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Abstract: In the field of applied sciences, systems are frequently modeled using mathematical frameworks that
include systems of nonlinear algebraic equations. Identifying their roots, whether real or complex, is of critical
importance. The widespread use of complex numbers in science and engineering highlights the importance of
accurately determining the complex roots of equations. This article presents a study in which the complex
roots of a system of equations are identified through an approach that utilizes homotopy continuation, with
the curve being traced using a hyperspherical path tracking technique. Furthermore, this article details five
case studies on electrical networks where this method is applied to solve systems of equations containing
imaginary coefficients to find mesh currents. The path tracking shows the behavior of system equation in each
case study. Finally, an analysis of the precision of the solutions obtained in these case studies is provided,
demonstrating an accuracy of up to 15 SDs in a single iteration during the refinement stage.
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ating points, electrical circuits

MSC 2020: 0101, 65D25, 65H04, 65H10, 68W30

1 Introduction

In the history of complex numbers, a significant contribution was made by the mathematician Niccolò
Tartaglia, who shared his secret solution techniques for solving equations with Girolamo Cardano, under
the condition that Cardano would not disclose these techniques [1]. However, in 1545, Cardano published “Ars
Magna”, a work in which he exposed methods for solving cubic equations [2,3]. This publication incited
Tartaglia’s fury, as he accused Cardano of betrayal and dishonesty for failing to fulfill his promise.
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Nonetheless, Lodovico Ferrari, a young mathematician and Cardano’s assistant at the time, claimed that he
was present during the meeting between the two mathematicians and asserted that no oath was taken [1].

Rafael Bombelli was familiar with the works of Girolamo Cardano on cubic equations, having studied his
“Ars Magna”. However, he found some concepts therein to be confusing and believed it was possible to
elucidate them, making the information more accessible to the general public. Bombelli embarked on the
development of a formal algebra to handle expressions of the form + −a b 1 [1,4]. In addition, in his 1572
work, Bombelli introduced calculus with negative numbers and established the rules for their addition and
multiplication. His most significant contribution to algebra was the unconditional acceptance of the symbol

−1 as a legitimate number, marking a pivotal advance in the understanding and acceptance of complex
numbers within the field of mathematics [1,4].

After the advancements made by Cardano and Bombelli, other mathematicians independently made
significant contributions to the development of complex numbers. René Descartes, for instance, introduced
the term “imaginary” in his work “La Géométrie” [5], marking the beginning of specific terminology to describe
these numbers. On the other hand, John Wallis provided the first geometric interpretation of complex num-
bers, using line segments in the plane, which represented an important step toward their visual under-
standing [1].

Caspar Wessel, in his work “On the Analytical Representation of Direction: An Attempt Applied Chiefly to
Solving Plane and Spherical Polygons” [6], demonstrated the geometric representation of an imaginary root of
the form +a bi using directed segments (vectors), including the addition and multiplication of these directed
segments. This contribution was crucial for the geometric representation of complex numbers and their
operations. Furthermore, Jean-Robert Argand proposed interpreting the value i as a rotation of 90 degrees
in the coordinate plane, known as the Argand plane. In his essay, he also introduced, for the first time, the
concept of modulus to indicate the magnitude of vectors and complex numbers, as well as the conventional
notation for vectors with a horizontal arrow above the letters that indicate its endpoints [7].

Leonhard Euler standardized the notation for i to represent −1 and used imaginary numbers to solve
equations as well as in trigonometry applications [8,9]. In his work, Euler assigned the term “imaginary” to
complex numbers, arguing that they were impossible quantities that only existed in the mind, due to their
nontangible nature in the context of real numbers. On the other hand, Abraham de Moivre formulated the
theorem bearing his name, which establishes the relationship between complex numbers and trigonometry,
thus demonstrating their applicability and relevance in broader mathematical areas [10]. William Rowan
Hamilton, in 1833, proposed a conceptualization of complex numbers as ordered pairs a b,( ), where a and b

are real numbers [11,12]. However, in electrical engineering, the notation for complex numbers underwent a
significant change, wherein the imaginary unit is denoted by j . This convention was introduced and standar-
dized by Charles Proteus Steinmetz in his seminal work “Complex Quantities and Their Use in Electrical
Engineering” in 1893. Steinmetz’s contribution greatly facilitated the analysis of alternating current (AC)
circuits by simplifying complex calculations into straightforward algebraic operations. Consequently, he
established the standardized use of phasor representation for complex numbers in educational texts on
electrical engineering, employing the lower-case letter j to signify the 90-degree rotation operator in AC
system analysis [13].

In this context, considering the historical background, complex numbers are characterized by their
arithmetic properties and various forms of representation, among them, the phasor [14,15]. These numbers
are situated in the complex plane, where the abscissa axis represents the real part and the ordinate axis
signifies the imaginary part [14,15]. Their application spans a wide range, covering several fields from mathe-
matics to various engineering disciplines. A notable example of their use is found in fractals, which are
geometric objects characterized by a basic structure that, whether fragmented or irregular, repeats at multiple
scales. This concept was introduced by mathematician Benoît Mandelbrot in 1977, using the term “fractal”
from the Latin “fractus”, meaning broken or fractured [16]. Among the most prominent fractal sets are the
Mandelbrot and Julia sets, as highlighted by Monroy [14,17].

In the field of electricity and its subfields the applications of complex numbers have many applications,
including the design of transmission lines in communications, where the Smith Chart is utilized for analyzing
load impedances [18]. In signal processing, Fourier analysis employs the Fourier transform, which involves the
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imaginary expression in the exponential function’s argument, while the Fourier series in their complex form
incorporates complex numbers [19]. In the qualitative theory of differential equations, the occurrence of
complex roots in the eigenvalues of coefficient matrices plays a critical role in identifying behaviors such
as centers and spirals, which can be stable or unstable [20]. In addition, in numerical analysis, complex
numbers are utilized as starting points (SPs) in attraction basins to analyze the stability of numerical algo-
rithms. They provide valuable information regarding the numerical instability of optimization methods, such
as Newton-Raphson (N-R), the secant method, and Halley’s method, among others [21–23]. Various authors
have developed numerous analytical techniques using attraction basins. For instance, in [24], algorithms were
developed for plotting the basins of attraction of fixed-points for a pair of bivariate rational functions using
toroidal attraction basins. Moreover, in optics, complex numbers are employed to apply Fresnel integrals in
diffraction phenomena [25]. In electrodynamics, they facilitate the study of the reflection and transmission of
electromagnetic waves [26]. In the field of antenna design and behavior, complex numbers are applied in
analyzing parameters such as impedance measurements, polarization, near-field and electromagnetic ana-
lysis, among others [27]. In electrical circuits, complex numbers are fundamental for calculating capacitive and
inductive reactances, enabling the analysis of AC circuits [15]. Similarly, in power electrical systems, including
industrial motors, networks, and three-phase circuits, they play a crucial role [28]. Furthermore, complex
numbers are essential in the analysis of stability and frequency response [29], as well as in electronics for the
analysis and synthesis of active filters [30,31]. In engineering, systems are modeled by equations and systems of
differential, and occasionally algebraic, equations. Understanding the solutions to these equations is crucial, as
they reveal the behavior of the system under given conditions. Specifically, for algebraic equations, the
solutions can sometimes be complex. However, when dealing with equations that have real coefficients, these
complex solutions appear in conjugate pairs [32].

There are several methods to determine complex roots in polynomial algebraic equations. For example,
[32] details the Graeffe method as a technique for finding all the roots of an equation, whether real or
imaginary. The Jenkins-Traub method is a globally convergent numerical algorithm that can find the real
and complex roots of polynomials of a single variable [33]. Sandoval-Hernandez et al. [34] proposed a hybrid
perturbation-N-R method to solve a nonlinear algebraic equation (NAEs) in circuit analysis, specifically to
determine the bias points of a tunnel diode using real solutions. Dubeau and Gnang [35] employed the fixed-
point and N-R methods to find solutions to nonlinear equations in the complex plane. In [36], Newton’s method
was adapted to polynomials with multiple roots in complex variables, applying it to Julia sets. On the other
hand, Sandoval-Hernandez et al. [37] used a complex variable to obtain the general formula for solving
quadratic equations. This formula is well known because it facilitates finding the different solutions of a
quadratic equation, including solutions with complex numbers. In addition to the known methods for deter-
mining roots in equations, such as Regula Falsi or N-R, there are homotopy continuation algorithms that allow
for solving systems of NAEs that can include transcendental functions. These are considered global conver-
gence methods because they possess the ability to find solutions to nonlinear problems from almost any SP,
theoretically ensuring that a solution will be reached regardless of the initial conditions. However, several
authors have investigated the identification of complex roots through the application of homotopy continua-
tion methods (HCMs). For instance, Gdawiec et al. [38] employed homotopy continuation for polynomial
equations possessing both real and complex roots as a viable alternative to conventional iterative techniques.
This approach was adopted to circumvent the issue of divergence.

In [39], an analysis was conducted on the SP utilizing the differential HCM to determine the conditions
under which the convergence of these methods remains independent of the SP. This investigation aimed to
facilitate the application of this technique to chemical engineering problems. However, the study also explored
the behavior of the homotopic path in a case study where certain roots could not be identified due to the
homotopic route encountering a region within the complex domain. Following this, in [40], the implementa-
tion of continuation homotopy was conducted to determine the roots of polynomial equations with real
coefficients by substituting the complex variable = +z x yi to derive a homotopy for the real part and another
for the imaginary part, with applications in chemical engineering. Furthermore, in [38–40], the authors have
focused solely on finding complex roots for a polynomial equation using continuation homotopy without
conducting any error or significant digit (SD) analysis. On the other hand, [40] presented the plotting of
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homotopic tracking for the real and imaginary parts separately against the homotopic parameter τ . Further-
more, Vazquez-Leal et al. [41] proposed the biparameter homotopy with an automated stop criterion, aiming to
achieve the lowest number of iterations necessary to complete the tracing of a symmetrical branch. The
multiparametric homotopy utilizes multiple parameters, providing greater flexibility in solving systems of
nonlinear equations and reducing computation times. In [42], the use of predictor vectors (without correction
vectors) was proposed to find the solution to several systems of NAEs with multiple solutions, employing lower
central processing unit (CPU) time compared to standard homotopic tracking algorithms.

Due to its ability to find multiple roots in NAEs, homotopy has broad applications in chemical engineering.
For example, chemical process control problems and chemical reactions often involve nonlinear equations
with multiple solutions, heat diffusion processes, exothermic reaction, natural convection of air in a 2D square
cavity at a steady state, and homotopic methods enable the identification of all possible solutions, allowing the
selection of the most appropriate one [43–45], solution vectors for an elliptic system of 2D partial differential
equations for natural convection [46]. Likewise, homotopy methods have been applied in electronic circuits to
find the polarization point in nonlinear circuits [47–49], and in electronics to determine the operating point in
circuits with transistors [50–56]. In addition, they have been used in the design of simulators for electronic
circuits [57,58].

Recently, Vazquez-Leal and his research team [59] initiated a new line of research in robotics, emphasizing
the importance of understanding the behavior of the homotopic path that models the movement trajectory of a
mobile device. In [60], homotopy with hyperspherical tracking was applied for route planning, solving an NAE
system that models the obstacles to be avoided. Furthermore, in [61,62], homotopy with hyperspherical
tracking was utilized in a collision-free trajectory planning algorithm for robotic arms, addressing an NAE
system that models the robot’s workspace.

This paper introduces the implementation of continuation homotopy with hyperspherical tracking [44,63],
implemented in Maple using symbolic programming. This approach enables comprehensive tracking, con-
sidering both the real and imaginary parts integrally without their separation, aimed at resolving various
systems of equations with imaginary coefficients within the context of electrical engineering problems. This
method facilitates the exploration and examination of the solutions obtained, as well as the analysis of the
behavior of their homotopic paths. Furthermore, it enhances the body of literature [64,65] dedicated to the
determination of real roots of systems of equations through the use of continuation homotopy.

This paper is organized as follows: Section 2 introduces a brief historical note about continuation homo-
topy. Section 3 introduces the continuation homotopy method with hyperspherical tracking. Section 4 presents
five case studies; the first involves a system of polynomial equations, while the subsequent case studies focus
on solving systems of equations applied to electrical circuits. Section 5 details the numerical simulations and
discussions. Finally, Section 6 outlines the conclusions of this work.

2 A brief historical review of HCMs

The formal origins of homotopy trace back to the work of French mathematician Henri Poincaré (1854–1912),
widely regarded as the founder of algebraic topology. In his series of publications entitled “Analysis Situs”,
Poincaré introduced the foundational concepts that would later develop into the theory of homotopy [66].
To fully contextualize the state of the art during Poincaré’s era, it is essential to understand the problem that
sparked his interest in topology.

To understand the foundation of homotopy, it is essential to review the transformations involved.
Topology studies the properties of geometric bodies that remain invariant under continuous transformations
and their inverses [67]. This concept focuses on specific points that do not change when geometric bodies are
contracted, expanded, or deformed [68,69]. In Figure 1, the points on the cube are relocated without generating
new points during compression or expansion, illustrating a continuous transformation. This property, where
f x( ) does not introduce changes and maintains continuity, is referred to as a “homeomorphism” [70]. While
it is easy to visualize deformation in simple shapes like a cube, the correspondence in more complex bodies
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is less apparent [71]. This introductory concept provides a basis for understanding homotopy methods as a tool
for solving algebraic equations.

Poincaré’s contributions to topology were of immense importance, as he introduced algebraic tools that
enabled mathematicians to study abstract geometric properties without relying on classical geometric intui-
tion. Homotopy became a cornerstone of this approach, offering an algebraic framework for addressing
complex topological problems [70].

One of the first significant practical advances derived from homotopy theory was the fixed-point theorem,
formulated by the Dutch mathematician Brouwer [72,73]. This theorem states that any continuous function
mapping a closed sphere onto itself must have at least one fixed-point, meaning a point that remains invariant
under the function. This theorem forms the philosophical link between Poincaré’s homotopy theory and the
development of tools for solving algebraic equations and systems of equations. García and Zangwill further
elaborate on the concept introduced by Brouwer [74].

In the context of homotopy theory, Brouwer’s theorem established a direct connection between the
abstract concepts of algebraic topology and the solution of concrete problems in NAEs. This theorem marked
homotopy’s first major application in developing methods for solving systems of equations, a line of research
that would be extensively explored in the following decades [74].

As homotopy theory evolved, new tools were developed to tackle more complex problems. In 1934, French
mathematicians Jean Leray and Jules Schauder introduced the concept of “topological degree” in their work
“Topologie et équations fonctionnelles” as an extension of homotopy theory for systems of nonlinear equations
[75]. The topological degree is an algebraic invariant that measures the “number of solutions” of a nonlinear
equation by analyzing the signs of the derivatives or Jacobians of the functions involved.

The topological degree was crucial in formalizing HCMs. These methods involve continuously trans-
forming a system of nonlinear equations into a simpler version with a known solution and then following

Figure 1: Schematic diagram of Homotopy between two geometric bodies.
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this transformation until the solution of the original system is obtained. This is accomplished through
a homotopic function, which links the solutions of the original system to those of the simplified system via
the homotopic variable τ , ranging from =τ 0 to =τ 1. The topological degree ensures that the number
of solutions remains constant throughout the transformation, enabling the tracing of all possible solutions
of the system [67,68].

In the 1950s, homotopy methods progressed with the development of corrector-predictor methods, pro-
posed by Ficken in 1951 in his article “The Continuation Method for Functional Equations” [76]. These methods
combined solution prediction with iterative correction using the N-R method to ensure convergence. One
major improvement was the introduction of tangent predictors to the homotopic curve. In 1961, Haselgrove
advanced this approach by applying Newton’s Method as a corrector in systems of nonlinear equations,
detailed in his work “The Solution of Non-Linear Equations and of Differential Equations with Two-Point
Boundary Conditions”, he details the use of Newton’s n-dimensional algorithm in the solution of systems of n-
NAEs with +n 1 variables (n variables, plus the homotopic parameter τ) [77]. His contribution provided
a general description of a predictor-corrector continuation algorithm, expanding on the earlier work of
Davidenko [78], they are as follows:
♠ Horizontal Predictors: Proposed by Lahaye in 1934 [79] and later used by Davidenko in 1953 [78,80],

these methods sequentially increase the homotopy parameter. However, they are less efficient when there
are returns along the homotopy path, as they require precise control of step size to ensure accuracy.

♠ Differential Predictors: Introduced by Haselgrove in 1961 [77], they use the slope of the homotopic path
to predict the next point to correct. Compared to horizontal predictors, they offer predictions closer
to the actual path, facilitating convergence on local correction methods.

♠ Polynomial Predictors: Proposed by Rheinboldt in 1975 [81], these methods use polynomial functions, such
as Lagrange and Hermite polynomials, to predict the next point on the curve. Although they offer greater
accuracy compared to earlier methods, their effectiveness decreases on curves with returns.

♠ Lagrange Polynomials: Implemented by Rheinboldt in 1975 to enhance predictions in continuation pro-
cesses [81]. Hermite Polynomials: Mentioned by Deufhard in 1979 as a potential option, though no practical
applications were provided [82].

♠ Closed Surfaces: The use of closed surfaces as predictors has had limited practical application in homotopy
methods and was first introduced by Lyness and McHugh in 1963 [83]. They employed “hypercubes”
in numerical integration, comparing their method to traditional techniques like Simpson and Euler-
Maclaurin, showing improved precision [84]. After 1963, few publications have reported on closed trajec-
tories as a prediction method for homotopy curves.

♠ Hyperspherical Path Tracking: Jiménez-Islas reviewed the closed surface approach in 1985, conducting
various analyses. He was the first to propose hyperspherical tracking ad hyperspherical tracking with
variable radius in his 1988 master’s thesis, “Paquete Computacional para la Solución de sistemas de
ecuaciones no lineales” [85], at Instituto Tecnológico de Celaya, without knowledge of Ushida’s work
[86]. Islas published his results until 1996, applying them to chemical engineering [44].
On the other hand, since 1976, Ushida and Chua worked on solving nonlinear equations in circuit theory
using continuation homotopy to address sharp turning points in solution curves [48,49]. In their 1984 article
“Tracing Solution Curves of Nonlinear Equations with Sharp Turning Points” [86], they introduced
an additional equation for homotopy formulation using arc-length. Previously, this idea had been used
in other works [47–49,87].
The contribution in this article [86] was to solve the system of n nonlinear equations in +n 1( ) variables,
directly incorporating the equation for arc-length using the implicit backward-differentiation formula
[88,89]. Yamamura later extended the work of Ushida and Chua, unaware of Islas’ contributions [85].
In 1990, Yamamura discussed this work with Inoue from Sanyo Electric Company, and in 1993, he published
results using hyperspheres in homotopy with applications in electronic circuits [90].

From 1960s, homotopy methods advanced with the introduction of arc-length parameterization, proposed
by Klopfenstein in 1961, which improved solution tracking and mitigated issues related to singularities in the
Jacobian [91]. This technique provided greater control over curve tracking. In addition, homotopy methods
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faced challenges with bifurcations, where solution curves split into multiple branches, signaling changes in
solution stability [92]. Alexander and Yorke generalize the HCM in “The Homotopy Continuation Method:
Numerically Implementable Topological Procedures” [93], freeing it from its dependence on degree and
broadening its application to problems beyond traditional degree arguments, particularly in locating bifur-
cating sets in nonlinear equations.

Homotopy methods have continued to evolve with the introduction of other techniques to improve their
robustness and applicability. For example, Chow et al. [94] presented an approach based on a transversality
theorem called “the Parametrized Sard Theorem”. This work gave solutions to problems in which the topo-
logical scheme is more complicated, for example, finding the Brouwer fixed-point, finding solutions of two
point boundary problems for second-order ordinary differential equations in R

n, among others. In [95], the
Chow-Yorke algorithm [96] was applied to problems such as the elliptic porous slider, the squeezing of a
viscous fluid between parallel plates, the squeezing of a viscous fluid between elliptic plates, and viscous flow
between rotating discs with injection on the porous disc, among others. These problems range from fairly
simple to extremely difficult, and Newton-type methods either partially or totally failed on all of them. In [97],
a method was introduced for solving systems of polynomial equations, specifically when these systems had to
be solved repeatedly with different sets of values. This method, referred to as “cheater’s homotopy”, employed
a path-tracking technique to find all possible solutions, significantly improving computational efficiency.
Unlike traditional methods, which required substantial computational resources based on the overall com-
plexity of the equations, this approach targeted the actual number of solutions, resulting in faster and more
practical performance for a variety of applications.

Over time, various homotopy methods have been developed, including Newton homotopy [98], fixed-point
homotopy [99,100], affine homotopy [84], Combined fixed-point Newton homotopy [101], probability one
homotopy [102], and multiparameter homotopies [103]. In all cases, homotopies find a solution when the
homotopic parameter =τ 1. However, in previous years, obtaining the exact solution at =τ 1 was challenging
due to numerical errors in the algorithms, requiring the roots to be calculated experimentally. In his thesis,
Islas proposed refining the solution using N-R when the neighborhoods of =τ 1 were reached, before and after
this value. His proposal is included in GW-BASIC code in the appendix of his work [85]. However, in 1996,
Sosonkina introduced the zero-finding strategy in his work “Note on the End Game in Homotopy Zero Curve
Tracking” [104] (without knowledge of Islas’ work). Continuation methods were further improved
by the introduction of this strategy, which is crucial for ensuring convergence along the homotopy path,
as the process may fail to find solutions without it.

3 Basic concepts of HCMs

Solving systems of NAEs can be challenging using traditional approaches such as the N-R method. The N-R
method requires an initial approximation of the solution to begin the process. However, it is well known that
for some cases, the N-R method may not converge to a solution from any SP. Often, finding an appropriate
initial guess is not straightforward or even feasible. As a result, the reliability of the N-R method for solving all
types of problems cannot be assured. An alternative strategy to overcome this limitation involves employing
HCM. The HCMmethods represent a continuous deformation from a basic problem (easy to solve) to the target
problem (difficult to solve), facilitating a smoother pathway to finding solutions.

HCMs are utilized to locate multiple solutions within systems of NAEs (n equations with n unknowns)
of the form

= →f fx 0, where : .n n� �( ) (1)

The HCMs introduce a perturbation in the system f x( ) by incorporating a function G x( ) and a homotopic
parameter τ . In this manner, the original system is transformed into a homotopic system expressed as follows:

= = + − =H τ H f τ τf τ Gx x x x, , 1 0,i i( ) ( ( ) ) ( ) ( ) ( ) (2)
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where →+
H τx, : n n1� �( ) , =i n1 …, , and τ is the homotopy parameter. The function G x( ) exhibits a known

solution or is easily solvable.
Equation (2) represents any homotopy formulation that meets the following conditions:

■ If =τ 0 and = =H Gx x, 0 0( ) ( ) , then a solution for H is known or can be easily found using numerical methods.
■ If =τ 1 and = =H fx x, 1 0( ) ( ) , then the solution of the original system is obtained.

The deformation process of the system initiates at =τ 0, and the solutions of interest emerge upon
reaching =τ 1 and beyond. Each intersection at =τ 1 constitutes a solution vector for (2). The mapped solu-
tions are presented as a family of curves, γ, as referenced in [39,44,105]. Figure 2 displays four examples
of homotopic continuous curves. Here, γ

1
represents a successful case, transitioning from the SP A at =τ 0

to the solution at =τ 1, whereas the other paths illustrate instances where the HCM method does not succeed.
It is noteworthy that the trajectory γ

4
is capable of identifying solutions; however, it remains isolated from

the initial point, making it impossible to connect it with γ
1
.

The selection of G x( ) dictates the formulation of the homotopy. In this study, we employ Newton’s
homotopy, defined as = −G f fx x x0( ) ( ) ( ), i.e., the function f x( ) minus the functions evaluated at x0 [44].
Thus, by substituting Newton’s homotopy into (2), we obtain

= − − ∈H τ f τ Gx x x x, 1 , ,i

n�( ) ( ) ( ) ( ) (3)

where x0 is the SP.

Figure 2: Family of homotopy curves.

Figure 3: Potential homotopy path.
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The application of HCM requires the implementation of a technique to map the homotopic path [44].
For example, when a hypersphere S2 with radius r and center O2 is located on the homotopy path, its contour
is required to intersect the homotopy curve at two points, O1 and O3, as shown in Figure 3. The center O1 is
the center of the hypersphere of the previous iteration,O3 is the center of the hypersphere of the next iteration
as depicted in Figure 3.

3.1 Path tracking of the homotopy trajectory

The formulation of a homotopy system involves n equations and +n 1 variables, that is, n variables of the
system plus the homotopy parameter τ [44,60]. Therefore, in the context of the hyperspherical path tracking
technique, we must include an additional equation known as the hypersphere, which is given by

∑= − + − − =
=

+S τ x c τ c rx, 0,i

k

n

k k n

1

2
1

2 2( ) ( ) ( ) (4)

where r is the radius and +c c,k n 1( ) is the center of the sphere in the homotopy path. =i N1,…, are iterations for
the hyperspheres S τx,i( ) used to trace the homotopic path. By using (3) and (4), we have a system with +n 1

equations given by

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

=
=

⋮
=

=

H τ

H τ

H τ

H τ

S τ

x

x

x

x

x

,

, 0,

, 0,

, 0,

, 0.

s

n

i

1

2

( )

( )

( )

( )

( )

(5)

For the case of n variables, the homotopic path γ shown in Figure 3 is formed by the centers O O O O, , ,…, N1 2 3

and these are calculated with help of equation (4) of the hypersphere Si. To find the coordinates of the centers
+O c c,i k n 1( ) of the Si must be solve the system (5) (with variables τx, ) by iterating N times in the path following.

During the tracking algorithm, the center of (4) must be updated at each tracking step and resolved for (5).
Subsequently, spherical tracking is conducted, as depicted in Figure 3. Initially, we center the first hypersphere
at the SP of the homotopy. Next, a prediction step is performed to approach the next point, and a correction
step ensures the path following of the homotopy curve. Finally, the center of the hypersphere is updated at (5),
and the process is repeated until the procedure reaches =τ 1, where interpolation and refinement steps
are executed to find a solution for =f x 0( ) . Thereafter, the procedure continues until another root is found or
the maximum number of iterations is reached. During this process, τ can cross =τ 1 several times from left
to right and vice versa.

The predictor-corrector scheme enables the spherical algorithm (SA) to accurately track the homotopy
curve γ. Figure 4 illustrates the behavior of the predictor-corrector scheme. The Euler predictor establishes
a tangent vector τx ,p p( ) at the point τx ,i i( ) along the homotopy path. Subsequently, the predictor point
is determined at the intersection of the sphere Si with the tangent vector. The N-R method is then employed
as a corrector to ascertain the intersection point + +τx ,i i1 1( ) between the homotopy path and the sphere of
radius r . This yields a point in proximity to the solution of the homotopy system for the subsequent tracking
step. The Euler predictor point utilized in SA is expressed as follows:

= + →
τ c r vx c, , ,p p x τ p( ) ( ) ‖ ‖ (6)

where τx ,p p( ) is the predictor point, cc ,x τ( ) is the center of the sphere, r is the radius of the sphere, and →
vp

is the tangent vector.
The N-R method is used to correct the predictor point to a point on the homotopy path γ. The N-R corrector

is described by

= −+ +
−

τ τ J τ H τx x x x, , , , ,j j j j j j s j j1 1
1( ) ( ) [ ( )] ( ) (7)
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where =j n0, 1, 2,…, iteration, and τx ,j j( ) is the point updated in each iteration until reaching a final value;
this final value can be regarded as the solution. −

J τx ,j j

1[ ( )] denotes the inverse Jacobian of Hs evaluated at the
point τx ,j j( ) for each jth iteration. This iterative method necessitates an appropriate SP to obtain the solution
in a minimum number of iterations. Therefore, for the first iteration, =j 0, =τ τx x, ,j j p p( ) ( ). The N-R method
is reiterated until it reaches a maximum number of iterations j

max
or it converges to a solution + +τx ,i i1 1( )

with a minimal margin of error, as depicted in Figure 4.

3.2 Implementation of homotopy with spherical path tracking

The predictive section of the hyperspherical path tracking methodology presented in [44] forms the core of the
strategy. The predictive homotopic path tracking is applied to a system of nonlinear equations derived from
a set of n deformed algebraic equations with Newton’s homotopy. By parameterizing equation (3) with para-
meter p, the homotopic functions H τx,i( ) is defined as H p τ px ,i( ( ) ( )), is defined as follows:

= − − ∈H p τ p f p τ p fx x x x, 1 , .i

n

0 �( ( ) ( )) ( ( )) ( ( )) ( ) (8)

It is noteworthy that the addition of the parameter p allows visualization regardless of the number of
equations that the nonlinear algebraic system, solved by f x( ), has. Therefore, the generation of the homotopic
path is defined by −

H p τ p,1( ( )). The homotopic route tracking is done by generating a tangent vector, ∂
∂

τ

p

, which

passes through the initial point x0, and allows us to predict the point x1. The slopes ∂p are defined
by calculating the partial derivatives of each homotopic function, H p τ px ,i( ( ) ( )). We define the matrix H

as follows:

=
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∂
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Figure 4: N-R corrector in spherical tracking.
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By expressing equation (9) as a system of equations in its matrix form, we have

⎡

⎣

⎢
⎢
⎢
⎢

∂
∂

∂
∂

⋮ ⋱ ⋮
∂
∂

∂
∂

⎤

⎦

⎥
⎥
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⎥

⎡

⎣

⎢
⎢
⎢
⎢

∂
∂
⋮

∂
∂

⎤

⎦

⎥
⎥
⎥
⎥

= −

⎡

⎣
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⎢
⎢

∂
∂

∂
∂

⋮
∂
∂

∂
∂

⎤

⎦

⎥
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⎥
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x
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1

1

1

1
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(10)

By applying Cramer’s rule in equation (10), we have the solution to the system

∂
∂

=

−
∂
∂

∂
∂

∂
∂

⋮ ⋱ ⋮

−
∂
∂

∂
∂

∂
∂x

p

H

τ

τ

p

H

x

H

τ

τ

p

H

x

H

…

…

,

n

n n

n1

1 1

‖ ‖

⋮

∂
∂

=

∂
∂

−
∂
∂

∂
∂

⋮ ⋱ ⋮
∂
∂

−
∂
∂

∂
∂x

p

H

x

H

τ

τ

p

H

x

H

τ

τ

p

H

…

…

,
n

n n

1

1

1

1

‖ ‖

(11)

where H‖ ‖ is the determinant of the system. Simplifying using properties of the determinants, each variable
is expressed

∂
∂

= − −
∂
∂

∂
∂

= −
∂
∂

⋮
∂
∂

= − −
∂
∂

x

p

τ

p

x

p

τ

p

x

p

τ

p

H

H

H

H

H

H

1 1 ,

1 ,

1 1 ,
k

1

2

k

1

2

( )( )
‖ ‖

‖ ‖

( )
‖ ‖

‖ ‖

( )( )
‖ ‖

‖ ‖

(12)

where =k nH , 1, 2,…,k‖ ‖ is the determinant from which column k has been removed, according to Cramer’s

rule. To determine ∂
∂

τ

p

, we must substitute = −∂
∂ H1

τ

p
( )‖ ‖ into (12), and by generalizing for any number

of variables, ∂
∂

x

p

i , we obtain

∂
∂

= −
x

p

H1 ,
k

k

k( ) ‖ ‖

⋮
∂
∂

= − +
+

τ

p

H1 .n

n 1

1( ) ‖ ‖ (13)

In this way, by rewriting (13) in the form of a column vector, a general expression for the slopes is obtained

= −

⎡

⎣

⎢
⎢
⎢
⎢

∂
∂
⋮

∂
∂

⎤

⎦

⎥
⎥
⎥
⎥

= +

x

p

τ

p

k ny H˙ 1 , 1,…, 1.k

k

k k( ) ‖ ‖ (14)

Exploring homotopy with hyperspherical tracking to find complex roots  11



Equation (14) expresses the slopes for each of the variables in the homotopic path γ, being essential for
calculating each predictor vector. To determine the prediction vectors, we must consider the slopes of the
homotopic path calculated with (14) and use Euler’s predictor algorithm. In this case, it is expressed as

= +

= +

p

p

τ τ p

τ

p

x x

x

Δ
d

d
,

Δ
d

d
,

p

p

0

0

(15)

where xp and τp are the prediction values obtained by the Euler predictor, which will be found on the surface
of the hypersphere of radius r . To calculate the horizontal advance pΔ , equations (15) are used, adding the
equation of the hypersphere. In this way, we have

= ±
∑ ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦=

∂
∂

∂
∂

p

r

Δ .

k

n x

p

τ

p

2

1

2 2
k

(16)

The sign will depend on the direction of tracking to the right or left, that is, in a positive or negative
direction. In this way, it is possible to calculate the prediction for xp and τ according to (15). To calculate the
corresponding point p to the horizontal advance of the homotopic path, the equation will be used

= +p p pΔ .
0 (17)

Once the prediction vectors have been calculated, they now serve as the new initial values to begin the
hyperspherical correction procedure, whose objective is to find the intersection between the hypersphere and
the homotopic path, as shown in Figure 4. This procedure is carried out using the N-R method to solve the
homotopic equations of the system, described by (3), and with the equation of the hypersphere (4). The N-R
method, in two or more dimensions, requires the Jacobian matrix and a vector with the function evaluated at
an initial point τx ,p p( )

= −+
−

τ τ J H τ H τx x x x, , , , .k k s k s k1
1( ) ( ) [ ( ( ) )] ( )( ) ( ) ( ) ( ) (18)

However, it is possible to identify in −
H p τ,1( ) the roots found when the homotopic route path =τ 1 using (17).

In fact, the determination of the roots occurs in that place; although, it is challenging for the intersection of the
homotopic path to occur precisely at that point. Therefore, in the vicinity of this value, when the step transi-
tions from a lower number <τ 1j( ) to a number greater than 1 >+τ 1j 1( ), the step prior to the find zero strategy
(FZS, or refinement) of the roots is linear interpolation using the following formula:

= +
−
−

−+

+τ τ

τx x

x x

1 .j

j j

j j

j

1

1


( )

( )
( ) (19)

In order to generate the interpolated start points (ISPs) for FZS, the variables +xj 1 and +τj 1 correspond to
values when >τ 1( ), and xj, τj for <τ 1( ), x represents each of the variables, and x are the interpolated values
for each variable by setting =τ 1 in the interpolation. The values found with (19) will be the ISP values for the
N-R method in the FSZ procedure for =τ 1, evaluated at x.

= −+
−

J f fx x x x .k k kk1
1[ ( ( ))] ( )( ) ( ) ( ) ( ) (20)

3.3 Flowchart and pseudocode

Figure 5 illustrates the flowchart of the algorithm for homotopy with hyperspherical tracking. Each of the key
points of the algorithm is summarized as follows:
(1) The formulation of the system of homotopy equations is initiated by including the hypersphere equation.
(2) Set the number of iterations for hyperspheres and initialize the counter.
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Figure 5: Flow chart for homotopy with hyperspherical tracking.
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(3) Establish the nonsquare matrix H. Calculate the determinants and multiply them by −1 k( ) . Compute
the horizontal advance pΔ .

(4) Proceed to calculate the predictor vector. The symbol ⊛∼ refers to the chosen predictor. In this work,
the Euler predictor, equation (15).

(5) Apply N-R for homotopic correction. Save in a list −
H τx,1( ) and −

H p τ p,1( ( )). Update the counter.
(6) Calculate τj‖ ‖ and +τj 1‖ ‖ for the FSZ strategy.
(7) Interpolate and apply N-R. Save the solutions in a list.
(8) If the number of hypersphere iterations has been reached, print the solutions and the homotopic tracking.

Note in the flow diagram that a predictor other than Euler’s can be chosen, such as the Heun, Runge-Kutta, and
fourth-order Runge-Kutta predictors, and Ralston [106,107]. In this work, the Euler predictor was implemented.
Algorithm 1 shows the pseudocode of the flowchart in Figure 5, where each necessary step for coding in
programming languages such as Maple, Matlab, C++, Python, among others, is detailed. The presented pseu-
docode describes the implementation of the homotopy algorithm for hyperspherical tracking in a simplified
manner, highlighting the main steps for its coding.
Algorithm 2 shows the pseudocode for the corrector_N-R subroutine of the flowchart in Figure 5. The sub-
routine receives as arguments the symbolic J H x,τs( ( )), the vector xp, τ . Likewise, Algorithm 2 shows FSZ
strategy N-R, FSZ_N-R. This subroutine receives, x, and symbolic J f xk( ( )).
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4 Case studies

The mesh analyses presented in the case studies are fundamental in the analysis of circuits within electrical
and electronic engineering. Both mesh and node analyses are important in the analysis of electrical circuits
[28]. In electrical engineering, the relevance of mesh analysis is vast, being applied, for example, in three-phase
circuits and those involving motors [28]. Furthermore, in the analysis of AC circuits, the frequencies of the
voltage sources generate reactances in components such as capacitors and inductors. With passive devices
such as capacitors and inductors, we obtain impedance, whose unit of measurement is the ohm [15,28,31].

Likewise, these analyses allow the application of various theorems, such as Thevenin’s theorem and
the superposition theorem, among others, to simplify circuit analysis. In electronics, mesh analysis is essential
for studying circuits with transistors, in both direct current and small signal analyses [108,109]. Transistors
are the foundation of electronics and the design of analog integrated circuits, as well as integrated circuits
of the transistor-transistor logic (TTL) and complementary metal-oxide-semiconductor (CMOS) families
[108–110], microcontrollers [111], microprocessors [112], and others.

This section presents five case studies. The first involves a system of two algebraic simultaneous equations
with real coefficients. The second and third case studies focus on mesh analysis of AC electrical circuits. In the
fourth case study, the voltages of a small power system connected to a motor are determined. The final case
study presents a mesh analysis of AC electrical circuits incorporating nonlinear impedances. In all case studies,
we use the notation “j” for the imaginary part of the complex numbers, and the radius of the hyperspheres is

=r 0.003. The convention for representing AC is to use the lowercase letter “i” in bold, as it denotes a complex
quantity [15,28].
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4.1 Case study 1

Solve the system of equations given by

− + =

− − =

x y

x y

1 0,

1

2
1 0.

3

(21)

This system of equations can be solved by algebraic or numerical methods. To solve it, in this work, two SPs
were proposed to solve the system (21), = + − +j jP x y, 0.0001 0.0 , 0.11( ) { } and = + − +j jP 0.59 0.59 , 1 0.012 { }.
Figure 6 displays the graphs of the system (21), where the real root is clearly observed.

Table 1 summarizes the roots found with SPs used, the direction of the tracking, right (R) and left (L), the
hypersphere iterations used, and CPU time in seconds. For example, the solutions S1 and S2 were found using
SP P1, the first one with tracking R, and the second one with tracking L, using 49 hyperspheres. It is noteworthy
that the magnitude of the imaginary part of S1( ) is small, on the order of × −1 10 106, rendering it effectively real.
Solution S3 was found using SP P2 with L tracking using 17 hyperspheres, and S2 was found again during R
tracking using 29 hyperspheres. The hypersphere radius used was equal to 0.003. The convention employed
in Table 1 of this case study remains consistent across other case studies where the revealed solutions
are displayed.

Figure 6: Plots for equations for case study 1.

Table 1: Homotopic tracking for case study 1
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Figure 7 displays the homotopic tracking to find S1 and S2 for SP P1, and Figure 8 shows the homotopic
tracking for SP P2 to find S2 and S3. Note that the trace for x presents a greater curlicue due to it being the
variable with the greatest exponent. Observe that the axes of the figures are τ , imaginary part, and real part,
respectively. At the intersection of the tracking trajectories with the plane =τ 1 are the solutions for x y, ,
marked with two small spheres.

4.2 Case study 2

Find the mesh currents of the polarization point Q for the electric circuit in Figure 9.

Figure 7: Hyperspheric homotopic tracking with P1 for case study 1. (a) Right tracking and (b) left tracking.

Figure 8: Hyperspheric homotopic tracking with P2 for case study 1. (a) Right tracking and (b) left tracking.

Figure 9: Electrical circuit with two meshes for case study 2.

Exploring homotopy with hyperspherical tracking to find complex roots  17



This circuit was solved in [15] using Cramer’s rule. The loop equations of the circuit in Figure 9 were
formulated with Kirchhoff’s law of charge conservation [15]. Therefore, the system of simultaneous equations
of the circuit is given by

− + − =
+ − =

j j

j j

i i

i i

10 5 5 50 0,

5 3 0.

1 2

1 2

( ) ( )

( ) ( )
(22)

Unlike the system of equations presented in case study 1, the coefficients of (22) in this case study are
complex. Applying homotopy with hyperspherical tracking to solve the system of simultaneous equations,
a SP = + − +j jP i i, 0.0001 0.01 , 0.11 2( ) { } [A] is employed. Table 2 shows the solutions and homotopic tracking
carried out. In both tracking directions, the number of hyperspheres was 87. Similar times were obtained
in both path tracking processes.

Figure 10 displays the homotopic tracking in both directions to determine solutions. Observe the linear
behavior of the tracking paths for i1 and i2, which is characteristic of a linear system. In the plane =τ 1,
the solution is indicated with small spheres.

4.3 Case study 3

Find the mesh currents of the polarization point Q for the circuit in Figure 11.
Likewise, this circuit was solved in [15] using the rule of Cramer. The loop equations for the circuit

in Figure 11 are given by

+ − − =
− + + − =

− + + =

j j

j j

i i

i i i

i i

5 5 5 30 0,

5 8 8 6 0,

6 10 20 0.

1 2

1 2 3

2 3

( ) ( )

( ) (23)

Using the SP = − +j jP i i i, , , 1 0.02 , 11 2 3( ) { } [A] for the homotopy, the mesh currents obtained are shown
in Table 3.

Table 2: Homotopic tracking for case study 2

Figure 10: Hyperspheric homotopic tracking with P for case study 2. (a) Right tracking and (b) left tracking.
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The behavior of the homotopic path exhibited by i i i, ,1 2 3 is linear because the system of equations is linear.
Figure 12 shows the homotopic tracking in both directions.

4.4 Case study 4

In [28], the problem for the single-line diagram of a small power system shown in Figure 13 (a) was solved. The
equivalent reactance diagram, with reactances, is shown in Figure 13 (b). A generator with an electromotive
force equal to 125 [V] per unit is connected through a transformer to high-voltage node 3, while a motor with
internal voltage equal to − − j0.481 0.481 [V] is connected to node 4. Figure 14 illustrates the circuit with the
transformation of voltage generators into current sources, presenting the nodes to establish the nodal analysis
equations. Determine all node voltages.

Table 3: Homotopic tracking for case study 3

Figure 12: Hyperspheric homotopic tracking with P for case study 3. (a) Right tracking and (b) left tracking.

Figure 11: Electrical circuit with three meshes for case study 3.
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Applying Kirchhoff’s voltage law, the node voltage equations for the equivalent of Figure 14 is given by (24)

− + + + =
− + + =

+ − − =
+ − − − =

j j j j

j j j j

j j j

j j j

v v v v

v v v v

v v v

v v v

14.5 8 4 2.5 0,

8 17 4 5 0,

4 4 8.8 0,

2.5 5 8.3 0.481 0.481 0.

1 2 3 4

1 2 3 4

1 2 3

1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

(24)

Using the SP = −j jP v v v v, , , 0.5 , 0.1, 0.21, 0.41 2 3 4( ) { } [V] in the homotopy to solve (24), the node voltages
are shown in Table 4. The operating point was obtained in both directions of hyperspherical tracking, utilizing
184 hyperspheres. Similar times were obtained in both path tracking processes.

(a) (b)

Figure 13: The single-line diagram of a small power system. (a) Single-line diagram of the four-bus system and (b) reactance diagram.

Figure 14: Electrical circuit with three meshes for case study 4.

Table 4: Homotopic tracking for case study 4
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Figures 15 (a) and (b) display the hyperspherical homotopic tracking with linear behavior for each
of the voltages of the system equation (24), showing the unique solution in the plane =τ 1.

4.5 Case study 5

In [113], an electric circuit with a loop containing nonlinear elements was solved. In this case study, we will
find the mesh currents for the electric circuit in Figure 16.

The formulas for nonlinear impedances [113,114] are given by

⎟

⎟

⎜

⎜

= ⎛
⎝

+ ⎞
⎠

= ⎛
⎝

− ⎞
⎠

X

ωC

γi

ω

X ωL

βi

1
1

3

2
,

1
3

2
,

C

L

2

2

2
(25)

where ω is the angular frequency in radians per second [rad/s], C is the capacitance in Farads [F], L is the
inductance in Henrys [H], and the reactances XC and XL are given in (Ω) (Ohms). The coefficients γ and β are
measures of nonlinearity and are positive in the absence of direct current polarization. Details on how these
coefficients are determined are presented in [114].

For the mesh analysis of this problem, with nonlinear impedances in this case study, the following values
are considered: =γ 1.5 [ −rad C2 2], =β 1.5 [ −A 2], =ω 62.831 [rad/s], =L 0.031 [H], =C 0.00011 F, =L 0.052 H, and

=C 0.00032 [F]. Applying Kirchhoff’s current law for each of the circuit meshes, three equations are obtained.
By substituting the values for each one of the elements of the circuit and simplifying algebraically, we have
a NAEs composed of three simultaneous equations.

− − + + − − =
− + + − − =

− + − + + =

j j

j

j

i i i i i

i i i i

i i i

1.88495562 1 2.250 159.1549407 1 0.0005699316411 10 10 5 0,

10 24 18.9 1 2.250 5 0,

5 11 53.051646913 1 0.00056993164114 3 0.

1 1 1 1 2

1 2 2 3

2 3 3

2 2

2

2

( ( ) ( ) )

( ( ))

( ( ))

(26)

Figure 15: Hyperspheric homotopic tracking with P for case study 4. (a) Right tracking and (b) left tracking.

Figure 16: Electrical circuit with three meshes for case study 5.
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To determine the operating points of the nonlinear circuit, two different SPs were proposed: =P1

− − −j j5, 0.05 , 0.05{ } [A] and = − − −j j jP 10 , 0.05 , 0.052 { } [A]. By using these SPs in the routine developed in this
work, six operating points were found. Table 5 illustrates the six solutions of (26), along with the hyperspheric
tracking. It is noteworthy that the operating point of the electric circuit Q

1
was encountered twice during this

tracking, specifically in hyperspheres number 40 and 287, respectively.
Figure 17 displays the homotopic tracking for the SP P1. In Figure 17(a), the homotopic tracking is pre-

sented to the right, where four operating points were found. In this manner, operating pointQ
1
is identified by

the red sphere,Q
2
by the blue sphere,Q

3
by the gold sphere, andQ

4
by the black sphere, all located in the plane

=τ 1. It is important to note that hypersphere iterations 40 and 287 (forQ
1
) overlap because they represent the

same root. Likewise, it should be observed that the homotopic path for i2 and i3 tends to form a loop since the
trajectory does not change significantly. Figure 17(b) shows the tracking L, where only the operating point Q

5

was found.

Table 5: Homotopic tracking for case study 5

Figure 17: Hyperspheric homotopic tracking with P1 for case study 5. (a) Right tracking and (b) left tracking.

22  Mario A. Sandoval-Hernandez et al.



Figure 18 presents the homotopic tracking on the left with SP P2 to find Q
6
. In general, in this case study,

the homotopic tracking for all electrical intensities showed a nonlinear behavior.

5 Numerical simulation and discussion

The computer utilized for the development of this work was equipped with an Intel Core i7-7700U
CPU @ 3.60 GHz with 4 cores and 8 threads, an NVIDIA Corporation GP107 [GeForce GTX 1050 Ti] graphics
card, and 64 GB of RAM, operating on Linux Ubuntu version 20.04.6 LTS. For the implementation of the homotopy
algorithm with hyperspherical tracking, Maple 2019 software was employed. In addition, in the simulations,
the built-in Maple command, fsolve, was used to validate the results.

The analysis in this article focuses on identifying the complex roots of systems of algebraic equations, exploring
the SDs found in the real and imaginary parts of each solution, as well as the iterations used. Tables 6–10 present
the analysis of the SDs for the solutions of the case studies discussed in this article, utilizing the SPs provided by the
linear interpolation of the homotopy algorithm. The criterion was to achieve more than ten SDs of accuracy in the
solutions for the case studies. To validate the SD analysis, the SPs obtained from the interpolation (ISPs) were used
in Maple’s fsolve function with the respective system of equations for all case studies to obtain the exact solution
with 15 SDs.

For case study 1, the real parts of all the solutions had 15 digits of accuracy. For S1, the imaginary part of its
roots was of the order of × −1 10 388, so it was considered entirely a real solution. The root S2 was obtained with
the two proposed SPs; it was the solution that required more iterations in its refinement. Similarly, when using

Figure 18: Hyperspheric homotopic tracking with P2 for case study 5.

Table 6: Significant digits in the solutions for case study 1
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P2, the imaginary part of y in S2 had 14 SDs of accuracy. Moreover, the solution S3 was the root that required
the fewest iterations in its refinement.

For case study 2, the analysis of SD was precise. The algebraically obtained solutions for case study 2 are

= + ji1

15

4

2

5
[A], = + ji 2 42 [A], while Table 2 presents their decimal equivalents. Table 7 demonstrates that

accuracy was achieved in the first iteration in both directions of hyperspherical tracking. It is noteworthy that
the SPs obtained through interpolation showed high accuracy, with some being identical to the refined
solution values.

For case study 3, Table 8 shows high accuracy in the SD of all the electric currents obtained in the first
refinement iteration for the electric circuit depicted in Figure 11. Only 14 SDs were achieved in the imaginary
part of i3 in the homotopic tracking to the left.

For case study 4, the SDs obtained in the nodal voltages v v,…,1 4 using Maple’s fsolve function did not reach
15 because the exact numerical solution was achieved. Table 9 illustrates this fact. For the root v4, seven SDs
were obtained in their real part compared to the eight of the exact numerical solution. This result is high-
lighted in bold font within the table. It is noteworthy that in the left homotopic trace, only one iteration was
required for refinement.

Table 10 likewise demonstrates high accuracy in the SDs of the operating points for the electric circuit
in case study 5. There is at least 14 SD in the real parts of the solutions, while the imaginary parts achieve 13 SD,

Table 7: Significant digits in the solutions for case study 2

Table 8: Significant digits in the solutions for case study 3

Table 9: Significant digits in the solutions for case study 4

The bold values are the interpolated values for each variable, as defined in equation (19).
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as seen with i3 for Q
3
. The number of iterations required to refine the solutions Q Q,…,

1 4
ranged between 2

and 3. The ISPs provided by the interpolation also exhibited high accuracy. Nonetheless, the repetition
of Q

1
necessitated 11 iterations for its refinement, ultimately achieving 15 SD of accuracy in i i i, ,1 2 3.

It is possible to determine the relative errors of all solutions presented in Tables 6–10 by employing
the formula that associates the relative error with SDs [115,116], given by

= −
−v v

v

SD log ,
A E

E

10
(27)

where SD is the SDs, vA is the approximate (measured) value, and vE is the exact value.
Continuation homotopy with hyperspherical tracking can also experience numerical errors, similar to any

numerical algorithm, such as round-off errors due to the finite precision of floating-point arithmetic in
computers, numerical errors caused by nearly identical equations, convergence failure in N-R, or numerical
instabilities [106,107]. These errors can cause the algorithm to lose homotopy path tracking. Furthermore, a
study on the sensitivity of the algorithm indicates that it is generally more sensitive to the complexity of f x( )

than to its dimension, as reported in [117]. Table 11 presents a comparison of the computing times for
−

J H τx,s

1[ ( ( ))] and −
H τx,1( ) across all the case studies discussed in this work. The table includes the dimension

+n 1 because the homotopy parameter τ was added to the system of equations to generate the homotopy. For
instance, case studies 3 and 5 involve systems with three equations; however, it can be observed that the
evaluation time for −

J H τx,s

1[ ( ( ))] is greater in the latter case. In addition, it is important to note that the CPU
times for cases 4 and 5 are nearly identical. The comparison of computing times for all case studies was carried
out using 300 hyperspheres with a radius of =r 0.003.

Table 12 presents a comparison of the computation times using differential path tracking and hyper-
spherical path tracking [34,39] for all the case studies analyzed in this work. The computation times obtained
with hyperspherical path tracking are consistently shorter compared to those obtained with differential path
tracking across all case studies. In addition, the number of iterations required in this study is lower when using
hyperspherical path tracking compared to differential path tracking. It is noteworthy that in all case studies,
all solutions were successfully found using hyperspherical path tracking, while differential path tracking only
managed to identify some of them.

Table 10: Significant digits in the solutions for case study 5
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Furthermore, it is important to note that the inclusion of complex numbers in hyperspherical tracking
significantly increases computation times, in contrast to those reported in the literature when real numbers
are employed.

Table 13 presents a comparison of solutions obtained using homotopy with hyperspherical path tracking
and the Super Ostrowski homotopy continuation method (SOHCM) [118,119]. The table displays the solutions
found with Super-Ostrowski HCM in the path tracking, except in case study 4. In general, the CPU times with
SOHCM are shorter than this work. However, in some cases, the SP leads to finding a different root. For
instance, in this work, solution S1 was obtained with P1 using the hyperspherical path tracking, whereas S3 was
found with SOHCM after 280 iterations.

For case study 5, using SOHCM, Q
5
was obtained with P1, while employing homotopy with hyperspherical

path tracking, the roots were identified in the order Q
1
, Q

2
, Q

3
, Q

4
, and Q

5
. It is important to note that the

iterations employed in SOHCM generally exceed 70 to achieve 15 SDs. However, in case study 5, 200 iterations
were used to obtain 2 SD.

Likewise, the computational time increases as the complexity of the equation systems grows. Case study 5
requires a computational time of 4.005 [s] due to the system being nonlinear. In contrast, case study 4 does not

Table 12: Comparison for solutions using hyperspherical path tracking vs differential path tracking

Table 11: CPU time for case J H τx,s

‒1[ ( ( ))] and H τx,‒1( )
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have a solution. Furthermore, in [118], the structure of the homotopy includes a squared homotopic parameter,
and the path tracking does not use any predictor, such as Euler, among others. However, it is possible to obtain
τ with higher exponents if G x τ,( ), as shown in equation (14) in [118], becomes more complicated. Actually,
instead of that, SOHCM uses a simple proportional predictor. The algorithm requires the number of iterations
to be set up a priori. The SOHCM algorithm uses the number of iterations as the denominator, with a counter in
the numerator for this fraction. The solution is considered found when the numerator equals the denominator,
resulting in =τ 1. For this reason, Table 13 only shows right path tracking in SOHCM. Likewise, SOHCM can
only find one solution when =τ 1 because the algorithm terminates at =τ 1. In this research, equation (14)
from [118] was implemented with hyperspherical path tracking, using a hypersphere radius of 0.003; however,
divergence was encountered. Nonlinear terms in the structure of any homotopy cause numerical instabilities
in path tracking. The results presented in this study were obtained using an Euler predictor with path tracking
in both directions.

The path tracking behavior in Figures 10, 12, and 15 for case studies 2, 3 and 5, respectively, exhibits a
linear trend because the systems of equations in theses case studies are linear. In contrast, Figures 7 and 8 in
case study 1 and Figures 17 and 18 in case study 5 display nonlinear behavior. As the nonlinearity in the system
of equations increases, the homotopic tracking demonstrates a more pronounced nonlinear behavior, as seen
in Figure 17. However, Figures 19 and 20 show the graph homotopic parameter τ versus advance parameter p

used in hyperspherical path tracking. These figures highlight the advantage of utilizing the advance parameter
p, as it facilitates the visualization of all solutions via homotopic path tracking. In addition, the graphs depict
the system’s behavior. For example, Figures 19 (b)–(d) exhibit linear behavior because the systems of equa-
tions are linear for case studies 2, 3, and 4. In contrast, Figures 19 (a) and 20 for case studies 1 and 5,
respectively, reveal nonlinear homotopic path tracking, attributed to the nonlinearity of the systems of
equations in these cases. It is important to note that Figures 19 and 20 are in good agreement with the figures
for hyperspheric homotopic tracking shown in each case study. For instance, Figure 20 (a) shows significant
nonlinear behavior in homotopic path tracking for six solutions (five solutions in right tracking, and one
solution in left tracking), while Figure 17 (a) depicts nonlinear behavior for each solution.

Table 13: Comparison for solutions using hyperspherical path tracking vs. super-Ostrowski HCM
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For SP P 2 in study case 5, Figure 20 (b) shows only left path tracking with its solution. It is important to
note that the right tracking is not shown because a divergence occurred, and consequently, the solution cannot
be determined.

Figure 21 shows the attractor basins for case study 1. Both figures were generated using the computer
program Maple 21, with = × −

ε 1 10 8. The attractor basin for N-R is defined as = − × −A 2, 2 2, 2[ ] [ ], and the
attractor basin for Homotopy is = − × −A 2.5, 2.5 2.5, 2.5[ ] [ ]. The step size used for all iterations is =k 0.003. The
parameter ε indicates the accuracy of the calculated root, and A represents the area within which we draw
the basins of attraction. The iterations and the colors used to draw the attraction basins in Figure 21 are listed
in Table 14.

In the generated images, each point in the complex region that converges to a specific root is colored to
match that root, with darker shades indicating a higher number of iterations and lighter shades fewer
iterations. Points that do not converge within the iteration limit are colored gray. Figure 21 (a) shows the
basins for a system with roots S 1, S 2, and S 3 using the N-R method, taking 50 min to generate, while Figure 21
required 29 h and 14 min. Convergence speed and dynamical behavior are reflected in the color shades and

(a) (b)

(c) (d)

Figure 19: Homotopic advance p for case studies 1–4. (a) Homotopic tracking p vs τ for case study 1, (b) homotopic tracking p vs τ

for case study 2, (c) homotopic tracking p vs τ for case study 3, and (d) homotopic tracking p vs τ for case study 4.
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variations, respectively, with uniform regions indicating consistent iteration counts, giving a contour-like
appearance.

In the figure, stability occurs when the initial point is located within a basin of attraction that contains a
root. Conversely, instability arises when the SP leads to a trajectory that exits the colored zone and diverges
to a distant region, potentially converging to a different root. Moreover, the basin boundaries generated by the
N-R method intersect, forming the Julia set, a complex boundary where chaotic behavior manifests. It is
important to keep in mind that a complex analytical function divides the plane into two distinct regions:
the Fatou set, a stable area characterized by relatively simple dynamics, and the Julia set [14,120–122],
which forms the chaotic boundary of the Fatou set [120,122].

Figure 21 (b) displays the attraction basins for the homotopy method with hyperspherical path tracking for
x , exhibiting noticeable symmetry at first glance. Since the basins for y are similar, only those for x are shown.
However, significant differences can be observed when compared to the basins in Figure 21 (a). Specifically,
the basin boundaries do not extend continuously from a common point. In addition, four regions appear

(a) (b)

Figure 20: Homotopic advance p for case study 5. (a) Homotopic tracking p vs τ for P 1 and (b) left tracking p vs τ for P 2.

Figure 21: Basins of attractions for case study 1. (a) Newton basin and (b) homotopy basin.
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where points fail to converge within the iteration limit; these regions are shown in gray, indicating divergence.
Figure 21 (b) also exhibits chaotic behavior similar to Newton’s basins when the initial point lies within the
fractal structure. For instance, near the boundaries of the basins for S 1 and S 3, some SPs converge to S 2 in
olive green. However, the basins also suggest a high degree of stability, as the areas in light colors are
significantly larger compared to those in dark colors (up to 24 iterations were needed). Consequently, con-
vergence occurs toward the root located within the respective basin.

6 Conclusions

This study introduced a comprehensive exploration of the HCM combined with hyperspherical tracking to
identify complex roots in systems of equations with applications to electrical circuits. The research conducted
spanned a variety of case studies, ranging from systems of algebraic equations to complex electrical circuits
with nonlinear elements. The findings of this study emphasize the efficacy and precision of the HCM with
hyperspherical tracking in solving complex systems of equations.

The case studies presented illustrate the method’s capability to accurately determine complex roots, even
in scenarios involving nonlinear elements and imaginary coefficients. The precision of the solutions was
validated against existing literature and through the use of Maple’s fsolve function, demonstrating
the method’s reliability and effectiveness. The analysis of SDs further underscored the method’s high level
of accuracy, with most solutions achieving close to or exactly the desired number of SDs.

In addition, the study of basins obtained through homotopy requires an in-depth analysis of their beha-
vior, as well as an examination of the potential existence of Julia sets or other related structures. The basin of
attraction obtained through continuation homotopy extends the analysis of these basins while also broadening
the study of continuation methods using this technique. On the other hand, it remains to study the causes
of divergence of the homotopy in the basin of attraction.

Notably, the study also highlighted the method’s versatility in handling both linear and nonlinear systems,
as well as its ability to find multiple operating points in electrical circuits. This versatility makes the HCM with
hyperspherical tracking a valuable tool for researchers and practitioners in various fields, including electrical
engineering, where complex systems of equations frequently arise.

Furthermore, the research presented contributes to the ongoing development of numerical methods for
solving systems of equations. By demonstrating the practical applications of the HCM with hyperspherical
tracking, this study adds to the body of knowledge and provides a foundation for future research in this area.
The study proposes several avenues for future exploration. First, the homotopy routine with hyperspherical
path tracking will be implemented in the + +C language using symbolic computation [123] to reduce computa-
tional time for tasks such as Jacobian computation, hyperspherical path tracking. Second, the application of
homotopy with hyperspherical tracking is suggested to find complex roots of characteristic polynomials in
systems theory. This method could aid in analyzing stability, frequency response, and other crucial aspects
[29]. Third, there is a proposal to develop a routine for microcontrollers, aimed at facilitating educational
research focused on implementing control systems that require real-time monitoring of stability, frequency

Table 14: Iterations in attraction basins for case study 1, Figure 21
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response, and other parameters. Moreover, the study suggests investigating the tracking of complex homotopic
trajectories applied to robotics, particularly in navigating obstacles in the complex plane. This research could
build upon previous works in the field [60,105]. Finally, it is proposed to explore in the future the possibility
of using nonlinear interpolation [124–126] in FZS to reduce the number of iterations.

In conclusion, the HCM with hyperspherical tracking has proven to be a robust and precise approach for
identifying complex roots in systems of equations. Its successful application to a diverse range of case studies
underscores its potential as a numerical tool for solving complex problems in science and engineering. Future
research could explore the method’s applicability to other complex systems and further optimize its imple-
mentation for enhanced efficiency and accuracy.
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