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Abstract: The aim of this article is to develop a modified predictor—corrector scheme for solving the system of
nonlinear W-Caputo fractional differential equations with order 0 < a < 1. By using the graded mesh and
considering the predictor—corrector scheme for ¥-Caputo fractional derivative, the numerical solutions of
nonlinear P-Caputo fractional-order systems are derived. Moreover, the error estimations of predictor—cor-
rector scheme with graded mesh are also investigated. Particularly, the accuracy of numerical solutions
depended on the function ¥ and the partition size on graded mesh. Numerical examples for linear and
nonlinear fractional differential systems with various kernels and meshes are considered to explain the value
and effectiveness of the proposed schemes.
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1 Introduction

Over the last few decades, the concepts of fractional calculus have increased interest in related fields of science
and engineering. Some important results in applications of fractional calculus are reported in [1]. Additionally,
fractional calculus can be described as complex procedures in real world applications such as signal and
image processing [2], biology [3], environmental science [4], economics [5], multidisciplinary engineering fields
[6], etc. In mathematical models, fractional derivatives are suitable tools for explaining memory and heredi-
tary properties of several materials and processes. Moreover, there are many definitions of fractional deri-
vatives for applying to fractional-order models, e.g., Caputo-Hadamard, Hadamard, Caputo-Erdélyi-Kober,
Erdélyi-Kober, Caputo, and Riemann-Liouville. We recommend reading previous studies [7-10] for further
information.

There is a specific type of kernel dependency represented in each of those definitions. To investigate
fractional differential equations in a comprehensive way, Almeida [11] proposed the definition of fractional
derivatives with arbitrary kernel and called W-Caputo derivative. In particular, Caputo-Erdélyi-Kober, Caputo-
Hadamard, and Caputo are the specific cases of ¥-Caputo derivatives.

The study of W-Caputo fractional differential equation is currently increasing. Many researchers have
worked on the solution of ¥-Caputo fractional differential equations, and have not yet succeeded. The work of
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Almeida et al. [12] suggested that the W-Caputo fractional derivatives in mathematical models are more
practical and capable of extracting hidden parts of real-world conditions. The applications of ¥-Caputo
fractional differential equation are also shown in the research of Almeida et al. [13]. Moreover, the approx-
imation on the extremal solutions of W-Caputo fractional differential equations is shown and obtained by
using the monotone iteration of upper and lower solutions [14,15]. Furthermore, the linear ¥-Caputo fractional
differential systems are represented by the work of Almeida et al. [16] and solved in the form of Mittag-Leffler
function. They also proved theorems on the existence and uniqueness of the solution of linear ¥-Caputo
fractional differential systems. However, the work of Almeida et al. [16] considered only the case of linear
Y-Caputo fractional differential equations. Nevertheless, numerous practical research problems are still
represented by linear W-Caputo fractional differential equations. For example, the solution of a linear non-
homogeneous fractional differential system involving W-Caputo fractional derivatives is derived in the form
of matrix Mittag-Leffler functions in [17].

To extend the idea of Almeida et al. [16], solving the system of nonlinear ¥-Caputo fractional differential
equations is investigated in this study. However, the system of nonlinear ¥-Caputo fractional differential
equations is difficult to solve analytically. Consequently, numerical schemes are necessary to estimate the
solution of the system of nonlinear W-Caputo fractional differential equations. To solve nonlinear fractional
differential equations, several studies constructed numerical schemes under the assumption of uniform
meshes, as referenced in [18-21]. In order to acquire the optimal convergence order for numerical schemes,
Liu et al. [22] applied predictor—corrector scheme with graded mesh to solve nonlinear fractional differential
equations. Furthermore, the error estimation for the predictor-corrector scheme with graded mesh shows
that the optimal convergence order of this scheme is adjusted uniformly. In this study, we consider the
predictor—corrector scheme with graded mesh for solving nonlinear ¥-Caputo fractional-order differential
systems on R,

DE¥Y() = F(t, Y(1)),
Y(to) = Yo,

where C[D?O’w denotes the W-Caputo fractional derivative with a > 0, ¥ € C!([t,, T]) is an increasing function
such that ¥(t) # 0 for all t € [ty, T], Yo € R denotes the initial condition and F : [ty, T] x R¥ - RM is
a nonlinearity term. Additionally, several illustrations are shown, and solutions are obtained by the related
predictor—corrector scheme with uniform and graded meshes. Consequently, the presented scheme with
graded mesh can save numerical accuracy and reduce the computation fee.

This work is divided to six sections as follows. The first section is introduction. It includes the review of the
related research and work. In Section 2, important definitions for the system of fractional differential equa-
tions with W-Caputo derivative are presented. A modified predictor—corrector scheme with graded mesh is
described in Section 3. Next the error estimation of this scheme is demonstrated. In Section 5, various examples
are offered to demonstrate the performance of our numerical schemes. The final section gives the conclusion.

2 W-Caputo nonlinear fractional-order systems

Some definitions and theorems in this section will be used to declare and verify our essential results. Let
J = [to, T] be finite interval. f € C(J, R) is the continuous function from interval J into R. Moreover, C(J, R)
is the continuous function and n times differentiable from interval J into R. We suppose that a > 0 and ¥
is increasing for all t € J.
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Definition 2.1. [8] The Riemann-Liouville fractional integral of the function f€ C(J,R) with the order a
is defined as

1| f(s)

1Ef () = %tm s, tel, @

where I'(a) is the Gamma function such that

[

T(a) = je-fta-ldt.
0

Definition 2.2. [11] The ¥-Riemann-Liouville fractional integral of the function f € C(J, R) with the order a
is given by

t
1
[I?O’Lpf(t) = r(a) J‘lp/(s)(ly(t) - lp(s))a_lf(s)ds (2)
)

Definition 2.3. [11] Let n = [a] + 1, the W-Riemann-Liouville derivative of the function f€ C(J,R) with
the order a is defined as

. 1 d) .
DEYf(©) = [q,,(t) E] o). ®

Definition 2.4. [12] Given ¥ € C*(J) and f€ C"'(J), the Y-Caputo fractional derivative with order a
is defined as

t
1
— W Y(t) - P n-a-1f[nl ds, if N,
c[Dttzo,\Ilf(t) = 1T - a)‘t[ ($)(P(t) () f‘}' (s)ds, ifae¢ N
fm&;n](t), ifa=neN,
where
1 d)
[n] = —_—
p () I‘P’(t) dt]f(t). )

Remark 1. From Definition 2.4, the examples of specific kernels ¢ are presented as ¥(t) = t, ¥(t) = In(¢), and
P(t) = t? reduce to Caputo, Caputo-Hadamard, and Caputo-Erdélyi-Kober fractional derivatives, respectively.

Then, the important properties of fractional y-integrals and ¥-derivatives in [11] are introduced below.

Theorem 2.1. [12] If f € C"'(J, R), then

w1 £l

1P DEYF@O) = f(0) - Y fy

il
=0 U

@) - P(to))
and
Dy L) = f(O).
In this study, the ¥-Caputo nonlinear fractional-order systems are defined as

DEYY() = B, Y1), tE,
Y(to) = Yo,

(6)
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where

* Y(0) = [y, (6, y,(©), -y (OF,

« DI = [DE Y (0, DETY, O, ... DE Yy, (OF with a € (0,1),

+ The function ¥ € C!([ty, T]) is increasing such that ¥'(¢t) # 0 for all ¢ € [t,, T],
+ Y, is fixed vectors in R,

« F=[f.f,, ..fyy]F with F € C(J x RM,RM),

In particular, we found that system (6) can be reformulated to the system of Volterra integral equations
(SVIEs):

Y(0) = Y1) + ﬁtﬁﬂ(sxw) — W(s)*E(s, y(s))ds )
or
1 t
Y(6) = Y(tp) + m{W'(s)(W(t) - W($)T I DEYY(s)ds. ®

Based on the idea of Songsanga and Sa Ngiamsunthorn [23], we extend the concept of predictor—corrector
scheme for solving ¥-Caputo fractional differential systems in (6) by adding graded mesh. In order to ensure
the existence of a unique solution for (6), we found that the detail of existence and uniqueness for the system
of W-Caputo fractional differential equations can be proved in [16]. In [22,24,25], the concept of smoothness
properties is suggested for improving the optimal convergence of predictor—corrector scheme. To develop
predictor—corrector scheme for the approximation solution of (7), the smoothness properties of [22,24,25]
are applied in this study.

2.1 Smoothness properties

Theorem 2.2. [22]
+ Assume that a € (0,1), U is an appropriate set, and F € C*(U). Then, there exists a function A € CI(J),
such that the solution Y(t) of equation (6) can be smoother than being continuous as

M/al-1
YO =A0+ Y co(B(@) - Yo,
w=1
where ¢, is the real number and [1/a] is the ceiling value.
* Assume that a € (0,1), U is the appropriate set and F € C3(U). Then, there exists a function A € C%J),
such that the solution Y(t) of equation (6) can be smoother than being continuous as

_ [2/al-1 M1/al-1
YO =A@+ ) (¥ - T+ Y d(¥(t) - T+,
w=1 u=1

where ¢, and d, are real numbers.

Additionally, we applied Theorem 2.2 and modified the smoothness assumptions of [22] to the solution
of W-Caputo nonlinear fractional-order systems in (6).

Assumption 1. Given o € (0,1) and Y can be the solution of (6). Denote that p(¥(t)) = C[D‘}O"PY(t) € C%¥J)
with a € (0, 1). There is a positive constant { such that
lo" (W) < {((1) - Wo)2™h,  [p" (WD) < C(W(E) - Wp)o™. 9

where p’(-) and p”(-) are the first- and second-order derivatives of p, respectively.
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Let Yy(t) = p(¥(t)). By (5) in Definition 2.4, we have

Yo = [q, o YO = P ),
(10)
v = [q, ® dt] Y(0) = p"(¥(0)).
Therefore, condition (9) can be rewritten as follows:
VRO < (W) - W), [YEU0)] < CCP(0) - Wp)e2, an

Remark 2. Assumption 1 provides the behavior of Yy(t) neart = t;,. We imply that Yyg(t) has the singularity near
t = to. It is obvious that Yy(t) & C2(J). For instance, we choose Yy(t) = (¥(t) - ¥y)? with ¢ € (0, 1).

3 Predictor-corrector scheme with graded mesh

In this section, we investigate the predictor—corrector scheme for solving the system of nonlinear fractional
differential equations involving W-Caputo fractional derivative with graded mesh.

To divide the partition on the interval J, we assumed that ¢, <  <...< ty = T, where M is a positive
integer. Motivated by [22,25], the graded mesh on [¥(t;), ¥(T)] can be represented below

W(t) - W(to) _ [ J ]
W(ty) - (o) M
where ¥(tp) < ¥() <...< Y(ty) = ¥(T) and r = 1. In the case r = 1, equation (12) is called uniform mesh.

Moreover, we denote Wy = W(ty), Fr = F(ty, Yr), and Y, = Y(&), k = 0,1, 2,..., M - 1. Therefore, the solution
of the SVIEs (7) at ty+ is rewritten in a piece-wise way

(12)

Kk b

1
Yo = Yo+ o 2 jlv'<s>(wk+1 W(s)1E(s, y(5))ds. 13)

The predictor—corrector scheme is proposed in the work of Liu et al. [22] for solving the numerical solution of
nonlinear fractional differential equations. It is suggested to be one of the most reliable, consistent, and
effective approaches. The graded mesh is applied to recover the optimal convergence order for Volterra
integral equations. The SVIEs (13) can be solved through the modification of predictor—corrector scheme
with graded mesh [22]. To approximate F(s, y(s)) in the SVIEs (13), we apply the rectangular interpolation
to obtain F(s, y(s)) = Py(s) = Fj on[t;, tj+1],j = 0,1, 2,..., k. The mentioned step is known as the predictor step
and can be defined as follows:

k ]+1

Ve = Yo+ 1o )Zjv(s)(wk+1 W(s))e1Py(s)ds = Yo + zb,::;;l’ (14)

where b,:;“lf withk =0,1,2,..., M - 1 is defined as

pra - (o = B = Wiy = By
B I'(a +1)

15)

Next the function F(s, y(s)) on the right-hand side of (13) is approximated by using trapezoidal interpolation,
which is F(s, y(s)) = Pi(s) on [t} tj+1],j = 0,1, 2,..., k + 1. Pi(s) denotes the trapezoidal interpolation function
PY(s + Y(s) - ¥,
(s) - % 1F] .\ (s) Fou
¥ = B 1 = Y

Py(s) = (16)
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Then, this step is called corrector step and is defined as
k G k+1

1 r.a,
Yier = Yo + 1005 I‘P’(s)(‘Pk+1 - W(s))*Py(s)ds = Yo + Z a5 F, a”n
J=0¢

where a{;"i’f, k=0,1,2,.., M - 1is defined as

Ak+1,0 .
lp _ ‘p 3 .] - 0
1 0 1
ra¥ _ A Bii1i 18)
M x k+1,j k1, . (

’ T'(a + 2 + , 1<j<k

@Dy, ey 1Y
(Wr+1 = %, j=k+1,

Apirj = a(WPsq — "pj)a+1 + (W1 — l1‘5‘+1)0[+1

= (@ + D(Wke1 = Fu)(Wre1 = EY J=0,1 ..k
Bri1j = a(Wrs1 = BT+ (Ppsq — jo)®?

- (a + (W1 = G-)(Pre1 — Y, ji=12, ..,k

Therefore, the predictor—corrector scheme is defined as

ra‘P
Yk+1 Yo + zbkﬂ]

0
" (19)
Y1 =Y + z ak+11 F + algﬁ‘lfﬂF(tkﬂ’ Yii)s
j=0

where b,f;"l’f and a{;‘}f are defined in (15) and (18), respectively.

4 Error estimation of the approximation

Next we introduce some properties of the coefficients in (15) and (18), respectively, and several useful lemmas.

Lemma 4.1. If a € (0,1) and Q(t) satisfies Assumption 1, then

- (Mo, fr@+a)<2
[ Weer = W)= (¥uls) - Pi(s)AWCs)| < {M21ogM,  if 1@ + @) = 2
o M2, if r(o +a)> 2.
Proof.
tk+1
I(‘Pm - W(s))*(Yy(s) - Pi(s))d®(s)
to
4 k-1 b b
=3 ] | - W) ITls) - Pi(s))AWs)
v oo
= Sl + SZ + 83’
where

4

S1= [t = W)™ [Yals) - Pi(s)IA¥(s), (20)

to
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Z I%m B(s) V(s - Py()]AW(S),
Jj=1 t

and

Tt
S3= [ (Weer = W) [¥als) - Pi(s)]AW(s).

tx

First, we consider Yy(s) — Pi(s) with s € [t, t1],

Yu(s) — Pi(s) = Yu(s) — |Yu(t) + %(ny(ﬁ) - Ylp(tO))l
[%(Y‘P(S) Yu(to)) + ‘I(’ $) (Y‘P(s) Yy(t1))
w Y
%I IR + f P,

By Assumption 1 and equation (23), we obtain

[Ya(s) - Pr(s)] < I|p (®)Idw(n) + j|p (®)Idw(n)

to

< cjov(n) - W) d(W(n) - W) + cjcv(n) - W) d(W(n) - W)
to
S Q(W(s) — Wo)t + C(¥, - W)
For k =1,2,..., M - 1, there exists a constant { > 0 such that
(a1 = Wo) 2 (Pre1 — ¥1) 2 (W1 — Wo),
which implies that

cWn-%) _ k+D" 1 1<t
(‘Pk+1 ) (k+1)'-1T (kk+1D'-1 ~~ 2-1

For $4 in (20), we have

4 ]
19112 ¢ (s = W) 1) - W0RdW(S) + ¢ [(Wierr = W)W, - W)edW(s)

< {(Wre1 - 11’1)0‘_11(‘1’(5) = Wp)edW(s) + {(Pse1 — W) (P - Wp)et
to

< (P = PP, - Wp)ett

< {(Prs1 — W) H(W, - Pp)et!

< (P — o) (W - W)t
k r(a-1) 1 r(o+1)

=((Wy - ‘Po)“_l[M] Wy - ‘PO)QH[M]

= { (k" @Dpfr(are),

Therefore,

IS4 < (Mo,

21

(22)

(23)

249
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It follows from the mean value theorem that for s € (¢, tj+1) there exists t; < 7; < t;.q with j
and k = 2,3,..., M — 1, such that

( ) ]+1 ( ) -
Yo(s) - | — Lyt Yl'+—‘Ps—lplps
w(s) [lp(tj) W, w(t)) + Wt - w(ti)| = (P(s) - E(¥(s) -
In the case of S; in (21), the condition above is applied as

W )Y5(T).

1 Gia

152 Z j(wm W(S) N W(S) — BW(S) — B Vi(1)dW(s) |

Applying the result of Stynes et al. [26] and using the Assumption 1, we obtain
k-1

NEYY

tin

3 (W1 = WY = W [ (B = B)IA(s)
3] e
2 W) (% - 90 [ (Wor - B IdW(s)

4

tjs
S0 Y (B~ B~ W02 [ (Wer - W) 1AW(s)
A 5
=Aq+ Ay
where

]

1

2h
Z Wiy = B)AY; - P22 | (Pran

- II’j)a_ldIP(S)

)

(25)

tjg

% l(lv,ﬂ WY - ) [ (Bier — W) 1AW()
. [k-1
M

]

and [—] can be the least integer greater than or equal to ——

(26)
Assuming that j < ;< j+1with j=1,2,. [— - 1, we have the conditions, such that
(B =) =Wy - Y)( + D" - jHM"
=M
o @7

<a(j+ DM

< er_lM_r
and

M a—
(Pre1 = Y [(k Iy - 1)r] (P - P!

1-a

M)"

m (P - P!

(28)
< {(k+ DM < CM k)

DE GRUYTER

=1,2,.,k-1
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For k > 4,
(Fjo1 = T - $0)0 2(Prs1 — ¥ (W1 - W)

(Pis1 = B)P(Y) — W) A(Whey — ) !

+ \r(e-2) r(l-a)
«c 3 ol )
]

i %
(29)
["2;—1 G r@-2)( 3y -
B
&Y Ml |k
s

\r(l-a)
¢y jr(a+Q)3Mf(Q+a)[] ]
j=1

b
=(]\/[—f(9+a) Z jr(a+g)—3‘
j=1

Inequality (29) is considered in three cases
o Ifr(o + a) <2,

2
Aq < MTEFD) Z
j=1

1
jrero-3 < aprera),
o Ifr(p+a) =2,

)
Ay SME )
j=1

1
1 1
i-1 < =2 — | < =2
jl< (M [1+2+...+ J_{M logM.
o Ifr(p+ a) > 2,

RiE

Ay < MR Z jrera-3

j=1
< (M@ 0K a)-2

= {(k/ppyrero-

< (M2,
Hence,
(M), ifre+a)<2
A <{M2logM, ifr(g+a)=2
(M2,

if r(o+a)>2.
For k = 2 and [%l <j < k -1, we obtain that

(W) - W) 2 = (Wy — W) 2(j/M) @2

= (W - Wo)(M [y
M r2-e)
=¢ [?]

(30)
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and

tx a
[ @ - wis)taws) = %{[Wkﬂ - ‘P[kz.l]] - (W1 - wk)a]

T
1 a
< E[‘p"” - ‘PM] 3D
< l(lpk+1 - P
a

w8

M M

From (30) and (31), we conclude that

k-1 r-)
Az<¢ % l(kf'lM'*)Z[%] [ @s - W) 1aw(s)
| k-1
=7 ]

U
<M [ (Bs - W(s))AW(S)
k-1
]
< (M@t okr(era)-2
M, if (o + a) <2
2, if r(o+a)=2.

<

Let 7 € (t, tk+1), k = 1, 2,..., M — 1. By Assumption 1, we obtain

1S51=| [ (Beer = B 1[Y(s) - Pr()]A%(s)
=| [ (W = W) 1WS) ~ W) — Wi Y (7)A()

1%

li+1
(Wi = BB = W02 [ (Biy = W(5))*1AW(s)

N (32)
= ((Prr1 = W) *(Pk - WO)Q_ZE(IPI(H - W)t

IA

= {(Wpr1 = W) > (P — Wp)2 2
k r(e-2)
< C(Wy — W)t (k" IMT ) (P - lpo)g_z[ﬁ]
= (kr(@+0)-2-apfr(e+a)
< M@0, ifr@+a)<2+a
Tlar®o,  ifr(e+a)=2+a.

It is obvious that the bound of S; is stronger than the bound of A;. The proof of this lemma is completed. [

Lemma 4.2. Assume that M is a positive integer,r 21, ¥ 20, j=0,1,2,..., k+1 with k=10,1,2,..,M -1,
and a € (0,1). We have two conditions

* b} in (15) and a;:%} in (18) are positive constants.

r,a,¥ — -
. ak+1,k+l < ZM rak(r Da



DE GRUYTER A modified predictor-corrector scheme with graded mesh = 11

Proof. It is obvious that by;7;’ and a.}; are positive constants. Hence, we skip the proof of b3} and a1} -

According to (15) and by mean value theorem, there is 7 € (k, k + 1), such that
1
aps e < m(q’m - P
SC(Wy — Wo)'MT((k + 1) - k")°
- (M‘ra(r“[;:_l)a - {M‘m(r(k + 1)(r—1))a - ZM—rak(r—l)a. O

Lemma 4.3. If a € (0, 1) and Yy(t) satisfies Assumption 1, then

Tj+1

afien | (e = W) I(¥als) - Po(s)A(s)

to

@, fre+ @ <1+a &
S{MT@DogM,  ifre+a)=1+a
e, ifre+a)>1+a.

Proof. Similar to the proof of Lemma 4.1, we denote

$1 = A Ko [ (Bis = W()T 1 (¥als) - Po()AW(),
0

k-1 G
So=afta Y [ (W - W) (Vals) - Pu(s))AV(s),
j=1 t
and

fg+1
S5 = aten [ (Weor = W)™ (Bus) — Po(s))AW(s).
tx

Then, we consider

T+t
A% J (B = W)TIVS) = Po(oDAW(S) = §1+ §2 + Ss

to

For [Yy(s)| = |p(¥(s))] < {(¥(t) - Wo)® and [Py(s)| = [Yu(to)| = 0 in Assumption 1,

t [
1811 < @] | (Wieer = W)™Vl £)IAWCS) + [ (s — B(5)™1{Po()| ()

to to

]
< (W‘r“k(r'l)“)_[(‘l’kﬂ - W(s)I(W(s) - Po)2dW(s)

ty
< (MR TV (W = W)@ (W - W)t
< (MDA (W yy = W)@ (W - Pp)et!
k+1 r(a-1)
= (MK D)Wy %)a-l[ M ]
< (aw—rak(r—l)a)(aw—r(wg))

k| -a —r(a+
*[M] Ko@),

1
(P - %)M[l]r@ )
M
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Thus,

1S < g,

We have Assumption 1 and the mean value theorem, which is 7; € (¢, tj+1), j = 1, 2,..., k — 1, such that

k-1 Ij+1
1Sl = @it Y [ (Weer = W)™ (¥als) - Po(s))dW(s)
j=1 ¢
k-1 tj+1
<aftn Y [ e - )W) - BIYIG)IAW(E)
j=1 tj
=B, + By,
where
2
Bi= (il 2 ((Wer = B - W02 [ (Wit - W) 1AW(S)
Jj=1 t
and

k-1 b
By = o] 2 (W1 - W)W - W0 [ (Weor - W(s) IAU(s).
9 b
For k = 4, we consider

2
2
B1< ((M7KCDY) Y (Wag = YA ~ Po)2 M (Wpaq — W)™
j=1
2
2 ] r(e-1) MY
= -raj,(r-1a 'r—lM—r 21 L -
Mok ]zl (M) [ M] [k]

b
gg\/[-r(aw) z jr(a+g)—z—a_
j=1

Thus,
M@0, ifr(a+o <1+a
By < {(MT@logM, ifr(a+)=1+a
me,

ifr(@a+o)>1+a.

According to [%] <j<k-1withk 22,

- \r(e-1) MYya? MY
(%) - P = (W - 1{'0)9_1[1\]/1] =Wy - ‘po)g_l[T] < ([?] :
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From the above inequality, we obtain

k-1 24
B, < (M Tk r-Da kz (lpjﬂ - IIJ])(W] - gyet I (W1 = P(s)* 1dW(s)
k-1 4
5 j
k-1 a1
< (QM Tk =Dy Z ((kr_lM_r)(M/k)r(l_Q)J—(lpk+1 - W(s))*1dw(s)
&

k)

< (aw—rak(r—l)a)kr—l—r+QM—r+r—rg[_]
M

< Zkr(g+a)—1—aM—r(g+a)_

Hence, we have

MTeO ifrg+a)<l+a

B, < 1 .
e ifre+a)z1+a.

In the case of S;, we find that
1S3] < (MR DY) (Woq = WPy = P)2 1 (Wiar — W)
< (MR DO (W yq = P)T (W — Wp)e?

k @D
< (W—rak(r—l)a)(kr—lM—r)Ha[M]

k ra
=(|—| kr@ro-1pfr(a+e)
i
< (kr(a+g)—a—1M—r(a+g)

Therefore,

1$5] < Mo, ifrera)<l+a
7 omre ifrie+a)z1+a.
This completes the proof.

Lemma 4.4. Let Yy(s) = 1, there exists { > 0 such that

M =

,a, ¥
@y < (W — W)
0

.
I

and

~.
LM~

bk} < C(Wy - W)

Proof. We have

%) k+1
J(‘P;m - P(5)T Wy(s)dW(s) = Z a; x+1£(tj) + remainder term,
t Jj=0
which implies that
k+1 bert

1
A = J (B = W) 10W(S) = —(Foan = o) < (B~ Wo)".

j=0 t

(39

(35)

13
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Because the proof of (35) is similar to the proof of (34), we only prove the case of (34). Therefore, the proof
is complete. O

To prove Theorem 4.5, we recall that Y(¢;) and Y; are the solutions of (7) and (19), respectively. Moreover,
we denote E; = Y(¢;) - Y; and apply all the above lemmas.

Theorem 4.5. If a € (0,1) and Yy(t) = ‘D" Y(t) satisfy Assumption 1,

e fre+a)<l+a
max |E| < {{(M7@9logM, ifre+a)=1+a
0< <M

] e, fre+a)>1+a
Proof. We suppose that
1 T+t
- . i
Sp= F(a) I(‘P}m P(s)* YE(S, y(s)) = Py(s))d¥(s)

k
= Y ap (B, V() - Ya(to))
j=0
S3= ap g1 (F(tees, Y(tion)) = F(tisn, Yur)).

Subtracting (19) from (7), we obtain

1 , ,
Exi1 = m(sl + 8+ S3).

By Lemma 4.1, one obtains:
MO ifrg+a) <2,
1$1] < {M2logM,  if r(e+a) =2,
2, if r(o +a)>2.

Applying the Lipschitz condition of F and by Lemma 4.2, there is a constant £ > 0, such that
) k k
182 = Z ag) (B(t, Y(t) - Z i} (B, (@) - Bl < £ acf 1Y) - Y.
i=0 j=0

To estimate the term of S;, we have

Ti+1

I(%m ()T H(E(s, y(s)) = Po()dW(s) + Zb;fflf(l’(tj, Y(t)) - Epy.

Y(tys1) - Y2
+1 k+1 1-.( ) 5

Denote that

i1

1= GRS L [ (Wer = W()TIEGS, Y(5)) = Po()IdW(s)

ty

and

k
D; = {apsinL Y bit) IE(, Y(t) - .
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By Lemma 4.3, the term D/ is estimated. Applying Lemma 4.2 for the case of D, we obtain

k
D, < (a5 L ¥ bRdy 1Y) - Y
j=0

k
< (MK Y S TIY(E) - Y|
j=0

k
< J(kIM)TDM Y b 1Y) - Y
j=0

k
<MY bRSIY @) - Y.
j=0

Similar to the proof of term $,, we apply Lemma 4.2 and the Lipschitz condition of F for the proof of term Ss.
185l = 10251 (B(tin, Y(tien)) = F(tieon, YD) < @i5561 LI¥(Gs1) = Yo = D1 + Do
Therefore, we conclude that
) K k
[¥(6s1) = Yol < IS+ € 3 agly 1Y(t) = Yl + CID2l + QM 3 B3y 1Y() - Y.
j=0 j=0

This completes the proof. O

5 Numerical examples

To support Theorem 4.5 in Section 4, we present some numerical examples in this section. The W-Caputo
fractional differential systems, both linear and nonlinear type, can be solved by using our numerical scheme.
In the examples, we will choose distinct functions ¥ and different values of r to investigate the effectiveness
of the error estimation.

Example 1. Let a and B € (0,1), we consider the following nonlinear ¥W-Caputo fractional differential
equations:
DEYE) = f(t, Y1), e,
y =0,

(36)

where the function f in this case is nonsmooth and nonlinear as

T+ pB)

T+ p- @O WP (O - WP -2

ft,y@®) =
with two kernels Wy(¢t) = logt and Wy(t) = +/t — 1. Moreover, it is well known that the exact solution in this

I(1+p)
TA+B-a)

example is provided as y = (W(t) - ¥)# and C[Df;'“’y(t) = (W(t) - Wp)f~@ By Assumption 1 and

Theorem 4.5, the error estimation is obtained as follows:

1+a
M8, ifr< ,
B
1+a
max|E| < {(MPlogM,  if r= , 37
05j<M B
M), itr> ;a,

where o = f - a.
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For this example, the value of § can be fixed at 0.9. In Tables 1-3, the maximum absolute errors of our

numerical example are presented by varying the order a and the values of r atr =1 and r = “Ta which are
uniform mesh and graded mesh, respectively. We found that the maximum absolute errors in the case of

graded mesh give higher accuracy than the case uniform mesh. In particular, the numerical solutions of both

Table 1: Maximum absolute error with ¥(¢t) = logt

N a=04 a=0.6 a=038

r=1 r=1l+ga r=1 r=1,+5u r=1 r=1;a
10 9.17 x 10-3 6.38 x 1073 2.15 x 102 451 x 1073 3.54 x 1072 0.00452
20 5.63 x 1073 2.18 x 103 1.19 x 102 1.49 x 1073 1.92 x 102 0.0013
40 3.18 x 103 7.66 x 104 6.47 x 1073 492 x 10°* 1.03 x 102 0.000373
80 1.74 x 1073 2.75 x 1074 3.48 x 103 1.62 x 104 5.53 x 103 0.000107
160 9.38 x 104 1.00 x 10~* 1.87 x 1073 5.36 x 1075 2.96 x 103 3.08 x 103
320 5.04 x 10~* 3.69 x 103 1.00 x 10-3 1.77 x 103 1.59 x 103 8.84 x 1076
640 2.71 x 1074 1.37 x 10-° 537 x 1074 5.83 x 1076 8.51 x 1074 2.54 x 1078
1,280 145 x 1074 5.08 x 1076 2.88 x 104 1.92 x 1076 456 x 104 7.29 x 1077

Table 2: Maximum absolute error with ¥(t) = vt-1

N a=04 a=0.6 a=0.38
r=1 r=1;a r=1 r=1/+9u r=1 r=1;a

10 1.08 x 1072 9.29 x 1073 2.87 x 1072 6.25 x 103 4.85 x 102 6.29 x 1073
20 7.42 x 1073 313 x 10-3 1.64 x 1072 2.07 x 10-3 2.65 x 1072 1.81 x 1073
40 433 x 1073 1.09 x 10-3 8.95 x 103 6.84 x 10~* 1.43 x 102 519 x 104
80 2.40 x 1073 3.89 x 1074 483 x 1073 2.26 x 104 7.68 x 103 1.49 x 107*
160 1.30 x 1073 141 x 10* 2.60 x 103 7.45 x 1075 412 x 103 428 x 1073
320 7.00 x 104 517 x 103 1.39 x 103 2.46 x 103 2.21 x 103 1.23 x 10-°
640 3.76 x 10~% 1.91 x 10-5 7.46 x 1074 811 x 10-6 118 x 1073 3.53 x 10-6
1,280 2.02 x 107* 711 x 1076 4.00 x 10~* 2.67 x 1076 6.34 x 10* 1.01 x 10-6

Table 3: Maximum absolute error with ¥(t) = cos%t

N a=04 a=0.6 a=0.8
r=1 _1+a r=1 _ 1+a r=1 _1+a
"= "= "=

10 1.61 x 107! 1.58 x 101 3.16 x 1072 2.46 x 1072 4.74 x 1072 2.46 x 1072
20 5.53 x 102 6.34 x 1072 1.69 x 102 6.47 x 1073 2.56 x 102 172 x 1073
40 1.77 x 1072 2.14 x 1072 9.05 x 10-3 1.82 x 1073 1.38 x 102 489 x 104
80 6.00 x 1073 7.29 x 1073 485 x 1073 5.45 x 104 7.36 x 1073 1.39 x 104
160 212 x 1073 2.57 x 1073 2.60 x 103 1.70 x 10~4 3.93 x 1073 3.95 x 1073
320 7.63 x 104 9.24 x 10~ 1.39 x 1073 5.41 x 10-3 210 x 1073 1.12 x 10-5
640 3.77 x 104 3.36 x 104 7.47 x 1074 175 x 1075 112 x 103 3.18 x 106

1,280 2.02 x 1074 1.23 x 104 4.00 x 10~* 5.70 x 1076 5.99 x 104 8.97 x 1077
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uniform and graded meshes are awfully close to the exact solution when N is increased. Moreover,
the maximum absolute errors in Table 1 correspond to the result in [25].

Example 2. The linear W-Caputo fractional differential system is defined as

DY) = AY(D), teE€[0,1],
2 (38)
ORI
where
_fo -1
a0

From [16], the exact solution of this example is given by
Y(t) = Y(O)EL(A(Y(0) - ¥(0))*),

where

[

Eq (A) = Z A =]+ A + £ +
YT ET(ka+1) T Ta+1) TQa+1

is the matrix Mittag-Leffler function for a square matrix A. Because Y(t) is smooth, this system shows that
0 = a in Assumption 1. Theorem 4.5 is defined as

1+a

—27‘(1’ if r< ,
M 2a

1+a

max|Ej| < {(M¥*logM, ifr= , (39)

0sjsM 2a

1+a

~(+a), if r> ,
M 2a

In this example, we proposed the results with two kernels Wi(¢) = v/t — 1 and Wy(¢) = cos(%t).

Similar the previous example, the maximum absolute errors of our numerical example in Tables 4 and 5

are shown by varying the order a and the values of r atr = 1andr = 1;—; which are uniform mesh and graded
mesh, respectively. The maximum absolute errors in case of both the uniform and graded meshes give higher
accuracy. Because we are aware of specific details about the exact solutions in the examples above, the graded

Table 4: Maximum absolute error with ¥(t) = /t-1

N a=04 a=0.6 a=028
r=1 p=lra r=1 _ l+a r=1 _ 1+a
2a 2a 2a
10 5.89 x 107! 1.73 x 107! 3.63 x 107! 3.39 x 107! 4.96 x 101 5.00 x 101
20 2.55 x 1071 445 x 1072 7.68 x 1072 7.22 x 1072 1.06 x 107! 1.10 x 107!
40 1.24 x 101 1.46 x 102 2.16 x 102 1.92 x 102 2.53 x 102 2.65 x 102
80 5.94 x 102 5.08 x 10-3 713 x 1073 5.66 x 10~3 6.60 x 103 6.92 x 1073
160 2.83 x 1072 1.82 x 1073 2.63 x 1073 175 x 1073 1.80 x 10-3 1.90 x 10-3
320 1.35 x 102 6.61 x 104 1.23 x 1073 558 x 10~4 5.05 x 10™* 5.34 x 104
640 6.48 x 10-3 243 x 1074 559 x 104 1.80 x 104 143 x 104 1.52 x 107*
1,280 317 x 1073 8.99 x 1073 2.50 x 104 5.88 x 1073 4.09 x 1075 4.36 x 1075
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Table 5: Maximum absolute error with ¥(¢t) = cos(%t)

N a=04 a=0.6 a=0.38
r=1 r=1e r=1 - 1ta r=1 _ 1ta
2a 2a 2a
20 6.24 x 102 1.31 x 102 7.67 x 1073 5.97 x 1073 214 x 1073 247 x 1073
40 2.97 x 1072 456 x 1073 2.76 x 1073 1.03 x 1073 6.02 x 1074 6.97 x 1074
80 142 x 1072 1.63 x 103 1.30 x 1073 6.48 x 10~* 2.89 x 1074 2.00 x 104
160 6.80 x 103 5.95 x 104 5.90 x 104 2.15 x 1074 172 x 1074 5.79 x 10-5
320 3.31 x 10°3 219 x 104 2.64 x 104 7.16 x 1075 4,97 x 1075 1.68 x 1073
640 2.00 x 10-3 8.10 x 1075 117 x 1074 2.38 x 1073 1.44 x 1075 4.89 x 10-%
1,280 1.20 x 1073 3.02 x 1073 513 x 1075 7.91 x 106 1.28 x 106 142 x 106

mesh is divided based on the exact solution. However, choosing the value of r in a real problem depended
on the real data because we cannot usually find the exact solution.

Example 3. Brusselator system with nonlinear ¥-Caputo fractional-order derivative is defined as
DY) = B4, Y(1), t € [0,100],

¥0) = [;2] (40)

where

1-4y,(t) + y,(0)%,(0)

FLYO) =1 5 6 -y 0y,

In this example, we cannot know the exact solution of (40). Therefore, we choose the value of o based
on Assumption 1 and the value of r based on Theorem 4.5. In addition, we present the numerical simulations
with different r and two kernels as Wi(t) = t and Wy(t) = +/t with a = 0.7.

For the case of W(t) = t, Figures 1 and 2 represent the behavior of the numerical solution for the Brusse-
lator system (40) with r = 1 and r = 1.5, respectively.

In this case, we find that the behavior of Figure 1 is in agreement with the work of Garrappa [27].

For the case of W(t) = J/t, Figures 3 and 4 represent the behavior of the numerical solution for
the Brusselator system (40) with value of r = 1 and r = 1.5, respectively.

: V11T [T '
“””\“\\‘\H\\\‘\\

\‘\ ‘\ M \\ | \\“

MUV AN

VYVUVL UuU U\Nuuu

| 35

u2(t)

s annﬂﬂ\mpﬂqﬂ/\nf

<IN
= VLY / :
: H//H’/

0 10 2 3 40 50 60 70 80 90 100 15
b 04 06 08 1 12 14 16 18 2 22

(a) (b)

Figure 1: Behavior of the numerical solution for the system (40) with W(¢) = t and r = 1in the (¢, y, (t)) and (¢, y, (¢)) planes and in the
phase plane, respectively.
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Figure 2: Behavior of the numerical solution for the system (40) with W(t) = t andr = 1.5 in the (¢, y, (t)) and (¢, y, (¢)) planes and in the

phase plane, respectively.
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Figure 3: Behavior of the numerical solution for the system (40) with ®(t) = </t andr = 1in the (t,y,(t)) and (t, y,(t)) planes and in the

phase plane at T = 1,000, respectively.
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Figure 4: Behavior of the numerical solution for the system (40) with W(¢) = \/t and r = 1.5 in the (t,y,(®) and (t, y, (1)) planes and in

the phase plane at T = 1,000, respectively.

6 Discussion and conclusion

In order to solve the nonlinear ¥-Caputo fractional-order differential systems with order 0 < a < 1, the pre-
dictor—corrector scheme with graded mesh is proposed in this article. The smoothness properties of the
solution to equation (6) are also reviewed and discussed to help the proof of error estimation. After that,
the error estimation on the fractional rectangle and fractional trapezoidal schemes with uniform (r = 1) and
graded meshes (r = 1) have been made. It is found that the error estimation of the proposed scheme depends
on the order of fractional derivative, the partition size on graded mesh, and the value of r. Based on the
various functions of ¥ and the different values of @, N, and r, the utility and accuracy of numerical solutions
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on Examples 1 and 2 was investigated to support the theoretical analysis of predictor—corrector scheme. We
found that the truncation error of predictor-corrector scheme with graded mesh has better convergence than
the case of uniform mesh. For the case W(¢) = logt in Example 1, the maximum absolute error is in agreement
with the numerical results of [25]. Moreover, the behaviors of numerical solution for the case ¥(t) = logt in
Example 3 are also in agreement with the results of [27]. All tables and figures indicate that our suggested
scheme performed particularly well. Additionally, choosing the value of r for graded mesh depends on the
error estimation in Theorem 4.5, whereas the choice of function W(¢) depends on nonlinear term and initial
condition. A general way to determine these parameters is not known. The optimal choice for the parameter r
and the function W(¢) is still open for further investigation.
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