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Abstract: Probability distribution has proven its usefulness in almost every discipline of human endeavors.
A novel extension of Bur X distribution is developed in this study employing the record-based transmuted
mapping technique, which can be used to fit skewed and complex data. We referred to this novel distribution
as a record-based transmuted Burr X model. We established the shape of the probability density function and
hazard function. Numerous statistical and mathematical properties are provided, including quantile function,
moment, and ordered statistics of the proposed model. Further, we obtain the estimation of the model
parameters using the maximum likelihood estimation method, and four sets of Monte Carlo simulation studies
are carried out to evaluate the efficiency of these estimates. Finally, the practical applicability of the developed
model is demonstrated by analyzing three data sets, comparing its performance with several well-known
distributions. The results highlight the flexibility and accuracy of the model, establishing it as a powerful
and reliable tool for advanced statistical modeling in environmental and survival research.
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1 Introduction

The utilization of asymmetrical statistical distributions is widespread across nearly all disciplines, reflecting
their fundamental role in understanding and interpreting uncertainty in various contexts, notably engi-
neering, industrial, medical sciences, insurance, and environmental. As a result, it appears essential to obtain
statistical models, which are a critical and challenging task. However, sometimes, there are cases in which
these statistical distributions are not suitable for analyzing several data sets. For this, the author has worked to
apply numerous methods for obtaining novel families of distributions that extend well-known models. These
novel-generated family models have a crucial role in fitting skewed data sets. In relation to this, we refer
several previous studies that have investigated the established probability distributions, specifically those
conducted by Hamedani et al. [1], Cordeiro and Brito [2], Marshall and Olkin [3], Mahdavi and Kundu [4],
Hassan et al. [5], Moakofi et al. [6], Eghwerido et al. [7], Sapkota et al. [8], Meraou and Raqgab [9], Meraou et al.
[10], and Thomas and Chacko [11].

In this context, Balakrishnan and He [12] proposed one of these procedures called the record-based
transmuted mapping technique that is considered in numerous applied fields, such as insurance, medical
science, biology, environment, and finance. Its cumulative distribution function (cdf) and corresponding
probability distribution function (pdf) can be formulated as

G(x, 9) = F(x, ¢) + 0[1 - F(x, )] log[1 - F(x, )], x€R, 8 €[0,1] ()]

* Corresponding author: Hleil Alrweili, Department of Mathematics, College of Science, Northern Border University, Arar, Saudi
Arabia, e-mail: Hleil. Alrweili@nbu.edu.sa

8 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/math-2024-0121
mailto:Hleil.Alrweili@nbu.edu.sa

2 = Hleil Alrweili DE GRUYTER

and
g(X’ (P) =f(X, (0)[1 -0- elog(l - F(Xr (P))]; (2)

where F(x; ¢) and f(x; ¢) represent the cdf and pdf of the parent distribution with parameter ¢.

In the last few decades, the record-based transmuted mapping technique has been developed by different
researchers in the literature. For example, Tanis and Saracoglu [13] introduced a record-based Weibull model by
taking the Weibull distribution as the baseline model and establishing different properties of the proposed model.
Arshad et al. [14] introduced a novel approach of generalization exponential distribution using record transmuted
mapping procedure, and they studied different mathematical and distributional properties of the proposed model.
Notably, the record-based transmuted model of Tanis proposes record-based transmuted Lindley distribution [15],
and he applied the suggested model to COVID-19 patient data to demonstrate the potential of the proposed model
among other new distributions. Many authors discussed digital transformation and employees with 4 years after
COVID-19. In the same way, Sakthivel and Nandhini [16] provided the record transmuted power Lomax model with
applications to the reliability area. Sobhi and Mashail [17] discussed moments of dual generalized order statistics
and characterization for transmuted exponential model. Abu El Azm et al. discussed new transmuted generalized
Lomax distribution. Mohamed et al. [18] introduced transmuted Topp-Leone length biased exponential model
under competing risk model. A record-based transmuted Nadarajah-Haghighi model is defined by Kumar et al. [19].

As far as we know, the Burr X distribution (BXD) is a versatile statistical tool for modeling complex and
asymmetric data and complementary risk scenarios. It has numerous applications in many practical cases, like
fitting the lifetime record in the engineering field. One may refer to the studies of Usman and Ilyas [20], Al-Babtain
et al. [21], Fayomi et al. [22], Ragab and Kundu [23], Yildirim et al. [24], Korkmaz et al. [25], and Merovci et al. [26].

Surles and Padgett [27] provided the Burr X (BX) model. The associated probability density and cumulative
density functions of the BX model are expressed respectively as follows:

fix; a,B) = ZaZ/S‘xzﬁ‘le‘(“yﬁ)z, x>0 3)
and
Fx; a,p) =1- e @, @

In the present study, we take the BXD and apply the record-transmuted mapping technique to construct
a new family of distributions that can be enhanced fitting capabilities in various practical applications when
assessed against existing models. We referred to it as the record-transmuted Bur X (RT-BX) model; we sometimes
called it record-transmuted power Bur X (RT-PBX) model. The proposed model can take a variety of shapes. As
well as, we can obtain the basic distribution as a special case. The hazard function of the proposed distribution
can exhibit various shapes, including increasing and decreasing. Further, various distributional and mathema-
tical properties of the RT-BX model, like MGF, ordered statistics, and quantile function, are obtained as well and
five entropy estimators for the RT-BX model are computed.

The rest of this study is outlined as follows: In Section 2, we construct the RT-BX model and thoroughly
discuss its behavior of pdf and hazard rate function. Numerous mathematical and statistical properties are
established in Section 3. In Section 4, several suggested entropy measures for the recommended distribution
are defined, and its estimation parameters are developed in Section 5 by employing the maximum likelihood
estimation (MLE) procedure. In Section 6, simulation experiment studies are explored to see the applicability
of the MLE technique. Finally, three real-life applications are analyzed in Section 7 for validation purposes.
Some important remarks are presented in Section 8.

2 Record-based transmuted BXD

2.1 Model description

In this subsection, we proposed certain distribution properties of the RT-BX model, such as probability density,
cumulative density functions, survival, and hazard rate functions.
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Figure 1: Graphs of the RT-BX density for numerous parameter values.

Let the BXD with parameters a and S be parent distribution. According to equations (1)-(4), the corre-
sponding cumulative density function and probability density function of the proposed RT-BX model are,
respectively, expressed as

Hy(y) = 1~ e @"[1 + 6(ay? ] ®)
and
hy(y) = 2a%y?1e"@"[1 - 6 + O(ayP)?]. 6)

Figure 1 shows curves of the probability density function of the RT-BX model for different parameter values.
From these plots, obviously the density is positively skewed and symmetric and decreasing when 0 < 8 < 1/2
and uni-modal if § > 1/2. Theorem 1 ensures this conclusion.

Next the survival function with the associated hazard rate function of the RT-BX model can be formulated,
respectively, by

Sy(y) = e @ [1 + 6(ayF)?]
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Cumulative and survival plots for the RT-BX model using different values of the parameters.
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Figure 3: Hazard rate function plots for the RT-BX model using different values of the parameters.

and

20%71[1 - 6 + 6(ay? )]
1+ 0(ayP)?

hry(y) = Q)

The cumulative, survival, and hazard rate function plots of the RT-BX model are sketched in Figures 2 and 3,
respectively. From Figure 3, it can be observed that the hazard rate function increases if § > 1/2 and decreases if
0 < B < 1/2, which shows the flexibility of the proposed RT-BX model, and Theorem 2 confirms this conclusion.

Next the cumulative hazard rate function of the RT-BX is

CHy(y) = (ayf)? - In[1 + O(ay? )]

The reversed hazard rate function can be formulated as

202%y%-1e@"[1 - 9 + O(ayP )]

R =
") 1- e @"[1 + 6(ayP)?]

2.2 Behavior of density and hazard rate functions of the RT-BX model
Theorem 1. When 8 > % the density of the RT-BX model is unimodal, and it is decreasing if 0 < § < %

1211/B
Proof. Put t = (ayf)?, then y = [[T] . So, the density function of the RT-BX model is rewritten as a function
of t, and it is given as
{12 VA
lTI

Based on equation (8), the first derivative of lntb(t)[

o) = h = 2ast" e t(1 - 0 + 0t). ®)

alnd(t)

5 | can be written as

o) _28-1_ 0

-1 9
ot 2Bt 1-0+6t ©)
Clearly, equation (9) is a decreasing function of ¢ if § > % and we have
oInd(t oInd(t
lim 2020 | e, i 20O
t—0 ot t—o ot
which confirms that the function 222® change single positive to negative. Consequently, the density of the RT-

at
BX distribution is unimodal.
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By using the same steps, if 0 < § < 2, then it can be easily observed that the function ——= alnq’(t) is increasing
and
olnd(t olnd(t
tim 22O _ gy 2O
0 Ot tmo Ot
This ensures that the function ———= alm(o is negative and the density of the RT-BX model is decreasing. O

Theorem 2. For 8 > the hazard rate for the RT-BX distribution have increasing and it is decreasing functions

lfO<ﬁSE.

Proof. Let

PId() _ 2pC-1 g2 02

UO="%0 =g a-0+002 +ot

Hence, from the above equation the function U(t) is positive if g > i and it is negative for 0 < B < %
As a result, by applying the theorem of Glaser [28], the hazard rate function of the RT-BX model is increasing

if g > % and decreasing if 0 < 8 < % O

3 Mathematical properties

We developed here various statistical characteristics of the recommended RT-PBX distribution. From now on,
let Y ~ RT-BX(0, a, ).

3.1 Quantile function of the RT-BX model

The quantile function y, of Y is obtained from equation (5), and it is defined by
1/2)1/B

-1 , 0<u<l 10

Yy =)@

Proof. By setting equation (5) equal to u, we obain

1- e @1+ 6(ayP ] =u
e @ [1 + O(ayf)?]=1-u

e @) % + (ayP)?|= 1 ; u
e-(ayﬂ)z[—% - (@h| =
1 u-1

e (@)= [__ - (ayP)?|=——.
=g ~ @) 00!

Evidently (u - 1)/6e'/? € [-1/e, 0) and —(ayf)* - % € (-, -1]. Hence, after applying the negative branch
of the Lambert W function, we obtain

1 u-1
—(ayP)2 - —=WL
(a)’) 0 1[ eeé]
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1/2)1/8

which completes the proof. By replacing u by %, %, and % in (10), the first and third quantiles are obtained,
respectively.
The skewness (S) and kurtosis (X’) measures of the recommended RT-BX model are provided to be

_Uyyg + Uz~ 2

Y34 ~ Wy
and
% = Y8 ~ Usis + Y38 )’1/8_ 0
Yors = Vass
3.2 Moments with related measures
The kth moment of Y is
w, = la”ﬁ(’”zﬁ) T = 0l1-6)+6r = +1,0 (1n
k ﬁ Zﬁ) ZB 3 3
where, I'(a, b) denotes incomplete gamma function, and it is expressed as I'(a, b) = J: wlewdw.
Proof.
(= [ymad
Hk _[y Y Ly
0 12)

= 202 [y 1@ (1 - 9 + O(ayP )dy.
0

1/2

1/8
Let ¢ = (ay?)?, which implies that y = [IT] . Then, equation (12) can be rewritten as

aBke2p+2 T
b= J’e-tt%(l ~ 0+ 6nde

0
@Bc+2p)+2

Iti‘le‘fdt - GIt%‘le‘fdt + ejt%e‘fdt
ﬁ 0 0 0

2B

which completes the proof. Consequently, from equation (11), the mean and second-ordered moment of Y
are expressed, respectively, as

_ EHE o](1 o)+ er[i o 0”,

1 1 1
/= —a¥ PP — 0|1 - 6) + OI| - + 1,0
g R R
and
1 1 1
/= =2 Be2PIT— 0)(1 - 9) + OT|— + 1, 0|}. U
o™ gt 21 = l3g
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The variance and coefficient of variation (V) of Y are

The moment generating function (MGF) of Y is obtained as

Var(Y) =y, - u> and V=

o0

My(t) = Ele®] = [eDhy(y)dy

0

o

= 202 Iewyw—le—mﬂ*)za - 6 + 6(ayf)?)dy

1
B

0
o
j=0

tig2+Bi+2p

J!

1
r[%, 0](1 -0)+ erl

2B

RT-BXD model

-

—_— 7

13

The proposed statistical property values of the RT-BX model are tabulated in Tables 1 and 2 by applying
various choices of 8, a, and . The same can easily be observed for these quantities from the plots presented
in Figure 4. From these results of mathematical properties, we can see that

Table 1: Distinct records of mathematical properties for the RT-BX model at 6 = 0.5

a uy Var Vv S K
p =075 0.5 3.0334 3.4198 0.6096 0.8183 0.6445
1 1.2038 0.5386 0.6096 0.8183 0.6445
1.5 0.7011 0.1827 0.6096 0.8183 0.6445
2 0.4777 0.0848 0.6096 0.8183 0.6445
p=15 0.5 1.6533 0.3001 0.3313 -0.0135 -0.2945
1 1.0415 0.1191 0.3313 -0.0135 -0.2945
1.5 0.7948 0.0694 0.3313 -0.0135 -0.2945
2 0.6561 0.0473 0.3313 -0.0135 -0.2945
p =225 0.5 1.3794 0.1015 0.2310 -0.3483 -0.0323
1 1.0136 0.0548 0.2310 -0.3483 -0.0323
1.5 0.8465 0.0382 0.2310 -0.3483 -0.0323
2 0.7449 0.0296 0.2310 -0.3483 -0.0323
Table 2: Distinct records of mathematical properties for the RT-BX model at 8 = 0.75
a u; Var Vv S K
p=0.75 0.5 3.4122 3.4976 0.5481 07177 0.5191
1 1.3541 0.5508 0.5481 0.7177 0.5191
1.5 0.7886 0.1868 0.5481 0.7177 0.5191
2 0.5374 0.0868 0.5481 0.7177 0.5191
p=15 0.5 1.7713 0.2745 0.2958 -0.0858 -0.1425
1 1.1159 0.1089 0.2958 -0.0858 -0.1425
1.5 0.8516 0.0634 0.2958 -0.0858 -0.1425
2 0.7030 0.0432 0.2958 -0.0858 -0.1425
p =225 0.5 1.4484 0.0886 0.2055 -0.4165 0.2257
1 1.0643 0.0478 0.2055 -0.4165 0.2257
1.5 0.8888 0.0334 0.2055 -0.4165 0.2257
2 0.7822 0.0258 0.2055 -0.4165 0.2257
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Figure 4: 3D curves of proposed statistical measures considering RT-BX with various selected parameter records.

(1) The findings indicate that 4, and Var values decrease with the parameter values, whereas the values of V,

S, and K are fixed.
(2) Now, B increases and a and 6 are fixed, the measures of uy, Var, vV, and S decrease.

(3) If 6 tend to increase when 8 and 6 are fixed, the records of 4, and Var tend to increase, but the values of V,
S, and K decrease.

3.3 Order statistics

Let Y ~ RT-BX(6,a, B) and yq4)<..< Y, represent the order statistics of the random sample from Y.
Then, the rth density function of Y is written as

_% r— - n-r
k) = e < O I - HO)]
nig)

"o 5

_ 2n1ady? e @1 - 0 + f(ay? )] S
r-nDn-r) m=0

n-r m+r-
iy

" - e sy
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Consequently, the density for the lowest and highest of Y., denoted as k.n(y) = min{V;, ¥, ..., Y3}
and kp.,(t) = max{yy, Y;, ..., ¥;}, are given, respectively, by

ki = 200y 1 @1 - 0 + B(ay?)2l(e @1 + B(ayf ) (14)
and

Knen = 20022 1e=@"[1 = 9 + 0(ayP)2)(1 - e @ [1 + (ayP)2])n L. (15)

4 Entropy information

In this section, numerous information entropies are established. First, the Rényi entropy [29] (R(6))
is the measure of variation in uncertainty. The associated Rényi entropy of RT-BX model is

< j(1-0)57 [1+8@2B8-1

R(8) = 7= log(207t pt a2shas2s-5)y i]e(lmﬁi r[ (zﬁﬁ )y, o]] §+1,6>0. (16)
j=0 %

Proof.

1 s
R(6)= 1 log| [y
0
1 - 5 10g{2°aXy 0@ (1 - 0 + B(ay? ) dy}.

1/2

1/8
Suppose thatt = (ay?)?, this implies y = [I ] anddy = zﬁa%,,jtﬁ‘ldt. The above equation can be reformulated

«
as

5-1,B(1+2p5-8)+26 s
za [6.]91'(1 - 0y e % et
p j=olJ 0

1
R(6) = (gog[

Now, take w = &t, which implies that ¢t = % and dt = %W. Thus,

o 1+85(28-1)
1 ad . . -1
R(6)= log 26—1B—1a26+ﬁ(1+2ﬁ6—6) Z [éjy@](l — 9)5—]I%e—w dw

1-6 j=olJ 0 6

1 o w800 -0 [1+6828-1)
= 1 26 1R-1,25+B(1+2B5-8) T - 1,0l
-5 Og| Bla ]Zo[]] 1+6<Zzﬁﬂ—1) 28
which completes the proof. O

Another uncertainty measure is the Shannon entropy [30] (R,). It is expressed as
Ry = E[~log(hy(¥))]
= -log(2a?) - E[log(e @"y»1(1 - 0 + (ay?)?)] an
= —log(2a®) + a’E[y*#] - E[log(y*™")] - E[log(1 - 6 + 8(ay’)»)].

A new Havrda and Charvat entropy [31] (R;(6)) of the RT-BX can be considered in this study. It can
be formulated as

Ry(6) =

28-1q26+81+265-8) 2 (§)@i(1 - 0)5T (1 + 828 - 1
a I]( ) [ @BV _ol-1 se1s>0, 18)

B2 -1 Sli) s 2B
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Now, the Tsallis entropy [32] R4(8) of the RT-BX distribution is defined by

6-126+P(1+2B6-6) ® i(1-0)Y7 [1+828-1
R6) = 1 | 25a [5]9(1 9) r[ @6 -1)

1- . -
§-1] B Sl se 28

Finally, the Arimoto entropy [33] (R;(6)) associated with the RT-BX model is represented by

—1,0]—1, §+#1,8§>0. (19

5 I2é<6-1>aé<25+ﬁ<1+2ﬁ5-6>> < |80/ -6 [1+ 6828 -1)
R(6) - [ ] T [ 4

51 5 Zlj) Feen 2

-1, 0] -1} (20)
s 2

The numerical vales of the suggested entropy information are displayed in Tables 3 and 4 based on

numerous selected parameters 0, a, 8, and § and Figures 5 and 6 show the sketches of the 3D plots of this
information entropy.

Table 3: Several entropy information records for § = 0.75 and 6 = 0.5

a Ry(5) R Ry(8) Ry(9) R5(8)
p=05 0.25 4.2854 4.1676 10.1439 7.6772 9.5168
0.75 2.0881 1.9703 3.6228 2.7418 3.0174
1 1.5128 1.3950 2.4293 1.8386 1.9673
1.25 1.0665 0.9487 1.6149 1.2222 1.2807
a=1 0.25 2.1838 0.9487 3.8385 2.9051 3.2125
0.75 1.0852 0.9487 1.6473 1.2467 1.3075
1 0.7976 0.9487 1.1662 0.8826 0.9136
1.25 0.5744 0.9487 0.8162 0.6177 0.6331
a=15 0.25 1.332 0.9487 2.0885 1.5806 1.6768
0.75 0.5996 0.9487 0.8547 0.6469 0.6637
1.25 0.4078 0.9487 0.5673 0.4293 0.4368
1.75 0.2591 0.9487 0.3536 0.2676 0.2706

Table 4: Several entropy information records for § = 1.5 and 6 = 0.75

a Ry(8) Ry Ry(6) R4(6) Rs(6)
B=05 0.25 4.1699 4.2913 2.9898 1.7514 2.2527
0.75 1.9727 2.0941 2.1409 1.2541 1.4457
1 1.3973 1.5187 1.7165 1.0055 1.1170
1.25 0.9510 1.0724 1.2921 0.7569 0.8150
a=1 0.25 2.0443 21254 2.1857 1.2804 1.4823
0.75 0.9457 1.0268 1.2864 0.7536 0.81M
1 0.6580 0.7392 0.9572 0.5607 0.5909
1.25 0.4349 0.5160 0.6672 0.3908 0.4048
a=15 0.25 1.1403 1.2291 1.4837 0.8691 0.9486
0.75 0.4079 0.4967 0.6300 0.3690 0.3814
1 0.2161 0.3049 0.3497 0.2049 0.2085

1.25 0.0674 0.1561 0.1131 0.0663 0.0666
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Figure 5: Plots for u/, Var, CV, S, and K for a = 0.75 and p = 0.75.
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Figure 6: Plots for y/, Var, CV, S, and K fora = 1.5 and p = 0.5.

5 ML estimator

Let{y;,Y,, ...,y,} be a random sample of the size n drawn from the RT-BX model. The associated likelihood
function is now obtained as

L(y,9) = Z loghy(y, 8) - 2nlog(a) + (28 - 1)2 logy, - a? Zyzﬁ + z log(1- 6 + e(ayb’ )2). 21

i=1 i=1 i=1
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On solving the below equations, we obtain the estimate of the given parameter of the RT-BX distribution under
MLE method.

n B2 _
ALYy, D) Z (ay?) ’ (22)
a0 Z1-0+ G(ayﬁ )
2L(,8) 2n ¥’
b ZB B ————————
a1 " 2 - 2a Zy + 201921 os H(ayﬁ)z’
and
aL(y; '-9) - 2% lo _ 2(129 Zyzﬁ lo + ziﬂ (23)
op i=1 & B F1-0+ 0@y’

The solution cannot be found analytically and must be obtained using numerical methods. Here in this
study, the Newton-Raphson method is commonly applied to obtain the final estimate of the unknown para-
meters for the RT-BX model numerically.

6 Simulation analysis

In this section, Monte Carlo (MC) simulation studies are conducted to assess the performance of the recom-
mended ML estimator tool for the newly generated RT-BX model by applying numerous sample sizes
n = {300, 500, 700, 900,1,000} and various parameter set values of (6, a, B) including Set 1 = (0.4, 2.25, 1.75),
Set 2 = (0.5, 2.5, 2), Set 3 = (0.6, 2.75, 2.25), and Set 4 = (0.75, 3, 2.5). By using equation (10), we can generate
a random sample of the RT-BX model. The computations were obtained employing the R program with
a function optim for Newton-Raphson technique by taking the values of a, §, and 6 as Set 1, Set 2, Set 3,
and Set 4, respectively. The following algorithm describes the steps of random generating process from
the suggested model:

(1) Obtain g from the uniform distribution /[0, 1].

(2) In the same way, obtain y with the formula

Table 5: Numerical values of the RT-BX model simulation for Set 1

Sample size Est. 0 a B

300 AE 0.3776 2.2036 17313
AB 0.0224 0.0464 0.0187
MSE 0.0748 0.0250 0.0285

500 AE 0.3702 2.2066 1.7441
AB 0.0218 0.0434 0.0059
MSE 0.0650 0.0232 0.0219

700 AE 0.3785 22114 1.7469
AB 0.0215 0.0386 0.0031
MSE 0.0580 0.0185 0.0215

900 AE 0.3859 2.2131 1.7386
AB 0.0141 0.0369 0.0014
MSE 0.0522 0.0164 0.0165

1,000 AE 0.3941 2.2229 1.7568
AB 0.0059 0.0271 0.0013

MSE 0.0461 0.0123 0.0150
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Table 6: Numerical values of the RT-BX model simulation for Set 2
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Sample size Est. 0 a B
300 AE 0.4210 2.1441 1.7185
AB 0.0790 0.3559 0.2815
MSE 0.0916 0.0909 0.1528
500 AE 0.4374 2.4401 2.0159
AB 0.0626 0.0599 0.0359
MSE 0.0638 0.0236 0.0926
700 AE 0.4775 2.4701 1.9983
AB 0.0225 0.0299 0.0217
MSE 0.0559 0.0167 0.0310
900 AE 0.4816 2.4620 1.9836
AB 0.0184 0.0280 0.0164
MSE 0.0460 0.0118 0.0268
1,000 AE 0.4836 2.4666 1.9955
AB 0.0174 0.0234 0.0045
MSE 0.0373 0.0115 0.0180
Table 7: Numerical values of the RT-BX model simulation for Set 3
Sample size Est. 0 a B
300 AE 0.5693 2.6216 2.1687
AB 0.0307 0.1284 0.0813
MSE 0.0747 0.2479 0.2110
500 AE 0.5710 2722 2.2628
AB 0.0290 0.0480 0.0428
MSE 0.0553 0.1148 0.0827
700 AE 0.5759 2.7183 2.2553
AB 0.0241 0.0317 0.0383
MSE 0.0460 0.0377 0.0465
900 AE 0.5845 2.7238 2.2706
AB 0.0155 0.0262 0.0206
MSE 0.0397 0.01M 0.0347
1,000 AE 0.5925 2.7224 2.2585
AB 0.0150 0.0226 0.0085
MSE 0.0304 0.0077 0.0276

After repeating the generating process M = 1,000 times, we compute the indicators mean estimate (AE),

mean biases (AB), and average mean square errors (MSEs) which can be defined by

1 M
AE=—)0, AB-=
Mi-l

where ¢ = (6, a, §).

1M 1M
=>l6-0a, MSE=-—)(%-0?
Mi=1 Mi=1

The results of these simulation experiments are reported in Tables 5-8. Based on the findings presented in
Tables 5-8, we can conclude that the final estimates are generally constant and tend to the initial parameters.
Also, for all parameter sets, if we increase n, the ABs and MSEs decrease, which ensures that the suggested ML
estimators are consistent and asymptotically unbiased, where (Est) is the estimated values.
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Table 8: Numerical values of the RT-BX model simulation for Set 4

Sample size Est. 0 a B

300 AE 0.7052 2.9877 2.5768
AB 0.0448 0.0923 0.0768
MSE 0.0473 0.0808 0.0952

500 AE 0.7365 2.9586 2.5387
AB 0.0135 0.04140 0.0387
MSE 0.0464 0.0659 0.0687

700 AE 0.7405 2.9863 2.5316
AB 0.0095 0.01370 0.0316
MSE 0.0405 0.0148 0.0557

900 AE 0.7481 2.9901 2.5224
AB 0.0079 0.0099 0.0224
MSE 0.0375 0.0088 0.0434

1,000 AE 0.7494 2.9982 2.5686
AB 0.0306 0.0018 0.0186
MSE 0.00578 0.0066 0.0446

7 Data analysis

Here we applied three real-life data sets to see the applicability, flexibility, and potentiality of the proposed RT-
BX distribution. We apply the same data sets to compare the suggested model with the BX, transmuted log
normal (T-LN), transmuted Weibul (T-Wei), transmuted log logistic (T-LL), and Extended exponential (Ex-Exp)
distributions. Most of those models have received great attention in modeling several fields of data sets. It is
often useful and necessary to check whether the considered model fit the data properly or not, and therefore, we
use different standard metrics including the estimation of parameters, Kolmogorov-Smirnov (X.S) distance with its
associate p-value (PV), Akaike Information criterion (A;), and Bayesian Information criterion ($,). These results
are reported in Table 9. From these results and based on the p-value, obviously, the numerical values of Table 9
demonstrate that the RT-BX model has a better fit to fit the three data sets. The plots of the pdfs (besides the data

Table 9: Distribution performance and information criterion values based on given three data sets

Data Distribution 0 a ﬁ KS PV A Bq
RT-BX 0.5551 0.2993 1.1546 0.1078 0.7402 141.668 146.734
BX 0.2090 1.2555 0.1281 0.5272 143.363 146.741
T-LN -0.6240 0.7873 0.6498 0.1656 0.2225 156.596 161.663

1 T-Wei -0.3758 2.3622 3.222 0.1108 0.7095 142.411 147.478
T-LL -0.2486 3.0599 0.3598 0.1661 0.2197 157.563 162.630
Ex-Exp 0.6228 3.5734 0.1657 0.2216 156.853 161.23
RT-BX 0.7044 0.4257 2.3571 0.1412 0.1620 34.552 40.981
BX 0.2745 2.6809 0.1744 0.0432 38.960 42.247
T-LN -0.638 0.2983 0.2610 0.2075 0.0087 56.300 62.729

1 T-Wei -0.6069 47418 1.5204 0.1522 0.1078 35.070 41.50
T-LL -0.5583 6.0109 0.7142 0.1745 0.0430 39.030 42.559
Ex-Exp 2.6118 31.357 0.2290 0.0026 66.767 71.053
RT-BX 0.4467 0.4387 0.5598 0.0839 0.7244 377.838 384.496
BX 0.3260 0.6124 0.0886 0.6593 377.934 384.779
T-LN -0.5682 1.0099 1.1304 0.1421 0.1278 391.477 398.136

3 T-Wei -0.4189 1.0684 4.9840 0.0912 0.6225 378.221 384.880
T-LL -0.1735 1.6762 0.2538 0.0983 0.5260 381.345 387.004

Ex-Exp 0.2020 1.3144 0.1079 0.4064 387.669 392.108
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Figure 7: Estimated density, cumulative distribution, and survival function of the RT-BX model by applying the three considered
data sets.

histogram), cdfs, and survival functions in Figure 7 ensure this conclusion. Further, Figures 8-10 draw the esti-
mated density and cumulative distribution of all fitted models, and we can conclude from these figures that the
recommended RT-BX model is more adequate for analyzing the three data sets.

7.1 First data set

The first data set was reported by Alshawarbeh et al. [34] and it represents 40 leukemia patients drawn from
Saudi Arabia health ministry hospital. The values of the proposed data set are shown in Table 10.

7.2 Second data set

Here this data set contains 63 values and considered the strengths of 1.5 cm glass fibers. The suggested data set
is applied by Smith and Naylor [35] and it is summarized in Table 11.
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Table 10: Values of data set 1

0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162
2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348
3.348 3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244
4.323 4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 4.381
Table 11: Values of the strengths of 1.5 cm glass fibers

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68
173 1.81 2 0.74 1.04 127 1.53 1.59 1.61 1.66
1.68 1.76 1.82 2.01 0.77 1.1 1.28 1.42 1.5 1.54
1.6 1.62 1.76 1.84 2.24 0.81 113 1.29 1.48 1.5
1.55 1.61 1.62 1.66 17 1.77 1.84 0.84 1.48 1.51
1.55 1.61 1.63 1.67 17 1.78 1.89 1.39 1.49 1.66
1.69 1.24 13

7.3 Third data set

The source of this data is taken from Patil and Rao [36] as well as Almetwally and Meraou provide it [37].
The proposed data set represents the locations of the 68 stakes found while walking F = 1,000 m and looking
1 =20 m on either side of the transect line. The records of data set are given in Table 12.

Table 13 shows the numerous basic statistics of the observed data sets, and Figure 11 displays the
numerous non-parametric plots notably the scaled total time on the test (TTT), the probability-probability
(PP), and box plots.

Table 12: Sixty eight stakes found while walking and looking data set

2.0 0.5 10.4 3.6 0.9 1.0 34 2.9 8.2 6.5 5.7 3.0 4.0
0.1 1.8 14.2 24 1.6 133 6.5 83 4.9 1.5 18.6 0.4 0.4
0.2 1.6 3.2 7.1 10.7 3.9 6.1 6.4 338 15.2 35 3.1 7.9
18.2 10.1 44 1.3 137 6.3 3.6 9.0 7.7 4.9 9.1 33 8.5
6.1 0.4 9.3 0.5 1.2 1.7 45 3.1 3.1 6.6 44 5.0 32
77 18.2 41

Table 13: Basic mathematical measures for the three suggested data

Data Min Q Q, Qs Max S K

1 0.315 2.199 3.348 3.116 4.264 5.074 0.477 0.834
2 0.550 1.375 1.590 1.507 1.685 2.240 0.878 0.8001
3 0.100 2.975 4.450 5.853 8.225 18.600 1.020 0.470
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Figure 11: TTT, PP, and box plots for the selected data sets.

8 Conclusion

Anovel approach to BXD is defined in this work using a record-based transmuted tool, which is a powerful tool
in modeling numerous types of data sets, notably skewed, complex, asymmetric, and symmetric. The recom-
mended model has three parameters, and its density has different shapes. Further, we provide the maximum
likelihood approach for estimating the model parameters, as well as several simulation experiments are
performed to demonstrate the efficiency of the suggested estimation technique. At the end, the applicability
of the proposed distribution is demonstrated using three real data sets. The obtained results illustrate that our
recommended model is the best fitting distribution for fitting the three recommended data sets.
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