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1 Introduction

Let �n be the n-dimensional Euclidean space. The symbol o denotes the origin in �n. The unit sphere in �n

is denoted by � −n 1. A convex body in �n is a compact convex set with non-empty interior. Denote by � o

n the set
of all convex bodies in �n that contain the origin in their interiors. We write � k for k -dimensional Hausdorff
measure in �n.

The Gauss image measure was discovered by Böröczky et al. in their groundbreaking work [1]. Let λ be
an absolutely continuous Borel measure on � −n 1. For a convex body �∈K o

n, the Gauss image measure ( )⋅λ K ,

of λ via K is a spherical Borel measure defined by

( ) ( ( ))= αλ K ω λ ω, K

for each Borel set �⊂ −ω n 1. Here, αK is the radial Gauss image. We write ρ
K
to denote the radial function of a

convex body �∈K o

n. For �∈p , the Lp Gauss image measure was introduced in [2] and can be defined by

( ) ( )⋅ = ⋅λ K ρ λ Kd , d , .p K

p

A characterisation problem for the Lp Gauss image measure is called the Lp Gauss image problem recently
proposed by Wu et al. [2]. Such type of problem is an analogue of the Lp Minkowski problem concerning the Lp

surface area measure. The Lp Minkowski problem and its related problems have been extensively studied in
last three decades; see [3–52]. The Lp Gauss image problem asks what are the necessary and sufficient con-
ditions for a Borel measure μ on the unit sphere � −n 1 to be the Lp Gauss image measure of a unique convex
body K . Namely, this problem is to find a convex body �⊂K n such that

( )= ⋅μ λ K ,p

on � −n 1, and if such a body exists, to what extent is it unique?
It will be seen that when μ has a density f and λ has a density g , the Lp Gauss image problem is equivalent

to solving the following Monge-Ampère equation on � −n 1:
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where � �→−h : n 1 is the unknown function on � −n 1, ∇ is the covariant derivative with respect to an ortho-
normal frame on � −n 1, and I is the unit matrix of order −n 1.

The case where =p 0 is the Gauss image problem. The existence and uniqueness results of its solutions
were established in [1], and the existence of smooth solutions was obtained in [16]. In [2], the Lp Gauss image
problem was solved for >p 0, while for <p 0, it was solved in the even case. The Gauss image problem was
very recently developed to the Musielak-Orlicz case in [23]. The corresponding Minkowski problem in this
setting may be called the Musielak-Orlicz-Gauss image problem. The existence of solutions to this problem was
studied in [23] using a variational argument. Alternative approach based on a parabolic flow was provided
in [53].

In this article, we will consider the regularity of the solution for the Lp Gauss image problem, which are
inspired by the recent and important works of [3,5,54,55]. The support function and polar body of a convex
body �∈K o

n are denoted by hK and ∗K , respectively. Then our regularity result can be stated as follows:

Theorem 1.1. Suppose that �= −μ fd d n 1 and �= −λ gd d n 1 with < ⩽ ⩽c f g c0 ,1 2 on� −n 1. For �∈p , let �∈K o

n

satisfy �( )⋅ =∗ −λ K fd , dp
n 1 on � −n 1. Then

(i) ∂K is C1 and strictly convex, and hK is C1 on � { }o\n ;
(ii) if f g, are both continuous, then the restriction of hK to � −n 1 is in C β1, for any ( )∈β 0, 1 ;
(iii) if �( )∈ −f g C, β n 1 for ( )∈β 0, 1 , then hK is C β2, on � −n 1.

The organisation of the article is as follows. In Section 2, we list some notions and basic facts regarding
convex bodies and the Lp Gauss image measure. In Section 3, we will establish Theorem 1.1 according to
the famous regularity results by Caffarelli [56,57].

2 Preliminaries

2.1 Basics regarding convex bodies

In this section, we introduce some basic facts and notions about convex bodies which will be used later.
For general references, see the books of Gardner [58] and Schneider [59], and the references of [1,21,37].

The Euclidean norm and inner product on �n are denoted by ∣ ∣⋅ and ⟨ ⟩⋅ ⋅, , respectively. For � { }∈x o\n , we
will use x̄ to abbreviate

∣ ∣

x

x
. Denote by ∂K and Kcl the boundary and closure of a convex body K , respectively.

Associated to each convex body �∈K o

n are the support function � �= →−h h :K
n 1 and the radial func-

tion � �= →−ρ ρ :
K

n 1 , which are respectively defined by

( ) {⟨ ⟩ } ( ) { }= ∈ = ∈h v v y y K ρ u λ λu Kmax , : , max : .

We easily see that ( ) ∈ ∂ρ u u K
K

for all �∈ −u n 1.
The polar body of �∈K o

n is defined by

�{ ⟨ ⟩ }= ∈ ≤ ∈∗K x x y y K: , 1 for all .n

It easily follows from this definition that �∈∗K o

n and ( ) =∗ ∗K K . Moreover,

= ∕ = ∕∗ ∗ρ h h ρ1 , 1 .
K K K K

(2.1)

For each �∈ −v n 1, the supporting hyperplane ( )H vK of �∈K o

n is defined as follows:

�( ) { ⟨ ⟩ ( )}= ∈ =H v x x v h v: , .K
n

K

Let ⊂ ∂σ K with �∈K o

n. The spherical image of σ is given by

� �( ) { ( ) }= ∈ ∈ ∈ ⊂− −
ν σ v x H v x σ: for some .K

n
K

n1 1
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Suppose that ⊂ ∂σ KK is the set consisting of all ∈ ∂x K for which the set ({ })ν xK , often abbreviated as ( )ν xK ,
contains more than a single element. As is well known that � ( ) =− σ 0n

K
1 (see Schneider [59, p. 84]). Suppose

that for each ∈ ∂x K σ\ K , ( )ν xK is the unique element in ( )ν xK . Therefore, we define the function

�∂ → −ν K σ: \ ,K K
n 1

which is called the spherical image map (also known as the Gauss map) of K . Sometimes it is convenient
to write ∂K σ\ K by ∂′K .

The reverse spherical image −
νK

1, of �∈K o

n at �⊂ −η n 1, is defined as follows:

( ) { ( ) }= ∈ ∂ ∈ ∈ ⊂ ∂−
ν η x K x H v v η K: for some .K K

1

The set �⊂ −η
K

n 1 consisting of all �∈ −v n 1 for which the set ( ) ({ })=− −
ν νv vK K

1 1 contains more than a single
element is of � −n 1-measure 0 (see Schneider [59, Theorem 2.2.11]). ( )−

ν vK

1 has the unique element for
�∈ −v η\n

K

1 , which is denoted by ( )−
ν vK

1 . Thus, we define the reverse spherical image map by

� → ∂− −ν η K: \ ,K
n

K

1 1

From Lemma 2.2.12 of Schneider [59], it is continuous.
The radial Gauss image of �∈K o

n for a Borel set �⊂ −ω n 1, denoted by ( )α ωK , is defined as follows:

� �( ) { ( ) ( ) }= ∈ ∈ ∈ ⊂− −
α ω v ρ u u H v u ω: for some .K

n

K K
n1 1

If { }=ω u is a singleton, we frequently write ( )α uK rather than ({ })α uK . Set � �{ ( ) }= ∈ ∈ ⊂− −ω u ρ u u σ:K
n

K K
n1 1.

Apparently, for each ∈u ωK , ( )α uK contains more than one element. Since � ( ) =− ω 0n
K

1 from Theorem 2.2.5 of
[59], the radial Gauss map of K (denoted by αK ) is the map which is defined on� − ω\n

K
1 that takes each pointu in its

domain to the unique vector in ( )α uK . Therefore, with respect to the spherical Lebesgue measure, αK is defined
almost everywhere on � −n 1.

The reverse radial Gauss image ( )∗
α ηK , for �∈K o

n with a Borel set �⊂ −η n 1, is defined as follows:

� �( ) { ( ) ( ) }= ∈ ∈ ∈ ⊂∗ − −
α η u ρ u u H v v η: for some .K

n

K K
n1 1

Analogously, we write ( )∗
α vK rather than ({ })∗

α vK for { }=η v . Apparently, ( )∗
α vK has the unique element denoted

by ( )∗
α vK with �∈ −v η\n

K

1 . Therefore, we can define the reverse radial Gauss image map

� �→∗ − −α η: \ .K
n

K

n1 1

Thus, ∗
αK is defined almost everywhere on � −n 1 because the set η

K
has spherical Lebesgue measure 0.

According to the definitions of αK and ∗
αK , it is not difficult to see that for all >λ 0,

= =∗ ∗
α α α α, .λK K λK K

(2.2)

It was proved in [21] that if �∈K o

n, then for each �⊂ −η n 1,

( ) ( )=∗ ∗α αη η ,K K (2.3)

and if ∉v η
K
, then

( ) ( )∈ ⇔ ∈∗
αv η α v η.K K

(2.4)

2.2 Basics for Lp Gauss image measure

For a Borel set �⊂ −ω n 1, the surface area measure SK of a convex body K is a Borel measure on � −n 1 which is
defined by

� �( ) ( ( )) ({ ( ) })= = ∈ ∂ ∩ ≠ ∅− − −S ω ν ω x K ν x ω: .K
n

K
n

K
1 1 1 (2.5)
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The following integral representation was given in [1]: If λ is an absolutely continuous Borel measure and
�∈K o

n, then

� �

( ) ( ) ( ( )) ( )∫ ∫= ∗

− −

f u λ K u f α v λ vd , dK

n n1 1

(2.6)

for each bounded Borel � �→−f : n 1 .
It has been proved in [21] that for �∈K o

n and each bounded Lebesgue integrable function � �→−f : n 1 ,

�

� �( ) ( ) ( ) ⟨ ( )⟩ ( ) ( )∫ ∫=−

∂′

−

−

f u ρ u u x ν x f x xd , ¯ d .
K

n n

K

K
n1 1

n 1

(2.7)

Let �∈p . The Lp Gauss image measure of �∈K o

n is given, in [2], by

� �

( ) ( ) ( ( )) ( ( )) ( )∫ ∫= ∗ ∗

− −

f u λ K u f α v ρ α v λ vd , dp K K

p

K

n n1 1

(2.8)

for each continuous � �→−f : n 1 . By combining (2.6) with (2.8), we see

( ) ( )⋅ = ⋅λ K ρ λ Kd , d , .p K

p

Together (2.4) with (2.8), it can also be, equivalently, written by

( ) ( ) ( ) ( ( )) ( )

( )

∫ ∫= = ∗
λ K ω ρ u λ K u ρ α v λ v, d , d

α

p

ω

K

p

ω

K

p

K

K

for each Borel �⊂ −ω n 1.
Let =u x̄ with ∈ ∂x K for �∈K o

n, and �= −λ gd d n 1 with � [ )→ ∞−g : 0,n 1 . Replacing K by ∗K in (2.8),
and using (2.3) and the fact that ( ) =∗ ∗K K , it follows that

� �

�( ) ( ) ( ( )) ( ( )) ( ) ( )∫ ∫=∗ −

− −

∗f v λ K v f α u ρ α u g u ud , d .p K K

p

K
n 1

n n1 1

(2.9)

By substituting −
fρ

K

n for f in (2.7), we obtain

�

� �( ) ( ) ⟨ ( )⟩∣ ∣ ( ) ( )∫ ∫=−

∂′

− −

−

f u u x ν x x f x xd , ¯ d .n

K

K
n n1 1

n 1

(2.10)

Thus, it follows from (2.9), (2.10), and (2.1) that

�

�( ) ( ) ⟨ ( )⟩
( ( )) ( )

∣ ∣ ( ( ))
( )∫ ∫=∗

∂′

−

−

f v λ K v x ν x
f ν x g x

x h ν x
xd , ,

¯
d .p

K

K

K

n
K

p

K

n 1

n 1

(2.11)

For �∈K o

n, we use DhK to denote the gradient of hK in �n. If hK is viewed as restricted to the unit sphere
� −n 1, then the gradient of hK on � −n 1 is written by ∇hK . Since hK is differentiable at � n almost all points in �n

and is positively homogeneous of degree 1, hK is differentiable for � −n 1 almost all points of � −n 1. We suppose
that hK is differentiable at �∈ −v n 1 and ( )=v ν xK is an outer unit normal vector at ∈ ∂x K . Then it follows that

( ) ( )= =−
x ν v Dh v .K K

1 (2.12)

From this, we easily see

( ) ( ( )) ⟨ ( )⟩ ⟨ ( ) ⟩= = =h v h ν x x ν x Dh v v, , ,K K K K K (2.13)

( ) ( ) ( )= = ∇ +x Dh v h v h v v,K K K (2.14)

∣ ( )∣ ( ) ∣ ( )∣= + ∇Dh v h v h v .K K K
2 2 2 (2.15)
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It follows from (2.5), (2.12), (2.13), (2.14), and (2.15) that for �∈ −v n 1, the integral representation (2.11) implies

( )
( ) ( )

∣ ( ) ( ) ∣

( )

( ( ) ∣ ( )∣ )
( )⎜ ⎟= ⎛

⎝
∇ +
∇ +

⎞
⎠ + ∇

∗
−

λ K v g
h v h v v

h v h v v

h v

h v h v
S K vd , d , .p

K K

K K

K

p

K K

1

2 2
n

2

(2.16)

If �∈K o

n has a C2 boundary with everywhere positive Gauss curvature, then for �∈ −v n 1,

�( ) ( ( ) ( ) ) ( )= ∇ + −S K v h v h v I vd , det d .K K
n2 1 (2.17)

Therefore, we deduce from (2.16) and (2.17) that if μ has a non-negative function f , i.e. �= −μ fd d n 1 on � −n 1,
then the Lp Gauss image problem can be formulated as finding solutions to the following Monge-Ampère
equation on � −n 1:

∣ ∣ (∣ ∣ )
( ) ( )⎜ ⎟

⎛
⎝

∇ +
∇ +

⎞
⎠ ∇ +

∇ + =
∗ ∗

∗ ∗

∗ −

∗ ∗
∗ ∗g

h h v

h h v

h

h h
h h I f vdet ,

p1

2 2

2
n

2

where =∗ ∗h hK .

3 The regularity of the solution

This section is devoted to the study of the regularity of solutions to the Lp Gauss image problem. Namely,
we will prove Theorem 1.1. Let us first recall some basic notions and facts required in this section. We refer to
the papers [3] and [5] for more details.

In the following, we assume that K is a convex body. If ∂K contains no segment, then we say that K is strictly
convex; if K has a unique tangential hyperplane at ∈ ∂x K , then we say that x is aC1-smooth point. Apparently, hK

is C1 on � −n 1 if and only if K is strictly convex. In addition, ∂K is C1 if and only if each ∈ ∂x K is C1-smooth.
Let Ω be a convex set in �n. We say that ∈z Ω is an extremal point if ( )= + −z λx λ x11 2 for ∈x x, Ω1 2

and ( )∈λ 0, 1 implies that = =x x z1 2 .
The normal cone of a convex body K at ∈z K is defined by

�( ) { ⟨ ⟩ ⟨ ⟩ }= ∈ ⩽ ∈N K z x x y x z y K, : , , for all ,n

which is equivalent to

�( ) { ( ) ⟨ ⟩}= ∈ =N K z x h x x z, : , .n
K

When ∈z Kint , we have ( ) { }=N K z o, , and when ∈ ∂z K it follows that ( ) ⩾N K zdim , 1.
The face of K with outer normal �∈x n is given by

( ) { ( ) ⟨ ⟩}= ∈ =F K x z K h x x z, : , ,K (3.1)

which lies in ∂K provided ≠x o, and

( ) ( )= ∂F K x h x, .K (3.2)

Here, ( )∂h xK is the subgradient of hK , which is defined by

�( ) { ( ) ( ) ⟨ ⟩ }∂ = ∈ ⩾ + − ∈h x z h y h x z y x y K: , for each ,K
n

K K

Obviously, it is a non-empty compact convex set. Note that ( )h xK is differentiable at x if and only if ( )∂h xK

consists of exactly one vector which is the gradient of hK at x .
Letφ be a convex function defined in an open convex setΩ of�n. We use Dφ and D φ2 to denote its gradient

and its Hessian, respectively. Besides, we define

( ) ( )= ⋃ ∂
∈

N ϑ φ x ,φ

x ϑ

for any Borel subset ⊂ϑ Ω. The Monge-Ampère measure μ
φ
is �( ) ( ( ))=μ ϑ N ϑ

φ

n
φ . Let φ be C2 smooth.

Then the subgradient ∂φ is equal to the gradient Dφ. Thus, it follows that

� �( ) ( ( )) ( )∫= =μ ϑ Dφ ϑ D φdet d .
φ

n

ϑ

n2 (3.3)
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Note that the surface area measure SK of a convex body K in �n is a Monge-Ampère type measure with hK

restricted to the unit sphere � −n 1 since it satisfies

� �( ) ( ) ( ) ( )⎜ ⎜⎟ ⎟=
⎛
⎝

⋃
⎞
⎠

=
⎛
⎝

⋃ ∂
⎞
⎠

=−
∈

−
∈

S ω F K v h v μ ω,K
n

v ω

n

v ω

K h

1 1

K

(3.4)

for any Borel �⊂ −ω n 1.
Noting that a convex function φ is the solution of a Monge-Ampère equation in the sense of measure

(or in the Aleksandrov sense), this implies that it solves the corresponding integral formula for μ
φ
rather

than the original formula for ( )D φdet 2 .
In order to obtain the regularity of the solution to the Lp Gauss image problem, we first convert

the original Monge-Ampère equation (1.1) on the unit sphere � −n 1 into a Euclidean Monge-Ampère equation
on � −n 1. Thus, we will pay attention to the restriction of a solution h of (1.1) to the hyperplane tangential
to � −n 1 at �∈ −e n 1.

Lemma 3.1. For �∈K o

n and �∈ −e ,n 1 we define that �→⊥φ e: with ( ) ( )= +φ y h y eK . If =h hK is a solution
of (1.1) for non-negative functions f and g, then in the sense of measure φ satisfies

( ) ( ( ) ⟨ ( ) ⟩)

∣ ( ) ( ( ) ⟨ ( ) ⟩) ∣
( ) ( ) ∣ ( ) ( ( ) ⟨ ( ) ⟩) ∣ ( )⎜ ⎟

⎛
⎝

+ − ⋅
+ − ⋅

⎞
⎠

= + − ⋅− ⊥g
Dφ y φ y Dφ y y e

Dφ y φ y Dφ y y e
D φ y φ y Dφ y φ y Dφ y y e y on e

,

,
det , Θ .p n2 1 (3.5)

Here,

( )
( ∣ ∣ )

∣ ∣

=

⎛
⎝

⎞
⎠

+

+
+

+y

f

y

Θ

1

.

e y

y1

2
n p

2

2

Proof. Let =h hK be a solution of equation (1.1) for �∈K o

n. Then from (2.17), (2.14), and (2.15), we have that
for �∈ −v n 1,

�
( )

∣ ( )∣
( ) ( )∣ ( )∣ ( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠

= − −g
Dh v

Dh v
S K v h v Dh v f v vd , d .

K

K

K

p

K
n n1 1 (3.6)

For �∈ −e n 1, assume that Pe denotes the hyperplane in �n which is tangential to � −n 1 at e and ⊥e denotes
the orthogonal complement of �{ }∈se s: in �n. For ∈ ⊥y e , we have = ∑ =

−
y y ei

n

i i1

1 , where { }−e e, …, n1 1 is a basis

of ⊥e . We define the radial projection �→⊥ −eΠ : n 1 from = + ⊥P e ee to � −n 1, where ( ) ( ) ∣ ∣= + ∕ +y y e yΠ 1 2 .
Since

⟨ ( ) ⟩ ( ∣ ∣ )= + −y e yΠ , 1 ,2
1

2 (3.7)

it follows that for the mapping ( )↦ =y v yΠ its Jacobian determinant is

∣ ∣ ( ∣ ∣ )= + −yJacΠ 1 .2
n

2 (3.8)

Suppose that �→⊥φ e: is the restriction of hK on Pe. Thus,

( ( ))
( )

∣ ∣
=

+
h y

φ y

y

Π

1

.K
2

(3.9)

Then by (3.1) and (3.2), we have that

( ) ( ( ))∣∂ = ⊥φ y F K y e, Π . (3.10)

It follows from the homogeneity of degree 1 and the differentiability of hK that

( ) ( )+ =Dh y e Dh v ,K K
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where ( )=v yΠ . Thus, we can deduce ( ) ( )∣ ( )∣= + =⊥ ⊥Dφ y Dh y e e Dh v e .K K

Let
( ) ( )= −Dh v Dφ y eϱK (3.11)

for some undetermined constant �∈ϱ . By (2.13), we see

( ) ⟨ ( ) ⟩=h v Dh v v, .K K (3.12)

In addition, we have

( ) ( ) ∣ ∣ ( ) ( ) ∣ ∣= = + ∕ + = ∕ +v y y e y h v φ y yΠ 1 , 1 .K
2 2 (3.13)

By substituting (3.11) and (3.13) into (3.12), we have

( ) ⟨ ( ) ⟩+ =φ y Dφ y yϱ , . (3.14)

Together (3.11) with (3.14), it follows that

( ) ( ) ( ( ) ⟨ ( ) ⟩)− = − ⋅Dh v Dφ y φ y Dφ y y e, .K (3.15)

According to (3.4), we easily see that for a Borel set ⊂ ⊥ϑ e ,

� ( ( )∣ ) ⟨ ⟩ ( )
( )

( )

∫⎜ ⎟
⎛
⎝

⋃
⎞
⎠

=−
∈

⊥F K v e v e S v, , d .n

v π ϑ
π ϑ

K
1 (3.16)

Thus, it follows from (3.10), (3.3), (3.6), (3.15), (3.8), and (3.9) that

�

�

�

( ) ( ) ⟨ ⟩ ( )

⟨ ⟩ ( )
∣ ( )∣

( ) ( )

( )
∣ ( ) ( ( ) ⟨ ( ) ⟩) ∣ ( ( ))

( ∣ ∣ )
( )

( )

( )
( )

∣ ( ) ∣

( ) ( ( ) ⟨ ( ) ⟩)

∣ ( ) ( ( ) ⟨ ( ) ⟩) ∣

∫ ∫

∫

∫

=

=
⎛
⎝

⎞
⎠

=
+ − ⋅

⎛
⎝

⎞
⎠

+

−

− −

−
+ − ⋅
+ − ⋅

−
+

D φ y y v e S v

v e h v
Dh v

g

f v v

φ y
Dφ y φ y Dφ y y e

g

f π y

y

y

det d , d

, d

,

1

d .

ϑ

n

π ϑ

K

π ϑ

K

p K
n

Dh v

Dh v

n

ϑ

p

n

Dφ y φ y Dφ y y e

Dφ y φ y Dφ y y e

n

2 1

1 1

1

,

,

2

1

K

K

n p

2

From this, we have that φ satisfies (3.5) on ⊥e .
In the following, two important lemmas by Caffarelli [56,57], see also [5,54,55], are crucial for the proof

of Theorem 1.1. □

Lemma 3.2. (Caffarelli [56]). Let > >λ λ 02 1 , and let φ be a convex function on an open bounded convex set
�⊂Ω n such that

⩽ ⩽λ D φ λdet1
2

2

in the sense of measure.
(i) If φ is non-negative and { ( ) }= ∈ =W y φ yΩ : 0 is not a point, then W has no extremal point in Ω.
(ii) If φ is strictly convex, then φ is C1.

Lemma 3.3. (Caffarelli [57]). For real functions φ and f on an open bounded convex set �⊂Ω n, let φ be strictly
convex, and let f be positive and continuous such that

=D φ fdet 2

in the sense of measure.
(i) Each ∈z Ω has an open ball ⊂B Ω around z such that the restriction ofφ to B is in ( )C Bβ1, for any ( )∈β 0, 1 .
(ii) If f is in ( )C Ωβ for some ( )∈β 0, 1 , then each ∈z Ω has an open ball ⊂B Ω around z such that the restriction

of φ to B is in ( )C Bβ2, .
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By virtue of the above lemmas, we are able to prove Theorem 1.1.

Proof of Theorem 1.1. We first define

�( ) { ⟨ ⟩ }= ∈ >−e ι v v e ιϒ , : , ,n 1

for �∈ −e n 1 and < <ι0 1. Since hK is continuous on � −n 1 for �∈K o

n, we have < <ι0 11 and >δ 0 such that
( ) ( )⩾ ∈h v δ v e ι, for clϒ , ,K 1 where ι1 and δ depend on e and K . Moreover, there exists < <ε0 1 depending

on e and K such that if some ( )∈v e ιclϒ , 1 is the outer normal at ∈ ∂x K , then

∣ ∣< < ∕ε x ε1 . (3.17)

Noting that for ∈ ⊥y e ,

( ) ( ) ∣ ∣= + ∕ +y y e yΠ 1 .2

we can define

( ( ))= − e ιΞ Π ϒ , .e
1

1

Suppose that �→⊥φ e: satisfies the conditions of Lemma 3.1. Let ∈y Ξe, from (2.12), (3.15), and (3.17),
we obtain

∣ ( ) ( ( ) ⟨ ( ) ⟩) ∣⩽ + − ⋅ ⩽ε Dφ y φ y Dφ y y e
ε

,
1

. (3.18)

Since

( ) ∣ ∣
∣ ∣

= +
⎛

⎝
⎜

+
+

⎞

⎠
⎟ ⩾φ y y h

e y

y

δ1

1
K

2

2

∈y clΞe, we easily obtain that φ also has an upper bound depending on e and K for ∈y clΞe. Since it is
assumed that for positive constants c1 and c2, < ⩽ ⩽c f g c0 , .1 2 According to Lemma 3.1 and (3.18), we obtain
that there exists ( )∈Λ 0, 1 depending on e and K such that for ∈y Ξe,

( )⩽ ⩽D φ yΛ det
1

Λ
.2 (3.19)

For �∈K o

n, we first prove that∂K isC1. That is, for any ∈ ∂z K , ( ) =N K zdim , 1. Assume the contrary and
let ∈ ∂z K0 be such that ( ) ⩾N K zdim , 20 . Let �( )∈ ∩ −e N K z, n

0
1. According to the definition of support

function, and together with ∈ ∂z K0 , we obtain that for ∈y Ξe,

( ) ⟨ ⟩⩾ +φ y y e z, .0

We easily see that

( ( ) ( )) ( ) ⟨ ⟩∈ ≔ ∩ ⇔ = + ∈−y N K z e ι φ y y e z yΣ Π , ϒ , , for Ξ .e
1

0 1 0

Let ( ) ⟨ ⟩= +ψ y y e z, 0 . Then

( ) ( )−
⎧
⎨
⎩
= ∈
> ∈φ y ψ y

y

y

0 for Σ

0 for Ξ \Σ.e

From (3.19), and together with the fact that ψ is the first degree polynomial, it follows that for ∈y Ξe,

( ( ) ( ))⩽ − ⩽D φ y ψ yΛ det
1

Λ
.2

Since ⩾dimΣ 1, we have

( ( ) ( )) { ( ) ( ) }= ∩ = ∈ − =− N K z e ι y φ y ψ yΣ Π , ϒ , Ξ : 0e
1

0 1
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is not a point. In addition, by the choice of e, the origin o is an extremal point of Σ. From (i) of Lemma 3.2,
we obtain a contradiction.

Next, we further show that φ is strictly convex on clΞe for �∈ −e n 1. Obviously, Ξe is a convex set in � −n 1.
For < <w0 1 and ∈y y, Ξe1 2

with ≠y y
1 2

, we let that ( ( ) )+ + −e wy w y1
1 2

is an outer normal at ∈ ∂z K .
That is,

( ( ) ) ( )+ + − ∈e wy w y N K z1 , .
1 2

Since ∈ ∂z K is a smooth point, it follows that

( ) ( )+ ∉ + ∉e y N K z e y N K z, and , .
1 2

This implies

( ) ⟨ ⟩> +φ y z e y, .
i i

Thus, we can see

( ) ( ) ( ) ⟨ ( ( ) )⟩ ( ( ) )+ − > + + − = + −wφ y w φ y z e wy w y φ wy w y1 , 1 1 .
1 2 1 2 1 2

Therefore,

( ) ( ) ( ) ( ( ) )+ − > + −wφ y w φ y φ wy w y1 1 ,
1 2 1 2

i.e.,φ is strictly convex on an open bounded convex subset in�n. According to (ii) of Lemma 3.2, it follows from
(3.19) and the strict convexity of φ that for any �∈ −e n 1, φ is C1 on Ξe. From this, it follows that hK is C1 on
� { }o\n , and the boundary ∂K contains no segment. This implies that the proof of (i) in Theorem 1.1 is com-
pleted. □

Let’s start with the proof of (ii) in Theorem 1.1. According to the conditions of Theorem 1.1 that f and g are
continuous, and recalling that φ is C1 on clΞe for any �∈ −e n 1, we obtain that the right-hand side of (3.5) is
continuous. From (i) in Lemma 3.3 together with the strict convexity of φ on Ξe, it follows that there is an open
ball ⊂B Ξe centred at o such that φ is C β1, on B for any ( )∈β 0, 1 . From this, we see that hK is locally C β1, on
� −n 1. Therefore, from the compactness of � −n 1, we obtain that hK is globally C β1, on � −n 1. The proof of (ii) in
Theorem 1.1 is completed.

Finally, we prove (iii) of Theorem 1.1. Note that φ is C β1, on B. Since f and g are Cβ on � −n 1, it follows that
the right-hand side of (3.5) is Cβ. On the basis of (ii) of Lemma 3.3, we obtain thatφ is C β2, on an open ball ͠ ⊂B B

of ⊥e centred at o. This gives that hK is locally C β2, on � −n 1. Therefore, hK is globally C β2, on � −n 1 from the
compactness of � −n 1. In view of this, we finish the proof of (iii) in Theorem 1.1.

Acknowledgements: The authors are grateful to the anonymous referees for their very helpful comments and
suggestions that greatly improve the quality and presentation of the original manuscript.

Funding information: This work was supported by Natural Science Foundation of Gansu Province (Grant No.
23JRRG0001), Innovation Foundation for University Teachers of Gansu Province (Grant No. 2024A-149),
and President Foundation of Hexi University (Grant No. QN2023014).

Author contributions: All authors have equally contributed to this work. All authors read and approved the
final manuscript.

Conflict of interest: The authors state no conflicts of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study.

The regularity of solutions to the Lp Gauss image problem  9



References

[1] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, and Y. Zhao, The Gauss image problem, Comm. Pure Appl. Math. 73 (2020), 1406–1452.
[2] C. Wu, D. Wu, and N. Xiang, The Lp Gauss image problem, Geom. Dedicata 216 (2022), 62.
[3] G. Bianchi, K. J. Böröczky, and A. Colesanti, Smoothness in the Lp Minkowski problem for <p 1, J. Geom. Anal. 30 (2020), 680–705.
[4] G. Bianchi, K. J. Böröczky, A. Colesanti, and D. Yang, The Lp Minkowski problem for < <n p 1, Adv. Math. 341 (2019), 493–535.
[5] K. J. Böröczky, and F. Fodor, The Lp dual Minkowski problem for >p 1 and >q 0, J. Differential Equations 266 (2019), 7980–8033.
[6] K. J. Böröczky, P. Hegeduuus, and G. Zhu, On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. IMRN 6 (2016),

1807–1838.
[7] K. J. Böröczky, M. Henk, and H. Pollehn, Subspace concentration of dual curvature measures of symmetric convex bodies, J. Differential

Geom. 109 (2018), 411–429.
[8] K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013), 831–852.
[9] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, and Y. Zhao, The dual Minkowski problem for symmetric convex bodies, Adv. Math. 356

(2019), 106805.
[10] S. Chen, Y. Huang, Q.-R. Li, and J. Liu, The Lp-Brunn-Minkowski inequality for <p 1, Adv. Math. 368 (2020), 107166.
[11] C. Chen, Y. Huang, and Y. Zhao, Smooth solutions to the Lp dual Minkowski problem, Math. Ann. 373 (2019), 953–976.
[12] S. Chen and Q.-R. Li, On the planar dual Minkowski problem, Adv. Math. 333 (2018), 87–117.
[13] H. Chen and Q.-R. Li, The Lp dual Minkowski problem and related parabolic flows, J. Funct. Anal. 281 (2021), 109139.
[14] S. Chen, Q.-R. Li, and G. Zhu, On the Lp Monge-Ampère equation, J. Differential Equations 263 (2017), 4997–5011.
[15] S. Chen, Q.-R. Li, and G. Zhu, The logarithmic Minkowski problem for non-symmetric measures, Trans. Amer. Math. Soc. 371 (2019),

2623–2641.
[16] L. Chen, D. Wu, and N. Xiang, Smooth solutions to the Gauss image problem, Pacific J. Math. 317 (2022), 275–295.
[17] K.-S. Chou, and X.-J. Wang, The Lp Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205

(2006), 33–83.
[18] R. J. Gardner, D. Hug, W. Weil, S. Xing, and D. Ye, General volumes in the Orlicz Brunn-Minkowski theory and a related Minkowski

problem I, Calc. Var. Partial Differential Equations 58 (2019), 12.
[19] R. J. Gardner, D. Hug, S. Xing, and D. Ye, General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem II,

Calc. Var. Partial Differential Equations 59 (2020), 15.
[20] C. Haberl, E. Lutwak, D. Yang, and G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), 2485–2510.
[21] Y. Huang, E. Lutwak, D. Yang, and G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski

problems, Acta Math. 216 (2016), no. 2, 325–388.
[22] Y. Huang, E. Lutwak, D. Yang, and G. Zhang, The Lp Alexandrov problem for the Lp integral curvature, J. Differential Geom. 110

(2018), 1–29.
[23] Q. Huang, S. Xing, D. Ye, and B. Zhu, On the Musielak-Orlicz-Gauss image problem, arXiv:2105.03952.
[24] Y. Huang and Y. Zhao, On the Lp dual Minkowski problem, Adv. Math. 332 (2018), 57–84.
[25] D. Hug, E. Lutwak, D. Yang, and G. Zhang, On the Lp Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), 699–715.
[26] M. N. Ivaki, Deforming a hypersurface by Gauss curvature and support function, J. Funct. Anal. 271 (2016), 2133–2165.
[27] H. Jian and J. Lu, Existence of solutions to the Orlicz-Minkowski problem, Adv. Math. 344 (2019), 262–288.
[28] H. Jian, J. Lu, and X.-J. Wang, Nonuniqueness of solutions to the Lp-Minkowski problem, Adv. Math. 281 (2015), 845–856.
[29] H. Jian, J. Lu, and G. Zhu, Mirror symmetric solutions to the centro-affine Minkowski problem, Calc. Var. Partial Differential Equations 55

(2016), 41.
[30] Y. Jiang, Z. Wang, and Y. Wu, Multiple solutions of the planar Lp dual Minkowski problem, Calc. Var. Partial Differential Equations 60

(2021), 89.
[31] Q.-R. Li, W. Sheng, and X.-J. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc. (JEMS)

22 (2020), 893–923.
[32] Y. Liu and J. Lu, A flow method for the dual Orlicz-Minkowski problem, Trans. Amer. Math. Soc. 373 (2020), 5833–5853.
[33] J. Lu and X.-J. Wang, Rotationally symmetric solutions to the Lp Minkowski problem, J. Differential Equations 254 (2013), 983–1005.
[34] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), 131–150.
[35] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995),

227–246.
[36] E. Lutwak, D. Yang, and G. Zhang, On the Lp Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), 4359–4370.
[37] E. Lutwak, D. Yang, and G. Zhang, Lp dual curvature measures, Adv. Math. 329 (2018), 85–132.
[38] V. Oliker, Embedding �n 1 into � +n 1 with given integral Gauss curvature and optimal mass transport on �n 1, Adv. Math. 213 (2007),

600–620.
[39] A. Stancu, The discrete planar L0 Minkowski problem, Adv. Math. 167 (2002), 160–174.
[40] A. Stancu, On the number of solutions to the discrete two-dimensional L0 Minkowski problem, Adv. Math. 180 (2003), 290–323.
[41] Y. Sun and Y. Long, The planar Orlicz Minkowski problem in the L1 sense, Adv. Math. 281 (2015), 1364–1383.
[42] Y. Sun and D. Zhang, The planar Orlicz Minkowski problem for =p 0 without even assumptions, J. Geom. Anal. 29 (2019), 3384–3404.
[43] Y. Wu, D. Xi, and G. Leng, On the discrete Orlicz Minkowski problem, Trans. Amer. Math. Soc. 371 (2019), 1795–1814.

10  Xiumei Jia and Jing Chen



[44] G. Xiong, J. Xiong, and L. Xu, The Lp capacitary Minkowski problem for polytopes, J. Funct. Anal. 277 (2019), 3131–3155.
[45] Y. Zhao, The dual Minkowski problem for negative indices, Calc. Var. Partial Differential Equations 56 (2017), 18.
[46] Y. Zhao, Existence of solutions to the even dual Minkowski problem, J. Differential Geom. 110 (2018), 543–572.
[47] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014), 909–931.
[48] G. Zhu, The Lp Minkowski problem for polytopes for < <p0 1, J. Funct. Anal. 269 (2015), 1070–1094.
[49] G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (2015), 159–174.
[50] G. Zhu, The Lp Minkowski problem for polytopes for <p 0, Indiana Univ. Math. J. 66 (2017), 1333–1350.
[51] B. Zhu, S. Xing, and D. Ye, The dual Orlicz Minkowski problem, J. Geom. Anal. 28 (2018), 3829–3855.
[52] D. Zou and G. Xiong, The Lp Minkowski problem for the electrostatic p-capacity, J. Differential Geom. 116 (2020), 555–596.
[53] Q.-R. Li, W. Sheng, D. Ye, and C. Yi, A flow approach to the Musielak-Orlicz-Gauss image problem, Adv. Math. 403 (2022), 108379.
[54] Y. Feng, S. Hu, and L. Xu, On the Lp Gaussian Minkowski problem, J. Differential Equations 363 (2023), 350–390.
[55] Y. Feng, W. Liu, and L. Xu, Existence of non-symmetric solutions to the Gaussian Minkowski problem, J. Geom. Anal. 33 (2023), 1–39.
[56] L. Caffarelli, A localization property of viscosity solutions to Monge-Ampère equation and their strict convexity, Ann. of Math. 131 (1990),

129–134.
[57] L. Caffarelli, Interior W p2, -estimates for solutions of the Monge-Ampère equation, Ann. of Math. 131 (1990), 135–150.
[58] R. J. Gardner, Geometric Tomography, 2nd edn., Cambridge University Press, New York, 2006.
[59] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, 2nd edn., Cambridge University Press, New York, 2014.

The regularity of solutions to the Lp Gauss image problem  11


	1 Introduction
	2 Preliminaries
	2.1 Basics regarding convex bodies
	2.2 Basics for Lp Gauss image measure

	3 The regularity of the solution
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


