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1 Introduction and main results

In this article, we assume that the reader is familiar with the basic notions of Nevanlinna’s value distribution
theory [1-4]. In the following, a meromorphic function always means meromorphic in the whole complex
plane. By S(r, f), we denote any quantity satisfying S(r, f) = o(T(r, f)) asr — « possible outside of an excep-
tional set E with finite measure.

Let f be a meromorphic function, and let k be a positive integer. We denote by Ny(r, f) the counting
function for poles of f with multiplicity < k, counting multiplicity and by Ny(r, f) the corresponding one for
which multiplicity is not counted. Let N(r, f) be the counting function for poles of f with multiplicity > k,
counting multiplicity and by Ny(r, f) be the corresponding one for which multiplicity is not counted.

Let f be a nonconstant meromorphic function, let ay, a,,..., a be small functions of f, and let
ng, My, Ny,..., Nk be nonnegative integers. We define the differential monomial of f as follows:

M(f) = fro(fy..(f O,

and its degree y,, = ng + ny +...+ ni. Let My(f), Mao(f),..., Mo(f) be differential monomials. We define the
differential polynomial of f as follows:

H(f) = aiMy(f) + aMh(f) +...+ anMy(f), (11

and define yy = max{yy,, Vapy > Vagd ¥y = MiD{Yyp, Vapo -5Vpy b by the degree and the lower degree of H,
respectively.
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In 1986, Zhu [5] proved the following result.

Theorem 1.1. Let f be a transcendental meromorphic function, and let ¢ (¥ 0) be a small function of f. Then

T(r,f) < 8N r,

r1]+817
f

f/l_ q)] + S f).

In this article, we improve Theorem 1.1 as follows.

Theorem 1.2. Let f be a transcendental meromorphic function, and let ¢ (% 0) be a small function of f. Then

T(r,f) < SN[r, ]—{] + 5N|r,

= (p] )

In 1991, Hua and Chuang [6] proved the following result.

Theorem 1.3. Let f be a nonconstant meromorphic function, and let n, m be two positive integers. Assume that
Q(f) = f™H(f), where H(f) (# 0) is a differential polynomial defined by (1.1). Then for any nonzero complex
number b:

(D) Ifn =23, thenT(r,f) < %N[r, ﬁ] + S(r, f);

() Ifn=2,thenT(r,f) < =N (r,f) + %N[r, ﬁ] + S, f).

In this article, we prove the following result.

Theorem 1.4. Let f be a nonconstant meromorphic function, and let n, m be two positive integers. Assume that
Q(f) = f™H(f), where H(f)(®0) is a differential polynomial defined by (1.1). Then for any nonzero complex
number b,

(D) Ifn =3, thenT(r,f) < %N[r, ﬁ] + S(r, f);

() Ifn =2, then T(r,f) < -N(r,f) + %N[r, ﬁ] + S, f).

In 2019, Charak and Singh [7] proved the following result.
Theorem 1.5. Let fbe a transcendental meromorphic function, let ¢ be a small function of f such that f and ¢ have
no common poles, and let k be a positive integer. If f+ 0 and f% # ¢, then f*V = ¢ and f**D = ¢’ have
infinitely many solutions.

Remark 1.6. Theorem 1.5 is not valid by the following example.

Example 1.7. Let f = 7, and let ¢ = 0. Obviously, f# 0 and f® = ¢, but f&*D = ¢ does not have infinitely
many solutions.

Although Theorem 1.5 is not valid, we have the following result.
Theorem 1.8. Let f be a transcendental meromorphic function, let ¢ be a small function of f, and let k be a positive
integer. If f# 0 and f® # ¢, then ¢ = 0. In addition, if k 2 2, then f = e“*? where a (¢ 0), b are constants;

ifk =1, then f” has infinitely many zeros, except f = e*>, where a (# 0), b are constants.

Remark 1.9. f # 0 refers to the fact that for any z € C, it holds that f(z) # 0. f® # ¢ refers to the fact that for
any z € C, it holds that f®(z) # ¢(z).
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The following examples show that two cases occur in Theorem 1.8.
Example 1.10. Let f(z) = €7, and let k be a positive integer. Obviously, f# 0, f® = 0.

Example 1.11. Let f(z) = e¢". Obviously, f # 0, f* # 0. We have f” = ee?(e? + 1). Thus, f” has infinitely many
Zeros.

2 Some lemmas
For the proof of our results, we need the following lemmas.

Lemma 2.1. [3] Let f be a nonconstant meromorphic function, and let k be a positive integer. Then

(k)
m[r, f— =S, f).

Lemma 2.2. [1,3] Let f be a nonconstant meromorphic function, let n be a positive integer, and let a;, ay, ..., a,
be distinct small functions of f. Then
1 1
] < m[r, +..+ + 8@, f).

m[r ! ]+ +m[r !
’f_al ’f_an f-a f-a

It follows from the theorem in [8, p. 247] the following result.

Lemma 2.3. Let f be a transcendental meromorphic function. Then

L () 1
1 5To ) <3e+ 2

asr — « on a set of positive lower logarithmic density.

Lemma 2.4. [1,3] Let f; and f, be two nonconstant meromorphic functions. Then

1
N fify) - N[r, i

1 1
=N(,f) + N, f,) - N[r, ?] - N[r, ?2]

Lemma 2.5. Let f be a nonconstant meromorphic function, let b be a nonzero complex number, and let n be
a positive integer. Then we have

M nz23,T(r,f)<N

1
r, m] +S8(r,f);

2 n=2,Tr,f)<N(,f)+N + S, ).

1
r; fzf'—b

Proof. By Lemmas 2.1 and 2.2 and Nevanlinna’s first fundamental theorem, we have

m[rL +m[r,# Smr,fnf,]+m[r, 1 ]+m[r,#
TEE R G ZE B G B W A W 2R
1 1
< + + 2.1
mr, fnf/ fnf/_b] S(r’f) ( )
Luy greby) (1),
B ST ] ’”[“ (f"f’Y] 5:1)
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nFNY — 1
<T@, (f*f)) N[r, (f"f’y] +S(r,f)
<T@, fYf) + N(@.f) - N[ f"f)’] S, f).
Then, by adding Ni|r, %] + N| [ s b] to both sides of (2.1), we have
m[r, 1]+mr, ! ]+N[1”,L]+Nr,71 ]
fn+1 fnf/ _ b fn+1 fnf/ _ b
SNr’fr:Ll +Nr’ﬁ + T(r,f"f’)+N(r,f)—Nr,#]+S(r,f).
It follows
T[r, L] + Tr,# sNr,L +Nr,# + T(r,f"f) + N(r,f) - N|r, ] S, f).
fr frf =b fret frf =b (f"f)

By Nevanlinna’s first fundamental theorem, we have

=T(r.ff) + o).

S

’ fn+1

lr L
b

Thus, we obtain

1
T[r, W] < N[r

= (n+ DT(r,f) + S(r,f), we obtain

1
’ fn+1

(n+DT(r,f) < N[ f"”] [r

From T[r

If zy is a zero of f with multiplicity [;, then z, is a zero
a zero of (f"f”)” with multiplicity (n + 1)} -
must be a zero of (f*f’ -
L, - 1. It follows

by with multiplicity &, - 1, whic

Nir 1 + N|r !
» e " frf - b
where Na"lr

, ﬁ is the counting function for the zeros

Hence, we have

(n+DT(r,f) sN[r, ]%] + N[r, f”f}— b
<N, f)+ Zﬁlr, %] + N[r

sN(r,f)+2]V[r, %]+N[r

1
b

1
b

2. Similarly, if z, is a zero of f"'f’ -

1
’ fnf/ -

1
b

]+N(r,f)—N[r, ]+S(r,f).

] 1

+ ) ns
)

of f™1 with multiplicity (n + 1)4. Hence, zy must be

b with multiplicity 4, then z,
h yields z, is also a zero of (f"f”)” with multiplicity

1
ffy

N@,f) - N|r + S, ).

N|r 1 ]<2N[r1]+ﬁ[r#]—N*[r#
UMY )T f “ff-b gy )

of (f*f’y, which are not zeros of f™1(f"f" -

— 1
]+N(",f)—N[r,W]+S(7’,f)

b]_NO[r’ (fnf/)/] S(r’f)

] + 8@, f).

2.2)
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Next we consider two cases.
Case 1. n 2 3. From (2.2), we obtain

— 1
(n-)T(,f)<N|r, P b +8(r, f).
It follows
— 1
T(r;f)SNr,m + S(r, ). 2.3)
Case 2. n = 2. From (2.2), we have
T(r,f)<N(.f) + N[r, ﬁl +S(r, f). (2.45)

Lemma 2.6. [6] Let f be a nonconstant meromorphic function, and let k be a positive integer. Then

Nr,%]SNr,%]+klv('”,f)’“s(r’f)'

Lemma 2.7. [9] Let f be a transcendental meromorphic function, let ¢ (£ 0) be a small function of f, and let k

be a positive integer. If N|r #S(r,f).

] S, f), then N|r

1

Lemma 2.8. [10] Let f be a nonconstant meromorphic function, and let k (= 2) be an integer. If f # 0, f® # 0,
then either f = e%*b or f= (az + b)™, where a (# 0), b are constants and n is a positive integer.

Remark 2.9. f # 0 refer to the fact that for any z € C, it holds that f(z) # 0. f® = 0 refer to the fact that
for any z € C, it holds that f®(z) = 0.

It follows from Theorem 2.2 in [11, p. 423] the following result.

Lemma 2.10. Let fbe a nonconstant meromorphic function, and let k (= 2) be an integer. If fand f* have finitely
many zeros, then f = Re?, where R is a rational function and P is a polynomial.

3 Proof of Theorem 1.2

SetL = f (p . By Lemmas 2.1 and 2.2, we obtain
ol et )] e s
f - f f f'-e
<mr % ]+S(rf)
(3.1
<m|r % ]+mr—+S(rf)
L
<mr,];]+ [ f—(D] [r—]+8(rf)
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From the definition of L, ¢(#0) is a small function of f, and from Lemma 2.1, we have

m[r,% = m[r, o - ‘/’;— <sm(r, 9") + m(r, ) + m|r, j]:—] +S(r, f) <S8, f) (3.2)
and
m[r, f,I: ¢] = m[r, o - (p% sm(r, ¢) + m@r, ) + m|r, %] +8(r, f) < S(r, f). (33

By combining (3.1)-(3.3) and Nevanlinna’s first fundamental theorem, we obtain

mrj—lt] + m[r, f/l_ p <m|r, %] +8(r,f)
< T[r, %] - N[r, %] +8(r,f) (3.4)

<T(r,L)- N[r, %] +8(r, ).

From the definition of L and (3.3), we have

mviﬁn%&f-wp“wg:Zﬂ
g (3.5)
f-e

smmf-@+mhw-¢ %SMD

sm(r,f = ¢) + S, f).
Similarly,

N@r,L)=N(@, (f = )¢ = (f" - 9)9)
SN@, (f = 9)) + S, f)
SNQ@,f - @)+ N(r,f - @)+ S(,f)
SN(r.f' = @)+ N(r.f) + S(r.f).

By combining (3.4)-(3.6), we obtain

(3.6)

e oo s

m

<m(r,L)+ N(r,L) - N[r, 1] +8(r,f)
L 3.7)

|+ sen

SIS = )+ NS - )+ ) - N

ﬂ+3@j>

ST(r,f'—(p)+1V(r,f)—N[r,z

By adding N

r, %] +N [r, ﬁ] to both sides of (3.7), we have

m[r1l+m[r ! ]+N[r1]+N[r —1 ]
f e f -

sﬂnﬂ+ﬂnffJ+Tmf—w+ﬁmn—ﬂ

r, %] + S(r, f).
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Hence, we obtain
1

T[r1]+T ! r1
f f-9 f f-o

It follows from Nevanlinna’s first fundamental theorem that

r,

2

+N[r, ]+T(r,f’—<p)+]V(r,f)—N[r, %]+S(r,f).

r,} = T(r, ) + 0(D),

T[T‘, ﬁ] = T(r,f’ - (p) + 0(1)

T

Therefore,

1] + S f)

T(r,f)< N[r, ﬂ + N[r, ] +N(r,f) - N[r, T

1
f-o
<SN(r,f)+ N[r, 1] + N[r, L] + S, ).
f f-o
It follows from (3.8) and N (r, f) = Nyy(r, f) + Np(r, f) that
1
f-o

S Ny(r, f) + %N(z(r,f) + N[r, %] + N[r,

T(rxf)s-lvl)(rrf) +Jv(2(r:f) +N[rr %] +N[rs ]+S(rsf)

o (p] + S 1)
1
f-o

< %Nl)(r,f) + %T(r,f) + N[r, %] + IV[r, ] + S(r, f).

Hence, we obtain

T(r,f) < Ny, f) + ZN[r, %] + Zﬁ[r, ] + S, f).

1
f-e
Obviously, f”¢ — ¢’f” # 0. Set

oo SU - 0)

= , G =(Po) + (PO + 0.
Fo-of (Po)” + (Pp) + ¢

Thus, we have

Pof” - f(f" = @) = Pof".

—_— 7

(3.8

(3.9

(3.10)

Let z; be a simple pole of f, and satisfy that ¢(zy) # 0, ®, ¢’(z9) # 0. Obviously, P¢ and P¢’ are holo-

morphic at zy, so we obtain

c.
lZ +cota(z - 2z)+ 6z - 2z0)* + ...,
-2

f@ =
where c; (£ 0), ¢co, G, G,... are constants.
1
0(2) = 9(z0) + 9 (20)z = 20) + 59" @)z = 20)* + ..,
1
Po(z) = Pp(zq) + (Pp)(20)(z — 2o) + E(P(P)”(Zo)(z -zt ..,

Py'(z) = Pp'(z) + (P9")(20)(z - 20) + %(PQD’)”(Zo)(Z - Z0)* + ..

(3.11)

(3.12)

(313)

(3.14)
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By substituting (3.11)—(3.14) into (3.10), and comparing the coefficients of Z_LZO, we obtain
Pp)"(20) + (P9')(20) + ¢(20) = 0.

That is, G(zq) = 0.
Next we consider the following two cases.

Case 1. G # 0. Since ¢ is a small function of f, then by Nevanlinna’s first fundamental theorem and Lemma 2.1,
we have

1
9

Ny(r,f) < N[r, é] + N[r, %] + N[r, ] +N(r, 0)

< N[r, é] +8(r,f)

<T(r, G) + S(r,f)
<m(r,P"¢ + 3P’¢" + 2Pp”) + m(r, @) + N(r, P”¢p + 3P'¢p’ + 2P9p”) + N(r, @) + S(r, f)
Pll 3P/ / ZP ”

(p + P(P + (0 ] + N(r, P”) + S(r,f)
<m(r,P) + N(r,P) + 2N(r, P) + S(r, )
<3T(r,P) + S(r,f).

(3.15)

<m(r,P) + m[r,

From Lemma 2.1, we have

[ o - of’
(-0
o~ of +m1r f

ol )

T A I AR
7 f .
% +mr,7 +8(r, f) <S8, f).

(3.16)

=mr,

From the definition of P, we have

N[r, %] = N[r, %]

Since ¢ (#0) is a small function of f, we have T(r,p) = S(r, f), it follows S(r, ¢) = S(r, f). Hence,
we obtain T(r, ¢") = S(r, f).

Next we consider the following three subcases.
Case 1.1. Let zy be a pole of f with multiplicity 4 (= 1), but ¢(z) # . It follows that z, is a pole of f' - ¢
and f”¢ - ¢f” with multiplicity }; + 1 and 4 + 2, respectively. In this case, the multiplicity of the poles
in the numerator is not greater than that in the denominator. Hence, z, is not a pole of %.
Case 1.2. Let z; be a pole of f with multiplicity ; (= 1) and ¢(z) = «. From N(r, ¢) = S(r, f), we can deduce
that the zeros of this type of P is S(r, ).

Case 1.3. Let z be a zero of f’ - ¢ with multiplicity L, (= 1), but not the zero of f. It follows that z, is zero
of f” - ¢’ with multiplicity §, - 1. From

[ o=0f =f"0 =00+ 09" = 0f" =o(f" -9¢) -0 (f - 9),
we have
1 _flo-9of o -¢)-¢(f - ¢)
P f(f -0 f(f - o)

It follows that z, is a simple pole of %.




DE GRUYTER Some results on value distribution concerning Hayman’s alternative = 9

Thus, we have

¢ 3.17)
1 — 1
< N|r,~|+ N|r, — + 8, f).
SR e
By (3.15)—(3.17), and Nevanlinna’s first fundamental theorem, we obtain
N(rf)<3N[r1+3Nr L ]+S(rf) (3.18)
DS = ) f 5 f, -0 s ) ) .
Case 2. G = 0. That is,

P"g + 3P'¢’ + 2Pp” + ¢ = 0. (3.19)

Let z, be a pole of P with multiplicity [. Then z, must be either a zero or a pole of ¢.

In fact, if ¢(z) = a, where a (# 0, ) is a constant, then z; is a pole of P”¢ with multiplicity [ + 2, a pole of
P’¢’ with multiplicity at most! + 1, and a pole of Pp” with multiplicity at mostl. Thus, by (3.19), we know that z,
is a pole of P"¢ + 3P’¢p’ + 2Pp” + ¢, a contradiction.

Hence,

N@,P)<N(, )+ ]V[r, %] < S, f).

We define NS‘[r, W] is the counting function for the zeros of f”¢ - ¢’f’, which are not zeros

of f(f' - ¢), and Ny [r, W] as the corresponding function where the multiplicity is not counted.

Let zy be a zero of f”¢ - ¢’f’, but not the zero of f(f’ - ¢). Then z, is a pole of P. It follows from
N(r,P) < S(r, f) that

— 1 —
N*lr, 7] <N(r,P) <S8, f). (3.20)
U re-of
Let z be a pole of f with multiplicity 4 (= 2), but ¢(z) # 0, ». Obviously, z is a pole of f(f" - ¢) and
7o — ¢f with multiplicity 2 + 1 and }; + 2, respectively. From the definition of P, we deduce that z must be
a pole of P with multiplicity ; - 1. Hence, we have

No(r,f)sN(,P) + N(r,p) + ]V[r, %] <S(r, ). (3.21)

Set

g- U -er | e -9
(fe _f'(/")z [fJ _ q)’]z
f-o (9

Let zy be a simple pole of f with ¢(z) # 0, ®, 9(z9) # 0. Then by (3.11) and (3.12), we obtain

g= -0(Zp)C1

TR Xz = 2)* + X3(z = 29)® + ...,

where % # 0, A, As,... are constants. Hence, g(zp) # 0, «, and g'(zy) = 0.

Next we consider two subcases.
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Case 2.1. g’ # 0. It follows from that ¢ is a small function of f that

N1)(r,f) < NO

?

where No[r, gi] is the counting function for the zeros of g’, which are not the zeros of g.

By Nevanlinna’s first fundamental theorem and Lemma 2.1, we have

- Nl ,g—/] = T[r, i/ - m[r, i/] - T‘r, g] + m[r, g
g g g

g g
_ g
- —m[r, ?] +8(r,g) + S, f)

g
r,—,

4

N

= —m[r, 5] + 8, ).

Referring to line -8 and line -6 in [1, p. 57], we obtain

N(r)g/) _N(r’g) =N(rrg)

RS

From (3.24), (3.25), and Lemma 2.4, we have

and

g g 1
N|r,= |- N|r,=—|=N(r,g) + N|r, —
R IR T

1
- N(r,g") - Nir, —
I

-N‘rl
=No|r, — | —
4

| 1 —
Nir,—|-N(, g).

7] mes
By (3.20), (3.21), and the definition of g, we have

N@r,g)+N

| 1 — 1
SN|r,Z|+ N|r, - + S(r, ).
[ f] [ - rpl RE
Combining (3.22), (3.23), (3.26) with (3.27), we obtain

Ny, f)<No[r i] + St f)

<Nl|r, ]+N(r g)-m [r §]+S(7’,f)
<N|r, ] N(r, g +S(r,[f)
< Nlr, ] [ ]+S(7‘f)

r, gly + N[r, l] + ]V[r, (%] +N(r, ) < NO[r, gl] +S(r, f),

r§]<Mz(rf>+N[r%]+N[ fl(p]*'No[ = f] S )

DE GRUYTER

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Case 2.2. g’ = 0. Then g = A, where A is a constant.

o(f -9

If A =0, then [f > = 0. Hence, we obtain that eitherp = 0 or f* - ¢ = 0, a contradiction. Thus, A # 0.
fro o

f-o 9

Hence, we have

2
f -9 co’l
(f - )EA[ e (3.29)
o(f' - ¢ RET R
Set F= 72— Then by (3.29), we obtain
F3= ?(F’)Z. (3.30)

Obviously, F # 0. Thus, we have % = %

Set H = 7. Then we have H = , where B2 =A # 0. Hence, H = h?, H' = 2hh’, where h is a mero-

morphic function. It follows (h")? = [%] . Hence, T(r, h") = S(r, ).

Since h% = %, we have

U
’ f, _
From (3.31), Lemma 2.3, and T(r, h’) = S(r, f), we deduce that T(r, f*) < S(r, f), a contradiction.
By (3.18), (3.28), and (3.9), we obtain

2T(r,h) = T|r

(p] = T(r,f") + S(r, f). (3.31)

T(r,f) < SN[r, %] + SJV[r, f,l_ (p] + S(r, ).
This completes the proof of Theorem 1.2.
4 Proof of Theorem 1.4
Obviously,
1 Q 1
m[r, ﬁ [ fy] [r a] +8(r,f), 4.1

where ), = Jpp) = M+ V.
By (4.1) and Nevanlinna’s first fundamental theorem, we have

r i - Nj|r l
) Tl e fV
Since (m + y)T(r,f) = T(r, fY%) + S(r, f), then by (4.2) and Lemma 2.1, we obtain

T(r,f%) < T(r, Q) + N + S, f). (4.2)

S(r.f)

o)

r_] [Q] R

Mm+y)T@,f)<TT, Q)+ N[ fV] N[r, %]

ST(r, Q)+ (m+ YN

f]+8(rf)
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<TG, Q) + (m + yN|r, }] - N[r, %] O 2y T[r, }] - N[r, },] S0, f)
<T(, Q)+ (m+ y, N r,% “ N G|+ O - pITE) + S0,

Thus, we have

(m+ y TG, PSTC, Q)+ (m+ y, )N r,% - Nr,% S0, f)

<T(r, Q)+ (m+ y, N r,j—i - mN[r, }] - S0 f)
<T(r,Q) + l’HN[r’ %] +S(r, f).

It follows

T(r, f) < %T(r, 0) + S, ). 43)

By (4.3) and Lemma 2.5, we prove Theorem 1.4.

5 Proof of Theorem 1.8

Suppose ¢ # 0. By Lemma 2.7, we have N|r, ﬁ] # S(r,f), a contradiction. Hence, ¢ = 0.

Next we consider two cases.
Case 1. k = 2.
Since f is a transcendental meromorphic function, then by Lemma 2.8, we deduce that f = e®*?, where
a (#0), b are constants.
Case 2. k=1.
Suppose that f” has finitely many zeros. Then by Lemma 2.10 and f # 0, we deduce that f= %e" , Where
P, Q are polynomials. It follows from f” # 0 that
P N _ 7
ePe-Q) , o
QZ
Obviously, P’Q — Q" # 0 and P’ # 0.
Next we consider two subcases.
Case 2.1. There exists z such that P/(z)Q(z) - Q'(z) = 0.
Let z be a zero of P (z)Q(z) - Q’(2). By (5.1), we have Q(z) = 0. Hence, Q'(z) = 0.
Thus, we obtain

P(2)Q(2) - Q'(2) = (z - )"9,(2), (5.2)

and

fr= G.1)

Q(2) = (z - n)hg,(2), (5.3)

where l;, [, (= 2) are positive integers and ¢,(z), ¢,(z) are two polynomials with ¢,(z) # 0, ¢,(z) # 0. It follows
from (5.3) that

Q(2) = (z - 2)*94(2), (5.4)
where 93(2) = bo,(2) + (z = 21)9’(z). Obviously, 93(z1) = bo,(z) # 0.
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By (5.3) and (5.4), we have

P(2)Q(2) - Q'(2) = P'(2)(z - 21)29,(2) - (z - 7)) '4(2)
=(z - ) [P(2)(z - 2)p,(2) — 94(2)] (5.5
=(z - n)*,(2),

where ¢,(z) = P'(z)(z - 2)9,(z) — @5(z). Obviously, ¢,(z) = —¢,(z) # 0.

It follows from (5.2) and (5.5) that ; = L, — 1. Then by (5.2) and (5.4), we know that z is a zero of both
P(2)Q(z) - Q'(z) and Q’(z) with the same multiplicities.

Suppose that the distinct zeros of P'(z)Q(z) - Q’(z) are z, 2,..., Z; with multiplicities are my, my,..., ms,
where s, my, my,..., m; are positive integers. It follows

P(2)Q(2) - Q'(2) = Az - 2)™(z — B)™...(z = z))"™,

where A is a nonzero constant and my + my +...+ mg = deg(P’Q — Q") = degP’ + degQ = deg(Q. Furthermore,
we have

Q) =z - 2)"™(z - )™..(z = 2,)"5(2),

where ¢(z) is a polynomial. Thus, we obtain degQ’ = my + my + ...+ ms = degQ. Then we deduce that Q
is a nonzero constant.

ince f==eP an # 0, we obtain f’ = =ePP’ # 0. Thus, we obtain P(z) = az + b;, where a (# 0), b;
Si ;Pd'o b"éPP’OTh btain P(z) by, wh (#0),b

are constants. It follows that f = e®*?, where b is a constant.
Case 2.2. P'Q - Q' # 0.

From P'Q - Q"#0,Q % 0 and P’ # 0, we know that P’ and Q are nonzero constants. Thus, P = az + b,
and Q = bs, where a (# 0), b, and bs (# 0) are constants. It follows that f = e%*b, where b is a constant.

This completes the proof of Theorem 1.8.
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