i

k k i k

l v

i j

e v

k j

5

i j k j

( ) ( )
(3.6)

In fact, let ∈ψ H G1( ). Obviously, the energy functional ⋅E G, , �( ) is C1. According to Lemma 3 in [31] and the
argument in [24], since un{ } is bounded in H G1( ), we have for some approximate Lagrange multiplier ∈ωn � that

∫− = → ∞E u G ψ ω u ψ x o nd , , d 1 , as ,n n

G

n�( )[ ] ( ) (3.7)

where ωn is given by

∫ ∫=
⎛

⎝
⎜ ′ −

⎞

⎠
⎟ω

μ
u x u x

1
d d .n

G

n n
2 6

�

∣ ∣ ∣ ∣

By the boundedness of un{ } in H G1( ) and the Gagliardo-Nirenberg-type inequality (1.8), we immediately obtain
that ωn is bounded and

→ ∈ω ω .n �

By weak convergence in (3.7), then as → ∞n , one can check that

∫ ∫ ∫′ ′ − − = ∀ ∈u ψ x u uψ x ω uψ x ψ H Gd d d 0, ,

G G

4 1

�

∣ ∣ ( ) (3.8)

where ω plays the role of a Lagrange multiplier.
For every edge Ie (including the half-line li and bounded edge ek) ofG, choosing ∈ ∞

ψ C Ie0 ( ) and integrating
by parts into (3.8), we obtain that the first two equations in (3.6) hold. For any given vertex vj (not at infinity),
such as v1, let ∈ψ H G1( ) such that

⎧
⎨
⎩
= =
≠ =ψ v

j m

j

0, for every 2, …, ,

0, for 1.
j( ) (3.9)

Integrating by parts into (3.8) and noting the fact that the first two equations in (3.6) hold, we have

∑ ∑⎛

⎝
⎜ ′ + ′

⎞

⎠
⎟ =

≻ ≻
u v v v ψ v 0.

l v

i

e v

k1 1 1

i k1 1

( ) ( ) ( )

Due to the arbitrariness of ψ v1( ), the third equation in (3.6) holds for =j 1. Other cases can be proved by re-
peating the aforementioned process.

Second, we will prove the two inequalities in (3.4) and the inequality in (3.5) hold, namely,

⎪

⎪

⎧
⎨
⎩

> =
> =
> =

u l i s

v e k p

u v j m

0, on for every 1, 2, …, ,

0, on for every 1, 2, …, ,

0, for every 1, 2, …, .

i i

k k

j( )

(3.10)

In fact, noting that ≥u 0n , we also have ≥u 0.
To prove >u v 0j( ) for any vertex vj, without loss of generality, we suppose =u v 01( ) by contradiction.

Since ≥u 0 on G, we have

′ ′ ≥ ≻u v v v l e v, 0, whenever , .i k i k1 1 1( ) ( ) (3.11)

Local minimizers for the NLS equation  9



Combining (3.11) with the Kirchhoff condition (the third equality) in (3.4), we immediately obtain that all
the derivatives at v1 are equal to 0. Thus, by uniqueness of solutions for the Cauchy problems associated with
the first two equations in (3.4) on every edge that is incident at v1, one sees that

≡ ≻u l v0, for ,i i 1

and

≡ ≻v e v0, for ,k k 1

which imply that =u v 0j( ) for every vertex vj directly connected to v1. In fact, since G satisfies A( ), we deduce
that ≡u 0 on G by iterating the aforementioned argument a finite number of times. However, this is a con-
tradiction with

∫ ∫= ≥ >
→∞

u x u x ζd lim d 0,
n

n
2 2

� �

∣ ∣ ∣ ∣

where we utilize the fact that →u un locally uniformly on G.
To prove the first two inequalities in (3.10), without loss of generality, we suppose =u x 01( ) (or =v x 01( ) )

for any interior point of the half-line l1 (or bounded edge e1) by contradiction. Since ≥u 0 on G, by the def-
inition of the derivative at point x , we have

′ = ′ =u x v x0 or 0 .1 1( ) ( ( ) )

By uniqueness of solutions for the Cauchy problems associated with the first two equations in (3.4) on every
edge, we obtain that

≡ ≡u l v e0 on or 0 on ,1 1 1 1( )

which indicates that =u v 0( ) at the vertex ≺v l1 (or ≺v e1). Arguing as mentioned earlier, we have that the first
two inequalities in (3.10) hold. □

According to the discussion of Proposition 3.3 in [32], it can be concluded that the weak limit u obtained in
Lemma 3.3 has satisfied some important properties of the solution to (1.4). Is this function u actually a critical
point? The following lemma provides the answer.

Lemma 3.5. Let un{ } be the minimizing Palais-Smale sequence for the energy functional ⋅E G, , �( ) and u be the
weak limit in Lemma 3.3, then →u un strongly in H G1( ) and u is a local minimizer for the energy functional
⋅E G, , �( ) in set � .

Proof. First, by (3.6), we deduce that the Lagrange multiplier ω is negative. Indeed, by the property of ui on
the half-line li, it is not difficult to deduce that ≠ω 0. On the other hand, if >ω 0, then the function ui is C2

on = +∞l 0,i ( ), concave, strictly positive, and tending to 0 as → ∞x . This is impossible.
Second, since un{ } is a bounded minimizing Palais-Smale sequence and → ∈ω ωn � , for every ∈ψ H G1( ),

there exist

∫− = → ∞E u G ψ ω u ψ x o nd , , d 1 , as .n

G

n�( )[ ] ( ) (3.12)

Moreover, by weak convergence in (3.12), we have

∫− =E u G ψ ω uψ xd , , d 0.

G

�( )[ ] (3.13)

Let = −ψ u un , and subtracting (3.13) from (3.12), we have

∫− − − − =E u G E u G u u ω u u x od , , d , , d 1 ,n n

G

n
2� �( ( ) ( ))[ ] ∣ ∣ ( )

10  Xiaoguang Li



which yields

∫ ∫ ∫− ′ − − − − =u u x u u x ω u u x od d d 1 .

G

n n

G

n
2 6 2

�

∣( ) ∣ ∣ ∣ ∣ ∣ ( ) (3.14)

Noting the facts that � is compact and →u un locally uniformly on G, then from (3.14), we have

∫ ∫− ′ − − =u u x ω u u x od d 1 .

G

n

G

n
2 2∣( ) ∣ ∣ ∣ ( ) (3.15)

Since <ω 0, the left-hand side of (3.15) is the square of a norm that is equivalent to the standard one in the
space H G1( ). As a consequence, we have

→u u H Gstrongly in ,n
1( )

and ∈u H Gμ

1( ). Moreover, since →u un in ∞
L Gloc( ), we have

∫ ∫= ≥
→∞

u x u x ζd lim d ,
n

n
2 2

� �

∣ ∣ ∣ ∣

and ∈u � . So we conclude that ∈u H Gμ

1( ) is a local minimizer for the energy functional ⋅E G, , �( ) in set � .
The proof is complete. □

4 Proof of Theorems 1.1 and 1.2

Throughout this section, we present the proofs of Theorems 1.1 and 1.2. Precisely, based on the premise of the
criterion in Section 3, we show that there exist local minimizers for the energy functional E u G, , �( ) when G

satisfies suitable topological and metric assumptions.

4.1 Graphs with a terminal edge

We first focus on the graphs with a terminal edge and having at least two half-lines (this indicates that ≥s 2

based on the argument in Section 3), for which it is true that

= +μ μ ,�� (4.1)

and ground states do not exist for ∈μ μ0,
�

( ). To prove Theorem 1.1, we preliminarily consider >ζ μ δ, , 0

satisfying

+ < ∈ +δ ζ μ μ δ ζ μ1 2 and 1 2 , .
� �

( ) [( ) ] (4.2)

Thus, we have
− < = +μ ζ μ μ��

and
≥ + > +μ δ ζ δ ζ1 2 1 .( ) ( )

These imply that (3.1) is established. Here, we introduce two corresponding subsets, which are denoted as

∫≔
⎧
⎨
⎩
∈ ≤

⎫
⎬
⎭

u H G ζ u x: dμ

ζ

μ

1 2�

�

( ) ∣ ∣

and

∫≔
⎧
⎨
⎩
∈ ≤ ≤ +

⎫
⎬
⎭

u H G ζ u x δ ζ: d 1 ,μ

ζ

μ

1 2�

�

( ) ∣ ∣ ( )

where � is the compact core of G.

Local minimizers for the NLS equation  11



Proof of Theorem 1.1. By the criterion for the existence of local minimizers established in Proposition 3.1,
we need to show that there exists ∈μ μ0,

1 �
( ) such that for every ∈μ μ μ,

1 �
( ), (3.2) holds, namely,

−∞ < <
∈ ∈

E u G E u Ginf , , inf , , .
u uμ

ζ
μ
ζ

� �
� �

( ) ( )

To proceed, we divide the proof into the following four steps.
Step 1: The energy functional E u G, , �( ) is bounded from below in set μ

ζ
� , namely,

> −∞
∈

E u Ginf , , .
u μ

ζ

�
�

( )

Indeed, by (2.9) and the definition of set μ

ζ
� , this is valid since ≤μ μ

�
.

Step 2: The energy functional E u G, , �( ) is bounded from below in set μ

ζ
� , i.e., there exists = >C C δ ζ s, , 01 1( )

(independent of μ) such that

≥ ′E u G C u, , ,
L G1
2

2�( ) ‖ ‖
( ) (4.3)

for every ∈u μ

ζ
� and every ∈ +μ δ η μ1 2 ,

�
[( ) ].

Indeed, let ∈ +μ δ η μ1 2 ,
�

[( ) ], if ∈u μ

ζ
� , then

∫ ∫ ∫∑= = +
=

μ u x u x u xd d d ,

G
i

s

l

2

1

2 2

i �

∣ ∣ ∣ ∣ ∣ ∣

which yields

∫ ∫∑ = − ∈ − + −
=

u x μ u x μ δ ζ μ ζd d 1 , .

i

s

l
1

2 2

i �

∣ ∣ ∣ ∣ [ ( ) ]

Thus, there must be an index ∈i s1, 2, …,{ }, such as =i 1, satisfying

∫ ≥ − + ≥u x
s

μ δ ζ
δζ

s
d

1
1 .

l

2

1

∣ ∣ [ ( ) ] (4.4)

For every ∈u μ

ζ
� , it holds

= +E u G E u l E u G l, , , , , \ , .1 1� � �( ) ( ) ( ) (4.5)

Note that the graphG l\ 1 (the graph by removing the half-line l1 fromG) has a terminal point, and thus, (4.1)
holds. On the one hand, for the graph G l\ 1, by (2.9), we have

∫
≥

⎛

⎝
⎜⎜ −

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟⎟ ′

+
E u G l

u x

μ
u, \ ,

1

2
1

d

,
G l

L G l1

\

2
2

\

21

2
1

�

�( )
∣ ∣

∥ ∥
( )

where

∫ ∫ ∫= − ≤ − ≤ −+u x u x u x μ
δζ

s
μ

δζ

s
d d d ,

G l G l\

2 2 2

1 1

�∣ ∣ ∣ ∣ ∣ ∣

which is strictly smaller than +μ� . Let us define

∫
= ≕

⎛

⎝
⎜⎜ −

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟⎟+

C C δ ζ s

u x

μ
, ,

1

2
1

d

.
G l

1 1

\

2
2

1

�

( )
∣ ∣

Then, from the aforementioned argument, we obtain that

< <C0
1

2
.1
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Thus, there exists

≥ ′E u G l C u, \ , .
L G l1 1 \

2
2

1

�( ) ∥ ∥
( ) (4.6)

On the other hand, for the half-line l1, we have

= ′E u l u, ,
1

2
.

L l1
2

2
1

�( ) ∥ ∥
( )

(4.7)

Noting the fact that <C1

1

2
and combining (4.5) with (4.6) and (4.7), we have

≥ ′E u G C u, , ,
L G1
2

2�( ) ‖ ‖
( )

which is the desired result.
Step 3: The energy functional E u G, , �( ) is uniformly bounded from below in μ

ζ
� , i.e., there exists =C2

>C δ ζ s, , 02( ) such that

≥E u G C, , ,2�( ) (4.8)

for every ∈u μ

ζ
� and every ∈ +μ δ η μ1 2 ,

�
[( ) ].

Indeed, if, by contradiction, there exists a sequence un{ } in H G1( ), with ∈un μ

ζ

n

� and ⊂ +μ δ ζ μ1 2 ,
n �

{ } [( ) ],
such that

→ → ∞E u G n, , 0, as .n �( )

By (4.3), we deduce that un{ } is bounded in H G1( ), and furthermore, it holds

′ → → ∞u n0, as .n L G

2
2‖ ‖
( )

Thus, up to a subsequence, one sees that

⇀ → ∞u u H G nin , as ,n
1( )

and
→ → ∞∞

u u L G nin , as .n loc( )

Moreover, by weak lower semi-continuity, it holds

′ ≤ ′ =
→∞

u uliminf 0,
L G

n
n L G

2 2
2 2∥ ∥ ∥ ∥
( ) ( ) (4.9)

which implies that u is constant on G. Since G is noncompact and ∈u H G1( ), it is necessary that ≡u 0 on G.
This is a contradiction with

∫ ∫= ≥ >
→∞

u x u x ζd lim d 0,
n

n
2 2

� �

∣ ∣ ∣ ∣

where we utilize the fact that →u un locally uniformly on G.
Step 4: There exists ∈ +μ δ ζ μ1 2 ,

1 �
(( ) ) such that

< ∈
∈

E u G C μ μ μinf , , , for every , ,
u

2 1

μ
ζ

�
�

�
( ) ( ) (4.10)

where C2 is the constant obtained from Step 3.
Indeed, there are two difficulties in the proof of this step. One is the existence of mass μ

1
, and the other is

the strict inequality in (4.10). To overcome these difficulties, our strategy is to show that, for any >ε 0, there
exists a mass ∈ +μ δ ζ μ1 2 ,

ε �
(( ) ), and if ∈μ μ μ,

ε �
( ), there exists a function ∈φ

μ μ

ζ
� such that

<E φ G ε, , .
μ

�( )

Thus, the proof will be completed when we choose =ε C2 and =μ μ
ε 1

.
According to the aforementioned analysis, the key to the problem lies in the construction of function φ

μ
.

For this purpose, we consider using the half-soliton ϕ x( ) defined in (2.6) to construct function φ
μ
. Since G has

Local minimizers for the NLS equation  13



at least a terminal edge, without loss of generality, let =e 0, 1p [ ] be a terminal edge, with the coordinate
0 at the terminal point. Define

≔ − ∀ >+φ x ϕ x ϕ λ1 , 0.
λ λ λ
( ) ( ( ) ( ))

Naturally, one can see that ∈φ H 0, 1
λ

1( ), accompanied by

> =φ φ0 on 0, 1 , and 1 0.
λ λ

[ ) ( )

The mass of φ
λ
on =e 0, 1p [ ] is

∫ ∫≔ = −
∞

m φ x ϕ z ϕ λ z zd d .λ λ χ

0

1

2

0

2

λ0,

∣ ∣ ∣ ( ) ( )∣ ( )
[ ]

(4.11)

Taking the derivative of (4.11) with respect to λ, we obtain that

∫ ∫= − − ′ = − − ′
∞

m

λ
ϕ y ϕ λ ϕ λ χ y y ϕ y ϕ λ ϕ λ y

d

d
d d .

λ

λ

λ

0

0,

0

( ( ) ( )) ( ) ( ) ( ( ) ( )) ( )[ ]
(4.12)

Through simple calculations, we know that ′ <ϕ λ 0( ) for every >λ 0. Thereby, by monotone and dominated

convergence principle, one can see that > 0
m

λ

d

d

λ for every >λ 0 and mλ is continuous and strictly monotone

increasing with respect to λ. Moreover, we have

∫= = = =
→ →+∞

+∞

+
+m m ϕ x μ μlim 0, and lim d .

λ
λ

λ
λ

0
0

2

� �
∣ ∣

As a consequence, for every ∈μ μ0,
�

( ), there exists a unique = >λ λ μ 0( ) such that =m μλ μ( ) . Then, we can
construct the function φ

μ
on G as

≔
⎧
⎨
⎩

=
φ

φ e, on 0, 1 ,

0, elsewhere.
μ

λ μ p [ ]( ) (4.13)

Here, we need to do some remarks. First of all, the function φ
μ
satisfies the continuity condition at the other

vertex of edge ep (corresponding to the coordinate 1). Second, the mass of φ
μ
on both the compact core �

and the whole G is =m μλ μ( ) so that ∈φ
μ μ

ζ
� .

Next, what we need to do is to show that the energy functional =E φ G E φ, , , 0, 1 ,
μ λ μ

� �( ) ( ( ) )( ) can be
made arbitrarily small as →μ μ

�
(that is equivalent to → +∞λ ). Indeed, we have

∫ ∫

∫

∫ ∫

= ′ −

= ⎡
⎣ ′ − − ⎤

⎦

≤ ⎡
⎣ ′ − ⎤

⎦ +

E φ φ x φ x

λ ϕ z ϕ z ϕ λ z

λ ϕ z ϕ z z λ ϕ λ ϕ z z

, 0, 1 ,
1

2
d

1

6
d

1

2

1

6
d

1

2

1

6
d d ,

λ μ μ

λ

λ λ

0

1

2

0

1

6

2

0

2 6

2

0

2 6 2

0

5

�( ( ) ) ∣ ∣ ∣ ∣

∣ ( )∣ ( ( ) ( ))

∣ ( )∣ ∣ ( )∣ ( ) ( )

(4.14)

where we utilize the mean value theorem in the last inequality. Precisely, for every ∈z λ0,( ), there exists
∈θ 0, 1( ) such that

− − = − ≤ϕ z ϕ z ϕ λ ϕ z θϕ λ ϕ λ ϕ z ϕ λ6 6 .6 6 5 5∣ ( ) ( ( ) ( )) ∣ ∣ ( ) ( )∣ ( ) ( ) ( )

By the property of function ⋅ϕ( ), one can see that

→ → +∞λ ϕ λ λ0, as ,2 ( )
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and

∫ ∫≤ < +∞
∞

ϕ z z ϕ z zd d .

λ

0

5

0

5( ) ( )

Thus, the estimate in (4.14) can be denoted as

≤ + → +∞E φ λ E ϕ λ o λ, 0, 1 , , 0, 1 , as ,
λ

2�( ( ) ) ( ( )) ( )

where the energy functional E ϕ λ, 0,( ( )) is defined in (2.4). In fact, by (2.8), there exists

= + +∞ =+E ϕ E ϕ λ E ϕ λ, , 0, , , 0.�( ) ( ( )) ( ( ))

Thus,

= − +∞E ϕ λ E ϕ λ, 0, , , ,( ( )) ( ( ))

which yields

≤ − +∞ + → +∞E φ λ E ϕ λ o λ, 0, 1 , , , 1 , as .
λ

2�( ( ) ) ( ( )) ( ) (4.15)

To proceed further, since the mass of function ϕ on +∞λ,( ) satisfies

∫ ∫< = = + < >
∞ ∞

+μ ϕ x x ϕ z λ z μ λ0 ˜ d d for every 0,

λ

2

0

2

�( ) ( )

one can see that ⋅+ ∈ +ϕ λ H 1 �( ) ( ), and moreover, by applying (2.2), we observe that

⎜ ⎟+∞ = ⋅+ +∞ ≥
⎛

⎝
⎜ −

⎛
⎝

⎞
⎠

⎞

⎠
⎟ ′ ⋅+ ≥

+
+E ϕ λ E ϕ λ

μ

μ
ϕ λ, , , 0,

1

2
1

˜
0.

L

2

2
2

�
�

( ( )) ( ( ) ( )) ∥ ( )∥
( )

(4.16)

By (4.15) and (4.16), we immediately have

≤ <E φ o ε, 0, 1 , 1 ,
λ

�( ( ) ) ( ) (4.17)

for → +∞λ (that is, equivalent to →μ μ
�
). This implies the existence of μ

1
in (4.10).

To conclude the proof, let = μ

ζ
� � , = μ

ζ
� � and μ

1
be the mass obtained in Step 4, then Theorem 1.1

is a direct result of Proposition 3.1, i.e., for every ∈μ μ μ,
1 �

( ), the energy functional (1.1) has a critical point in
the space H Gμ

1( ), which is a local minimizer. □

4.2 Graphs admitting a cycle-covering

In this section, we deal with the graphs that admit a cycle-covering and have at least three half-lines (this
means that ≥s 3), for which it holds

=μ μ ,�� (4.18)

and ground states do not exist for ∈μ μ0,
�

( ). It is worth mentioning that the graph G l\ i (by removing any
half-line li from G) also admits a cycle-covering according to the argument in Section 1. The proof of Theorem
1.2 is analogous to the one of Theorem 1.1. Precisely, let >ζ μ δ, , 0 be such that

> + < ∈ ++ζ μ δ ζ μ μ δ ζ μ, 1 2 and 1 2 , .� � �
( ) [( ) ] (4.19)

Then, we have

− < − =+ +μ ζ μ μ μ� ��

and

≥ + > +μ δ ζ δ ζ1 2 1 .( ) ( )
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Thus, we obtain that (3.1) holds. We still introduce two subsets as

∫≔
⎧
⎨
⎩
∈ ≤

⎫
⎬
⎭

u H G ζ u x: dμ

ζ

μ

1 2�

�

( ) ∣ ∣

and

∫≔
⎧
⎨
⎩
∈ ≤ ≤ +

⎫
⎬
⎭

u H G ζ u x δ ζ: d 1 ,μ

ζ

μ

1 2�

�

( ) ∣ ∣ ( )

where � is the compact core of G.

Proof of Theorem 1.2. By Proposition 3.1, we need to show that there exists ∈μ μ0,
2 �

( ) such that for every
∈μ μ μ,

2 �
( ), (3.2) holds, namely,

−∞ < <
∈ ∈

E u G E u Ginf , , inf , , .
u uμ

ζ
μ
ζ

� �
� �

( ) ( )

For the sake of completeness, we still divide the proof into the following four steps.
Step 1: The energy functional E u G, , �( ) is bounded from below in set μ

ζ
� , namely,

> −∞
∈

E u Ginf , , .
u μ

ζ

�
�

( )

Indeed, by (2.9) and the definition of set μ

ζ
� , the result is clearly valid since ≤μ μ

�
.

Step 2: The energy functional E u G, , �( ) is bounded from below in set μ

ζ
� , i.e., there exists = >C C δ ζ s, , 03 3( )

(independent of μ) such that

≥ ′E u G C u, , ,
L G3
2

2�( ) ‖ ‖
( ) (4.20)

for every ∈u μ

ζ
� and every ∈ +μ δ η μ1 2 ,

�
[( ) ].

Indeed, let ∈ +μ δ η μ1 2 ,
�

[( ) ], if ∈u μ

ζ
� , then

∫ ∫ ∫∑= = +
=

μ u x u x u xd d d ,

G
i

s

l

2

1

2 2

i �

∣ ∣ ∣ ∣ ∣ ∣

which yields

∫ ∫∑ = − ∈ − + −
=

u x μ u x μ δ ζ μ ζd d 1 , .

i

s

l
1

2 2

i �

∣ ∣ ∣ ∣ [ ( ) ]

Thus, there must be an index ∈i s1, 2, …,{ }, such as =i 1, satisfying

∫ ≥ − + ≥u x
s

μ δ ζ
δζ

s
d

1
1 .

l

2

1

∣ ∣ [ ( ) ] (4.21)

For every ∈u μ

ζ
� , we have

= +E u G E u l E u G l, , , , , \ , .1 1� � �( ) ( ) ( ) (4.22)

Note that both the graphG l\ 1 (the graph by removing the half-line l1 fromG) and the graphG admit a cycle
covering, and thus, (4.18) holds. On the one hand, for the graph G l\ 1, by (2.9), we have

∫
≥

⎛

⎝
⎜⎜ −

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟⎟ ′E u G l

u x

μ
u, \ ,

1

2
1

d

,
G l

L G l1

\

2
2

\

21

2
1

�

�( )
∣ ∣

∥ ∥
( )
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where

∫ ∫ ∫= − ≤ − ≤ −u x u x u x μ
δζ

s
μ

δζ

s
d d d ,

G l G l\

2 2 2

1 1

�∣ ∣ ∣ ∣ ∣ ∣

which is strictly smaller than μ� . Let us define

∫
= ≕

⎛

⎝
⎜⎜ −

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟⎟C C δ ζ s

u x

μ
, ,

1

2
1

d

.
G l

3 3

\

2
2

1

�

( )
∣ ∣

Then, from the aforementioned argument, we obtain that

< <C0
1

2
.3

Thus, there exists

≥ ′E u G l C u, \ , .
L G l1 3 \

2
2

1

�( ) ∥ ∥
( ) (4.23)

On the other hand, for the half-line l1, we have

= ′E u l u, ,
1

2
.

L l1
2

2
1

�( ) ∥ ∥
( )

(4.24)

Since <C3

1

2
, combining (4.22) with (4.23) and (4.24), we have

≥ ′E u G C u, , ,
L G3
2

2�( ) ‖ ‖
( )

which is the desired result.
Step 3: The energy functional E u G, , �( ) is uniformly bounded from below in μ

ζ
� , i.e., there exists

= >C C δ ζ s, , 04 4( ) such that

≥E u G C, , ,4�( ) (4.25)

for every ∈u μ

ζ
� and every ∈ +μ δ η μ1 2 ,

�
[( ) ].

Indeed, the proof of the existence of constantC4 is completely analogous to the derivation ofC2 in the proof
of Theorem 1.1 and thus is omitted.
Step 4: There exists ∈ +μ δ ζ μ1 2 ,

2 �
(( ) ) such that

< ∈
∈

E u G C μ μ μinf , , , for every , ,
u

4 2

μ
ζ

�
�

�
( ) ( ) (4.26)

where C4 is the constant obtained from Step 3.
Indeed, as in the proof of Theorem 1.1, there are still two difficulties in this step. One is the existence of

mass μ
2
, and the other is the strict inequality in (4.26). To overcome them, our strategy is to show that, for any

>ε 0, there exists a mass ∈ +μ δ ζ μ1 2 ,
ε �

(( ) ), and if ∈μ μ μ,
ε �

( ), there exists a function ∈φ
μ μ

ζ
� such that

<E φ G ε, , .
μ

�( )

The proof will be completed when we choose =ε C4 and =μ μ
ε 2

.
We point out that the most important thing is still to construct the functionφ

μ
. Since the compact core � is

nonempty, without loss of generality, we can assume = −e 1,1p [ ] be a bounded edge with the coordinates ±1

corresponding to the two vertices of ep. In order to construct φ
μ
, we consider the soliton ϕ x( ) defined in (2.6),

and let

≔ − ∀ >+φ x ϕ x ϕ λ1 , 0.
λ λ λ
( ) ( ( ) ( ))

One can see that ∈ −φ H 1, 1
λ

1( ), with

> − − = =φ φ φ0 on 1, 1 , and 1 1 0.
λ λ λ

( ) ( ) ( )

In particular, by the property of the solitonϕ x( ), we have thatφ
λ
is symmetric with respect to the middle point

(corresponding to the coordinate 0) of the bounded edge ep for every >λ 0.
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In addition, we can see that

∫ ∫= = =−
−

φ φ x φ x φd 2 d 2
λ L λ λ λ L1,1

2

1

1

2

0

1

2

0, 1

2
2 2∥ ∥ ∣ ∣ ∣ ∣ ∥ ∥
( ) ( )

and

∫ ∫′ = ′ = ′ = ′−
−

φ φ x φ x φd 2 d 2 .
λ L λ λ λ L1,1

2

1

1

2

0

1

2

0, 1

2
2 2∥ ∥ ∣ ∣ ∣ ∣ ∥ ∥
( ) ( )

If we denote the mass of φ
λ
on = −e 1, 1p [ ] as mλ, through the same computations of Step 4 in the proof of

Theorem 1.1, we know that mλ is continuous and strictly monotone increasing with respect to λ. Moreover,
there exist

∫= = = =
→ →+∞

+∞

+
m m ϕ x μ μlim 0, and lim 2 d .

λ
λ

λ
λ

0
0

2

� �
∣ ∣

Thus, for every ∈μ μ0,
�

( ), there exists a unique >λ μ 0( ) such that =m μλ μ( ) . Define

≔
⎧
⎨
⎩

= −
φ

φ e, on 1, 1 ,

0, elsewhere.
μ

λ μ p [ ]( ) (4.27)

Obviously, φ
μ
satisfies the continuity condition at the two vertices of edge ep and ∈φ

μ μ

ζ
� .

Finally, by the symmetry properties of the two functions φ
λ
and ′φ

λ
on the interval −1, 1[ ], then through

a similar analysis in the proof of Theorem 1.1, we can obtain

= − <E φ G E φ ε, , , 1, 1 , ,
μ λ

� �( ) ( ( ) ) (4.28)

for → +∞λ (that is, equivalent to →μ μ
�
). This implies the existence of μ

2
in (4.26).

To conclude the proof, let = μ

ζ
� � , = μ

ζ
� � , and μ

2
be the mass obtained in Step 4, then Theorem 1.2

is a direct result of Proposition 3.1, i.e., for every ∈μ μ μ,
2 �

( ), the energy functional (1.1) has a critical point in
the space H Gμ

1( ), which is a local minimizer. □
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