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1 Introductions

Entropies serve as fundamental invariants in characterizing the complexity of dynamical systems. Among
their extensions, topological pressure stands out as a non-trivial and natural generalization of topological
entropy. The study of these concepts traces back to Kolmogorov, who introduced measure-theoretic entropy as
an isomorphic invariant for measure-preserving dynamical systems [1,2]. Shortly afterward, Adler et al
defined topological entropy via open covers as a conjugate invariant [3], while Bowen [4] and Dinaburg [5]
independently provided equivalent formulations using separated and spanning sets.

Building on ideas from statistical mechanics, Ruelle [6] introduced topological pressure for continuous
functions under Z* -actions on compact spaces, establishing a variational principle under expansivity and the
specification property. Walters [7] later generalized this result to conditions without such constraints. Further
developments by Bowen extended topological entropy to arbitrary sets in topological dynamical systems using
a Hausdorff dimension-like approach [8]. Pesin and Pitskel’ [9] subsequently generalized this to noncompact
sets, proving a variational principle under additional conditions. These concepts — topological pressure,
variational principles, and equilibrium states — play a pivotal role in statistical mechanics, ergodic theory,
and dynamical systems [10].

As key components of thermodynamic formalism [11], topological pressure and its associated variational
principle and equilibrium measures are indispensable in the dimension theory of dynamical systems. They
provide essential tools for analyzing the dimension of invariant sets and measures in conformal dynamics
[10,12,13]. Recent work by Feng and Huang [14] introduced weighted topological pressure with a corresponding
variational principle, while Tsukamoto [15] proposed alternative definitions of weighted topological entropy
and pressure. The equivalence between these frameworks remains non-trivial and can be viewed as a topo-
logical generalization of the Bedford-McMullen carpet dimension formula.
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In this article, inspired by Feng and Huang [14], we introduce a generalized measure-theoretic pressure for
factor maps between topological dynamical systems, extending the work of Pesin and Pitskel [9]. Adopting
their approach, we define a weighted measure-theoretic pressure analogous to Hausdorff and packing mea-
sures, aiming to establish connections between Pesin-Pitskel pressure, packing-weighted pressure, and mea-
sure-theoretic entropy.

2 Preliminaries

Let k = 2. Assume that (X;, d;), i =1,..., k, are compact metric spaces, and (X;, T;) are topological dynamical
systems. Moreover, assume that for each 1 <i <k - 1, (Xj+1, Ti+1) is a factor of (X;, T}) with a factor map
7; : X; = Xi+q; in other words, m, ..., k- are continuous maps such that the following diagrams commute.

Xl T X2 T . Tk—1 Xk
Tll Tzl Tkl
X1 T X2 T L Tk—1 Xk

For convenience, we use 7y as the identity map on X;. Define 7 : X; = Xj+1 by =1 © m-q © ... ° 7, for
i=0,1,..,k-1 Let M(X;, T;) denote the set of all T-invariant Borel probability measures on X; and E(X;, T;)
denote the set of ergodic measures. Fixa = (ay, ay, ...,ax) € R¥ witha; > 0 and a; = 0 fori > 2. For u € M(X;, Ty),
we call

k
h(T) = ;aihuoq’_ﬁ(m

the a-weighted measure-theoretic entropy of u with respect to T3, or simply, the a-weighted entropy of i, where
h,.;(T;) denotes the measure-theoretic entropy of u ° 1 with respect to T, Let C(X;, R) denote the set of all

continuous functions of X;, and let Pf}’B( f) and Pf}’KB( f) denote, respectively, the Pesin-Pitskel pressure of

U (see Definition 2.4) and the Pesin-Pitskel pressure of u in the sense of Katok (see Definition 2.5). Thus, we try
to find relationships between these notions of different weighted pressure.

Definition 2.1. [14] (a-Weighted Bowen ball) For x € X;, n € N, € > 0, denote
Bix,e)={y € X : di(l}jri_lx, leri_ly) <gfor 0<j<[(ag+..+apnl-1,i=1,..,k}
where [u] denotes the least integer > u. We call B2(x, €) the n-th a-weighted Bowen ball of radius € centered
at x.
2.1 Weighted topological pressure
Definition 2.2. Let Z C X; be a nonempty set. Givenn €N,a €R, ¢ > 0, and f € C(X;, R), define
2 exp
i

’

M3N,a,¢,Z,f) = inf

1
—-an; + a—lsral,,ﬂ fOD|: Z € UBR(x;, €)
1

where the infimum is taken over all finite or countable collections of {Bj(x; €)}; such that x; € X, n; 2 N,
and U;B;i(x;, €) O Z. Likewise, we define

R¥n,a,¢&,Z,f) = inf

2 exp

1
-an + a_srmﬂ fO)|:Zc UB,‘;‘(xi, 8)],
1 i
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where the infimum is taken over all finite or countable collections of {B2(x; €)}; such that x; € X, n €N,
and U;BR(x;, €) D Z. Define

)

M**(N,a,¢e,Z,f) = sup‘z exp
i

1
—an + —Span1 f (X0
a
where the supremum is taken over all finite or countable pairwise disjoint families {E,fi(xi, &)} such that
X; € Z,n; 2 N for all i, where
B0, &) = {y € X : dy(T/tiox, T/tiey) < € for 0 <j<[(a +..+a)nl - 1,i=1, ...k}

Let

Mﬂ(ay £, Z}f) = llm MH(N’ a, &, Z)f))
N-o
R¥a, &, Z,f) = liminf R*(N, a, &, Z, ),
N-oo
R%a, ¢, Z,f)=limsupR¥(N, a, &, Z, f),

N-ooo
M*2(a, &, Z,f) = lim M*(N, a, &, Z, f).
N—-oo

Define
M7 (a, &, Z,f) = inf{ Y M®P(a, &, Z;, f) : Z C UZ.
i=1 i=1
It is routine to check that when a goes from —o to +o, the quantities
Mﬂ(a’ 81 Z:f)y Ma(a) 8! Z:f)) Ma(a: 81 Z:f)! Mﬂ,SD(a, 81 Zsf)
jump from + to 0 at unique critical values, respectively. Hence, we can define the numbers

P2B(e, Z,f) =supi{a : M¥a, &, Z, ) = +o} = inf{a : M?(a, ¢, Z, f) = 0},
CPe, Z,f) = sup{a : R¥(a,¢,Z,f) = +o} = infla : R¥(a, ¢, Z,f) = 0},
CP¥e, Z,f)=sup{a : R¥a, &, Z,f) = +} = inf{a : R*a, &, Z,f) = 0},
P2P(e, Z,f) = supfa : M**(a, ¢, Z, f) = +o} = inf{a : M**(a, &, Z, f) = 0}.

Definition 2.3. We call the following quantities:
P3B(Z,f)= linPa’B(E, Z,f),
CPYZ,f)= izlfr(} CP¥e, Z, ),
CP'(Z,f)=limCP(e, Z,1),
P*(Z,f) = }Eiff(}Pa’p(S, Z,f),

weighted Pesin-Pitskel, weighted lower capacity, weighted upper capacity, and weighted packing topological
pressures of 7; on the set Z with respect to f, respectively.
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2.2 Weighted measure-theoretic pressure

Definition 2.4. We call the following quantities:
PYR(f) = limtlsim inf{P28(¢, Z,f) : u(Z) 2 1 - 8}
e-06-0

= lim (lsim inf{P*% (e, Z,f) : w(Z) 21 - 8},
e-06-0

CPA(f) = limlim inf{CP2(e, Z,f) : u(2) 2 1 - 8}
e~06-0

= lim ‘lsim inf{CP* (e, Z,f) : u(Z) 21 - 6},
e-06-0

CP,(f) = limtlsiminf{C_P"’(g, Z,f): u2)21- 8
£-06—-0

= limlim inf{CP* (¢, Z,f) : u(Z) 2 1 - 8},
e-06—

PYP(f) = lim(lsiminf{Pa’P(e, Z,f):u(Z)=1- 6}
e-06-0

= lim (lsim inf{P*" (e, Z,f) : w(Z) 21 - 6}.
e-06-0

Definition 2.5. Let ZC X be a nonempty set. Given u € MX),n€N,a €R,e>0,0<§<1, and f€
C(X;, R), define

Mi(N,a,¢,6,f) = inf T U >1-6

’

2 exp
i

1
-an; + a_lsfalnﬂf(xi) UBq(x;, €)
1

where the infimum is taken over all finite or countable collections of {Bj(x; €)}; such that x; € X, n; 2 N,
and u(U;Bi(x;, £)) 2 1 - 6. Likewise, we define

Zexp T u >21-6y,
i

Ri(n,a,¢,6,f) = inf

1
-an + a_lsfalmf(xi) UBn(Xi: €)
i

where the infimum is taken over all finite or countable collections of {B(x; €)}; such that x; €X, n €N
and u(U;By(x;, €)) 21 - 8. Let

Mi(a, &, 6,f) = ny}lM:(N’ a6, f),
Mj(a, & 6,f)= lilr\}Ling;(N, a,e6,f),

Mj(a, e 68,T,.f)= lirl\rllsup RAN,a,¢,6,f).

Define

Mﬁ’P(a, g6, f) = inf ZMa’P(a, &7,f): u[UZi] >1- 6].
i=1 i=1
Thus, when a goes from - to +oo, the quantities
Mi(a, &, 6,f), Mi(a,e8,f), Myaeéf), and Mi"(a¢e86,f)

jump from + to 0 at unique critical values, respectively. Hence, we can define the numbers
P} (e, 8,f) =supfa : Mi(a, &, 8, f) = +oo} = infa : Mj(a, &, 8,f) = 0},
Q;"K(e, S, f)=supf{a: R¥a,¢&, 68,f) = +o} = inf{a : R(a, ¢, 6,f) = 0},
CP¥(e, 8,f) = sup{a : Ri(a, &, 8, f) = +eo} = inf{a : Ri(a, &, 8, f) = 0},
PP (e, 8, f) = supfa : M2"(a, &, 6, ) = +oo} = infla : M3"(a, &, 6, f) = 0}.
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Definition 2.6. We call the following quantities:
P®(f) = limlim P3¢, 6, ),
CPH¥(f) = limlim CP (e, 5, 1),
CRi"(f) = im im CB} (e, 6, 1),
PYP(f)= iigr(}(lsgn(}Pﬁ’KP (& 6./),

weighted Pesin-Pitskel, weighted lower capacity, weighted upper capacity, and weighted packing pressures
of 1 in the sense of Katok with respect to f, respectively.

Let f € C(X;,R) and u € M(X). The measure-theoretic lower and upper local pressures of x € X; with respect
to ¢ and f are defined by

~logu(B2(x, £)) + 7 Siamf(X)

bl

Pj(x, f) = lim liminf

£50 now n
- o ~logu(B(x, ) + i Siamf00)
P,(x,[f)= hrrol limsup " _
[ n—oo

Definition 2.7. The measure-theoretic lower and upper local pressures of y with respect to f are defined as
P = [Px. P,
Pa(f) = [Piex, fd.

Now, we state our main results as follows.

Theorem 2.1. Let f € C(X;, R) and u be a non-atomic Borel ergodic measure on X;. Then,

PAIB(f) = CPRX(f) = CPY*(f) = PA(f)
= P(f) = CR(f) = CPY(f) = B¥"(f)
= ha(T) + [fau

X

3 Proof of Theorem 2.1

To prove the main results, we first give a weighted topological pressure inequality as follows.

Proposition 3.1. For any f € C(X;, R) and any subset Z C X,
P*3(Z,f) < P*M(Z,f) < CPY(Z,f).

Proof. We first show that P#3(Z, f) < P*P(Z, f). Suppose that P#3(Z,f) > s > -0, For any £ > 0 and n € N, let

Fa, = {F2: F2={B(x, &)}, x; € Z,and F? is a disjoint family}.
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Take F*(N, ¢, Z) € F 4, such that |F3(N, &, Z)| = maxsacsy {|F 7}, where |7?| denotes the cardinality of 7.
We denote 73N, €, Z) = {By(x, ), 1 =1, ...,|F N, €, Z)|}. It is easy to check that
|F3N,e,2)|
ZC U Bi(xg2+68), VS§S>0.
i=1
Then, for any s € R,

|F(N,&,2)|
M3(N,s,2e +8,Z,f)<eN ) exp
i=1

a—13[alN1f(Xi) < Ma’P(N, s, & Z,f).
It thus follows that M2(s, 2¢ + &, Z, f) < M®P(s, €, Z, ). By Definition 3.1, we can obtain that M®P(a, ¢, Z, f) <
M3%(s,¢&,Z,f); thus, we have M3(s,2e + §,Z,f) < M®P(s,¢&,Z,f). Since P*3(Z,f) > s > —oo, M3(s, 2¢ + 6,
Z,f) =1 when € and § are small enough. Thus, M*?(s, &, Z, f) = 1. This implies that P**(e, Z,f) = s for ¢
small enough. Hence, P**(Z, f) = s and P*8(Z, f) < P*P(Z, ).

Next, we shall show P*?(Z, ) < CPX(Z, [).

Without generality, we assume P*P(Z, f) > —». Choose — < t < s < P*?(Z, ). Then, there exists § > 0,
such that for any € € (0, §), P*P(¢, Z, f) > s and M?P(s, €, Z, f) 2 M*” (s, &, Z, ) = ». Hence, for any N € N,
there exists a countable pairwise disjoint family {E,‘l’i(xi, €)} such that ;€ Z,n; 2 N for all i, and

2 exp|-n;s + %Sralnﬂ J,,00| > 1. For each k, let
my = {x; : n; = k}.
Then,

1
a

ks > 1,

iZeXp

k=N x€my

Sftllnﬂf (x )
It is easy to check that there exists k > N such that

2 exp

XEMy

ekt 21 - et

1
_Sfalnk1f(x)
a

. 0 1
(otherwise, 2 -y2 yem, €XP aTSFalnH foo

Vs ;]] such that Z C U;e/B2
i€l

ek < 1). Fixing a collection lB,? Vi %],

where I is at most countable, it is not difficult to check that for any x;, X, € my there exists different y, and y,

such that x; € Ba[yi, g ,i1=1, 2. Then,
£ 1
Rk, t, =, Z,f| 2 Z exp|—Sran1 [ () |e* 2 1 - et
2 XEmy i
Hence,
. € , £ ,
RAt, E’Z’f = limsupR3|k, t, E’Z’f >1-e"5>0.
k-
Thus, @alg, Z,f] > t. Letting & — 0 yields CP*(Z, f) = t. Since t € (-, P&P(Z, f)), it follows that P*P(Z, f)
< CPYZ, ). O

Proposition 3.2. Let u € M(X;) and f € C(X;,R). Then,

PERB(f) = PB(F),  CRRN(f) = CRA(S),
P (F)<TBI(f), PRE(f) = P(S).
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Proof. We shall show that P2*(f) < P#B(f). ForanyN€N,a €R,£> 0,0 < § <1, and Z with u(2) 21 - 6,
Mi(N,a,¢,6,f) < M*N,a,¢,Z,f).
Letting N — o yields
Mj}(a, £6,f) < M¥a, & Z,f).
This shows that
PE*%e, 8, ) < PP(e, Z, ),
and consequently,
P (e, 8,f) < inf{P*B(e, Z,f) : u(2) 21 - &}
Letting 6§ - 0 and € — 0, the desired inequality follows. We can prove similarly Q;}’K( )< CPi(f) and

CPy (f) < CPy(f).
To prove P2"3(f) 2 PPP(f), let a = P3*®(f). For any s > 0, there exists &’ > 0 such that

}sirr(}Pﬁ’KB(e, S§,f)<a+s, Ve<eg.

It follows that for any ¢ € (0, ¢’), there exists &, so that
PP, 8,f)<a+s, V5<,.

This implies that lim,,me}(n,a +5,66,f)=0. For any N€N, we can find a sequence of 8y, with
limy,—.o8y,m = 0 and a collection of {B7(x;, &)}iery,, Such that x; € X, n; 2 N, u(Usery , Ba (X, €)) 2 1 — Sy,m, and

1 1
2 exp|=(a+ )n + —Sianaf 00| < o
€Iym Ll
Let

Zy= U U Bixe).

MEN i€y m
Then, y(Zy) = 1 and
M3\N,a +s,¢&,Zy,f) < 1.

Let Z, = NyenZy. Thus, u(Z;) =1 and

M3(N,a +s,6,Z,f) < MAN,a+s,&2Zy,f) <1, VYNEN.
It follows that

P¥B(e, Z,f)<a+s.
Therefore,
PY3(f) = }Eifr(}lifsrlionf{Pa’B(s, Z,f):uZ)=1-6}<a+s.

The arbitrariness of s then implies the desired inequality. To prove Q[}’K( f) 2 CP(f), let a = Q[}’K( .
For any s > 0, there exists &' > 0 such that for any € € (0, ¢’), there exists & so that

liminfR[;‘(N, a+s,&6,f)=0, V&<,
N-oo
Fix § € (0, &;). For any m € N, we have

liminf R;}

N—-oo

m’

)
N,a+s,£,—f]=0.
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Then, for every m € N, there exists a family {B;?m(xi, &)}ier, With y(U,-EImB,?m(xi, &)=21- zim such that

Z o~ (@+$)kn* aStagn1 f () < 1.

i€y
Let Zs = NmenUier,BE, (%, €). Then, u(Zs) 2 1 - 6. It is easy to check that
liminf RA(N, a + s, &, Zs, f) < 1.
N-o

Thus,
CP¥e, Zs,f) < a+s.

This implies that CPj(f) < a + s, and the desired inequality follows from the arbitrariness of s.
Similarly, we can obtain

CP*(f) < CP*(f).
We now show the fourth equality. We first prove that P3°(f) = P#**(f). For any s < P3**(f), there exists
€', 8 > 0 such that
P, 8,f)>s, Vee(0,€),6€(0,8).
Thus,
M (s, €,8,f) = o.
For any Z with u(Z) 21 - 6. If Z C U;Z;, then p(UiZ;) = 1 - 6. Tt follows that
Y M¥(s, e, Zi,f) = o,
i=1

which implies that M*%(s, €, Z, f) = . Hence, P**(¢, Z,f) 2 s and Pg(f) > s. This shows that P}"(f)

> PPR(f).
We shall show the inverse inequality. If s < P[}’P (f), then there exists ¢’, §* > 0 such that

inf{P2(e, Z,f) : u(Z) 2 1- 6} >s, Ve € (0,€),8 € (0,8).

For any family {Z;};>; with p(U;Z;) =1 - &, we have

par &, UZi,f > 8.
i

This implies that

M3%P|s, e, UZ;, f| = o,

i

Thus,

Y ME(s, 8, Z;, f) = w.

i
Then,

M}" (s, &,8,f) = o.
Hence,

PM(e, 8,1) > s,

which yields the desired inequality. O



DE GRUYTER A note on weighted measure-theoretic pressure == 9

Definition 3.1. [16] For 1< i<k, we fix open covers {(Lli}ﬁ‘zl, where U; is a finite cover of X;. For a =
(ay, ay, ...,ax), we define the weighted string
U =0l N 703 0 T7208 00 T 0 0 0 g TR 0 R

“1p-T(@1+az)n1-1772
n..nN T TZ She U|'(a1+az)n'|
-1 y1k -1 =177k -1 =277k -1 p[(a+ag+ ... )n1-14 7k
NTe- U N T T Uy N G T U5 N 0 Gy Ty ™ 7 Uggeags v agnd

where Ul € Uy, forall1 < i< k,1<j<[(a + a +...+ q)n]

Definition 3.2. Let u be a Borel probability measure on X;. Consider finite open covers {2/}<,. According to
[10, Section 10], the C-structure 7 = (S, ¥, &, i, ) on X generates the Carathéodory dimension of ¢ and lower
and upper Carathéodory capacities of u specified by the covers {2/}, and the map f. Replace the a-weighted
Bowen ball B2(x, €) by the weighted string U3; it is routine to give an equal definition of weighted Pesin-Pitskel,
weighted lower capacity, and weighted upper capacity topological pressures as follows. We denote them
by PA(f, {UBD), CPA(f, {UH,), and CP(f, {UBL,), respectively. We have that

PA(f, {UH) = InfPE(f, {Uy) - u(Z) = 13,
CPy(f AU = I inf{CPR(f AU  u(Z) 21 - 8}, 3.1)
CPy(f AUy = lim inf{CP7(f, {U) 1 u(Z) 21 - 6}
It is routine to show that there exist the limits
PAHE dim P U
" diam(fagy-0 MO

def
CPA(f) = lim  CPA(f, {UI),
_y(f) diam({'lli}fil)—m_ (f { l}l 1)

— def __
CPA(f) = lim  CPX(f, {U).
y(f) diam({ﬂi}f‘:l)ao y(f{ 1}1—1)

According to [10, Section 10], the C-structure 7 = (S, F, &, n, ¥) on X;, we use the weighted string to define
the lower and upper a-Carathéodory pointwise dimensions of u at x as follows.

Definition 3.3. Given a € R and x € X, we define now the lower and upper a-Carathéodory pointwise dimen-
sions of u at x by

o alogu(Uy)
Dyl fH {U; lk=1) = lim inf & 1N ’
N-w Uy =Na + SUPyeys o-Sraw1 /()
alogu(U%)

DepaX, f, {UI,) = Tim sup - )
N=e gy, =Na + supycya o-Sran1f ()

where the infimum and supremum are taken over all strings Uy.
Also, we have the following theorems to estimate the dimension of measure.

Theorem 3.1. [10] Assume that there are a number f # 0 and an interval [, B,] such that B € (B,, B,) and for
u-almost every x € X and any a € [, B,]

() if B> 0, then D¢ yo(X) 2 B, and if p < 0, then D o(X) < B;

(2) there exists e(x) > 0 such that e~ Na+supycug arSian1f0) < 1 for any set U(x, €) € F'; moreover, the function &(x)
is measurable.

Then, dimcu = B.
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Theorem 3.2. [10] Assume that there are a number f # 0 and an interval [B,, B,] such that B € (B,, B,) and for
u-almost every x € X and any a € [B;, B,]
@) if B >0, then D¢y o(x) < B, and if B < 0, then D¢y q(x) 2 P;

. - 1 .
(2) there exists e(x) > 0 such that e™N4*sWyevgaSan/0) < 1 for any set U(x, €) € F'; moreover, the function &(x)
is measurable;

Then, Cap.u < B.

Theorem 3.3. [14] For each ergodic measure 4 € M(X;, T), we have

-1 B2(x, -1 B2(x,
lim hmmfw = hmhmsupw = hﬁ(Tﬂ,
£-0 n—+ow n =0 oo n

for p-ae. x € X;. Whena = (1,0, ...,0), the aforementioned result reduces to the Brin-Katok theorem on local
entropy [14].

Proposition 3.3. If i is a Borel probability measure on X; invariant under the map f and ergodic, then for every
a € R and p-almost every x € X,

ah(Ty)

a- [ fdu’

X hm Z_)C,u,a(x,f: {(L[i}?:l) = X hm EC,y,a(X)f: {q’{i}ﬁl) =
diam({Z/3K,)~0 diam({U,)-0

where hj(Ty) is the measure-theoretic entropy of Ty.

Proof. Let {Z/}X, be finite open covers of X;,i = 1,2,..., N and SEUIE) = miny<i<x8(U;), where §(U;) denotes
its Lebesgue number. 6({‘Lll} <) — 0as dlam({‘ul} 1) — 0.1t is easily seen that for every x € X, if x € Uy, then

5({%} L)| € U} € BROG 2((UBY).-

Combining with Theorem 3.3,

~logu(U3 - U3
hi(T) = hm lim inf ———— Bu(UN) _ hm lim sup — - logu( ) (3.2)
diam({/3K)~0 N—ow Uy N dlam({'ll,}, D=0 N 2 N

where the infimum and supremum are taken over all strings U for which x € U}. Let us fix a number ¢ > 0.
Since f is continuous on X;, there exists a number § > 0 such that|f(x) - f(y)| < € for any two points x, y € X;
with dy(x, y) < 8. Therefore, if diam({Z(}<,) < &, then by view of Birkhoff ergodic theorem, we obtain for
u-almost every x € X; that

liminf inf sup Sl'alN]f ) - If du|<e,

Noo U Eﬂ
N YyeUy X

limsup sup sup —lsrmm fo) - If du|<e,

N-w U yeUy X

where the infimum and supremum are taken over all strings U for which x € U%. Since ¢ is arbitrary, this
implies that

11
lim  liminfinf sup — Sralm fo)
diam({UH)~0 N-w Uy yEUY Na

(3.3

11
= lim  limsup sup sup Sralm fQy) = _[f du.
diam({Uf) =0 Now yl yeuy N @ X,

The desired result follows immediately from (3.2) and (3.3) . (I
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Proposition 3.4. Let f be a continuous function of a compact metric space X; and 4 a non-atomic Borel ergodic
measure on X,. Then,

PA(f) = CRA(f) = CPA(f) = ha(T) + [fdu.
X
Proof. Set h* = hj(f) 2 0 and a = IX fdu. We first assume that a > 0. We wish to use Theorems 3.1 and 3.2 to
obtain the proper lower bound for P{(f) and upper bound for @:( f). To do so, we need to find estimates of
DX, fr {U; k) and DepaX, f, {U3L,)) from below and above, respectively, which do not depend on a.
Fixeg, 0<e< % By Theorem 3.3, one can choose § > 0 such that for p-almost every x € X,

ah
a-a

D pal fr {UF) 2 - e

Note that the function g(a) = ah(a - a)* - ¢ is decreasing. Assuming that a varies on the interval [h + a - ¢,
h + a], we obtain that for y-almost every x € X,

Qc,u,a(x)f, {(ui}g‘;l) 2h+a-2e.

We conclude, using Theorem 3.1, that P[}( f, {fui}ﬁil) > h + a - 2¢, and hence, P[}( f, {fui}le) 2 h + a. Since this
holds for every finite open covers {Z/3k,, by (3.1), we obtain that Pi(f)zh+a.

We now show that C_P:(f) < h+a. Fix £ > 0. We can choose & = {C}, ...,Cl}l_} be a finite measurable
partition of X; for any 1 < i < k with

[(ar+...apn1-1

TE) -h|<e

k
z hy ° Ti—,ll(];’
i=1

and U; = {Uj, ...,U,} a finite open cover of X; of diameter < & for which C]l: c U,’ j=1,..p.
By the Birkhoff ergodic theorem for u-almost every x € X, there exists a number N;(x) > 0 such that for
any n = Ny(x),

<e (34

1
—3§ X)-a
an ran1f (%)

By the proof of weighted Shannon-McMillan-Breiman theorem [14] for u-almost every x € X, there exists
a number N;(x) > 0 such that for any n > Ny(x),

[(art...apn1-1 [(ay+...apn1-1

k
+ Zaihﬂ,ﬂ;}l T;‘, V Ti_]fi] <eé&. 3.5)

i=1

A X 7169) y

1
o 10gﬂ[

Let A be the set of points for which (3.4) and (3.5) hold. Given N > 0, consider the set Ay = {x €4 : Ny(x) < N
and N,(x) < N}. We have that Ay C Ay+; and A = Un=0dy Therefore, given § > 0, one can find Np > 0 for which
U(Ay,) 21 - 8. Fix a number N > N, and a point x € Ay. Let U§ be a string of length m(U§) = N for which
x € U. It follows from (3.4) that

1
sup ——— St fO) —a | se+y, 3.6)

YEUR WV

where y = p(U) = maxj<; Sup{ [f(X) = fO)| : X,y € UL 1< < p;}. Furthermore, using (3.5), we obtain that

I(a+...apn1-1 - 4
u \Y Tt &G(x)| = exp(—h - 2¢)N.
j=0

This implies that the number of elements of the partition v;?{ Y )nHT{j 7, %¢; that have non-empty intersection

with the set Ay does not exceed exp(h + 2¢)N.
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To each element C, fa+..qpni-1 of the partition &y, we associate a string Uy of length m(U) = N for which
j=0

%%

C @ .gm-1 C U§. The collection of such strings consists of at most exp(h + 2¢)N elements that comprise

-1
j=0 'y &

a cover G of 4y. By (3.5) and (3.6), we obtain that

A(AN,f, {(Lli}:';l! N) < Z eXp
veg

<exp(a+ h+3e+y)N.

1
sup a—lsrmmf (6%

YEUY
Then,
CPy (fAUH) <a+h+3e+y.

This implies that CP;(f,{U}) <a+h+3¢+y. Passing to the limit as diam{Z/}5, — 0 yields that
C_P[fl (f) < a+ h + 3¢. It remains to note that £ can be chosen arbitrarily small to conclude that C_P; (f)ysa+h.
In the case a < 0, let us consider a function ¥ = f+ C, where C is chosen such that szpdy > 0. Note that

PR, {UBE)) = PA(f, {UF) + € and CPy(y, {UBE)) = CPy(f, {UBL,) + C, and the desired result follows. [
Now, we can prove the Theorem 2.1 as follows.

Proof. Employing Proposition 3.4, the following equalities follow
PRR(f) = CPA(f) = CBY(f) = ha(Ty) + [fdu. 3.7)
From the proof of Proposition 3.1, it is easy to check that for any Z C X and € > 0,

€
P38B(e,Z,f) < PAP(e, Z,f) < CPa[E, Z,f

Thus,
PE(f) < PR(f) < CPy(f),
which together with (3.7) yields
PRP(f) = (T + [fdu.
Using Proposition 3.2, we obtain
PP(F) = PIP(f) = ha(Ty) + [fau
and
PB(f) = PB(f) < CPMX(f) < TP (f) < TRY(f).

The equalities in Theorem 2.1 then follows. O
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