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Abstract: Let A be a complex unital Banach algebra and (R, R;) be a pair of semiregularities in A. In order
to investigate the boundary of spectra in the axiomatic theory of spectrum, this article defines the concept
of spectrum boundary domination (SBD) of semiregularities and gives a criterion for a pair (R, R,) possessing
SBD property. Furthermore, the conditions such that op(a) = og(a) are described for a € A under
the assumption that the pair (R, R;) possesses SBD property. In addition, the transfer of SBD property
through a Banach algebra homomorphism is discussed.
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1 Introduction

All algebras in this article are complex and unital. Denote by B(X) the Banach algebra of all linear bounded
operators acting on a Banach space X. The ordinary spectrum of an operator T € B(X) is widely studied in the
existence and stability of solutions in the theory of differential equations and integral equations, also closely
related to physics, engineering, quantum mechanics, and other disciplines. The rationale of these studies is the
exploration of the invertibility of T. It was Atkinson who gave a necessary and sufficient condition for T to be
Fredholm, which is that the coset of T is invertible in Calkin algebra C(X), the quotient algebra of B(X) module,
and the ideal of compact operators acting on X. He pioneered the technique of constructing Fredholm-type
operators through quotient homomorphism, which became a link between invertibility and classic Fredholm
theory. As an extension, Fredholm theory involving quotient Banach algebras with respect to inessential ideals
was greatly developed. More abstractly, Fredholm theory with respect to a continuous Banach algebra homo-
morphism was introduced in [1] and developed by many scholars (see for example, [2,3]). This theory is widely
applied, especially in the development of spectral theory in Banach algebra [1,4,5].

On the other hand, by means of Atkinson’s theorem, different classes of operators appeared, accompanied
by the study of associated spectra and their properties, especially spectral mapping theorem and the boundary
of these spectra (see, for example, [6,7]). Then, the concept of various spectra of T gradually became inde-
pendent of Atkinson’s theorem. These spectra of T were defined by a5(T) = {A € C : T - AI isnotin S}, where
S is the set of all linear bounded operators satisfying some condition, which can be seen as generalized
invertibility, such as Saphar condition, consistent in invertibility, and consistent in Fredholm index (see
[8-10]). Meanwhile, instead of B(X), many scholars turned to study spectral theory in more general Banach
algebras or in Hilbert C*-modules [1,11,12].
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Nluminated by the properties of A, the set of invertible elements in a Banach algebra A, Kordula and
Miiller introduced the axiomatic theory of spectrum with the help of regularity [13]. Namely, they assigned to
each a € A a subset of C and call it the spectrum of a associated with R, where R is a regularity in A. Later,
Miiller extended this theory to lower semiregularity and upper semiregularity in [14]. Since then, the axio-
matic theory of spectrum has provided guidance for the research of spectral theory [11,15-20].

Along with the research on spectra, both spectral mapping theorem and topological properties of various
spectra have been inevitably discussed. The former is emphatically studied in the axiomatic theory of spec-
trum. More precisely, the spectrum associated with a semiregularity satisfies one-side spectral mapping
theorem at least. As to the topological properties, the boundary of spectrum is often closely related to
Mobius spectrum, which is one of the issues of great concern in recent decades (see, for example,
[5,21-23]). However, the boundary of spectrum was rarely discussed in the axiomatic theory of spectrum.

For a Banach algebra A with an identity 14, denote the ordinary spectrum of a € A by o 4-1(a), which
is associated with the smallest regularity A1 in A. For a closed subalgebra 8 of A with common identity,
it is well known that

dd g1(a) € 00 4-1(a) € 0 41(a) € og1(a), @

for every a € A, where 0K denotes the topological boundary of K C C. Furthermore, with the help of (1), it is
known that g 4-1(a) = gg4-1(a) under specific conditions, such as 8 being a maximal commutative subalgebra
of A, or A being a C*-algebra and B a C*-subalgebra of A. Therefore, some scholars studied this inclusion
about various spectra in Banach algebra, such as singular spectrum, exponential spectrum, and boundary
spectrum [3,21]. On the other hand, the inclusion of two spectra mentioned earlier has been realized
for concrete semiregularities in B(X) (see, for example, [7,24,25]). The purpose of this article is to probe
the inclusion

dag(a) € ag,(a) € op(a), (Va € A), )

where (R, Ry) is a pair of semiregularities in A, and og(a) (i = 1, 2) means the spectrum of a associated with R;.
From now on, we call a pair (R, Ry) of semiregularities possessing spectrum boundary domination (SBD)
property, provided that it satisfies the inclusion relation (2) for alla € A.

The aim of Section 3 is to give a criterion for SBD property and, furthermore, to study conditions such that
op(a) = oga) for a € A under the assumption that the pair (R, R;) possesses SBD property. In Section 4,
given two Banach algebras A and 8 and an algebra homomorphism T : A — B, we consider the SBD property
transferred from B to A through T. Before that, we obtain some results on the transfer of semiregularity
through T and on the preservation of the associated spectra in the axiomatic theory of spectrum.

2 Preliminaries and facts

In this article, assume that A and 8 are Banach algebras with their respective identities 15 and 1s. Denote
the spectrum of a € A by o 4-1(a) and the spectrum of b € 8 by 0 5-1(b).

For a subset K of C, denote the closure of K by K and the set of the interior of K by intK. If K is a bounded
subset of C, K is indicated to the connected hull of K, the compact set consisting of K together with holes
of C\K, where a hole is a bounded component of C\K. Furthermore, the complement of nK is connected.

In the following, denote by N and D the set of all positive integers and the closed unit disk in C,
respectively. Let us recall the definition of regularity in a Banach algebra.

Definition 1. [13] A non-empty subset R of A is called a regularity if it satisfies the following conditions:

1) ifae A andn €N, thena €R & a® €R,

(2) if a, b, c, and d are mutually commuting elements of ‘A such that ac + bd = 14, thenab ER < a €R
and b € R.
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Following [14], conditions (1) and (2) in Definition 1 can be split into two directions, each of them implying
a one-sided regularity and giving rise to a one-sided spectral mapping theorem.

Definition 2. [14]
(1) A non-empty subset R of A is called a upper semiregularity if it satisfies the following conditions:
(@) ifa€ R andn €N, then a* € R;
(b) if a,b,c, and d are mutually commuting elements of A such that ac + bd = 1, then a €R
andb € R = ab € R;
(c) R contains some neighborhood of identity 1.
(2) A non-empty subset R of A is called a lower semiregularity if it satisfies the following conditions:
(@ ifae A andn €N, thena* €R = a €R,
(b) ifa,b, c, and d are mutually commuting elements of A such that ac + bd = 14, thenab ER = a €R
and b € R.

An interesting fact is that AL, the set of invertible elements in A, is both the smallest regularity and
the smallest lower semiregularity in A. However, it is not the smallest upper semiregularity in A [26].
For instance, EXp(A) = {e%e® ...e% : q; € A,1<i<n,n €N} is an upper semiregularity in A as well as
the principle component of A7}, i.e,, the connected component of A~ containing 14.

Definition 3. A semiregularity R C A assigns to each a € A a subset of C naturally by
or(a) ={A € C : a - Az isnotin R}.

We call it the spectrum of a associated with R.

As we know, o 4-1(a) is a non-empty compact subset of C. For a semiregularity R in A, gg(a) is bounded,
since ag(a) € no 4-1(a) is always valid [14]. The following examples illustrate that the spectrum associated
with a semiregularity may be neither non-empty nor closed.

Example 1. (1) An element a € A is a left zero divisor of A if a # 0 and ax = 0 for some non-zero element
X € A [26]. Let R, = {a € A:a isnot a left zero divisor of A}. Then, R, is a regularity in A [26]. However, o ;(a)
may not be closed and, furthermore, may be empty. Indeed, o (a) is empty if a is zero. In addition, taking
A = B(¢%), we define W € B(¢%) by

(©)

W(Xl’ X2, X3, "') =

By calculation, oz (W) 2 {1, %, %, ,%, .. } and o4(W) = {0} U{l, %, %, ,%, ...}. Besides, for V € B(¢?),

WV = 0 implies V = 0 because W is injective. Furthermore, 0 € o 3(W), ie., o3 (W) is not closed.

(2) An element a € A is called consistent in invertibility (CI) if, for each b in A, ab and ba are invertible
or noninvertible together [27]. Also, a € A is not a CI element if and only ifa € (ﬂ{l\&’{‘l) U (?l;l\?l‘l) [27],
where A; is the set of all left invertible elements in A and A;" is the set of all right invertible elements in A.
Denote by R; the set of all CI elements in A. Then, R, is an upper semiregularity A, and o z,(a) is open for all
a in A because A;\A " and A;\A! are disjoint open sets [26].

More specifically, taking A = B(¢* & ¢%), we define S € B(¢2) by

S(le X2, X3, ) = (XZ, X3, Xa, ) (4)

Furthermore, T € A is defined by

T=

S 0

By calculation, 03(T) = &.
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(3) An element a € A is said to be generalized Drazin invertible if there exists b € A such that ab = ba
and bab = b and that aba - a is a quasinilpotent element [6]. Denote by R; the set of all generalized Drazin
invertible elements in A. Then, R, is a regularity in A [28], and 03,(c) is empty provided that ¢ 4-1(c) is finite
[6, Theorem 4.2], i.e., ¢ is polynomially quasinilpotent by [29, Theorem 2.1].

For a non-empty subset R of A, the following properties can provide a useful tool to verify whether
R is a regularity or a semiregularity.
(P1) ab €ER © a € R and b € R for all commuting elements a, b € A;
(P1) ab € R = a € R and b € R for all commuting elements a, b € A;
(P1") R is a semigroup containing some neighborhood of 14.

Combined with Definitions 1 and 2, we have the following conclusion.

Proposition 1. [26] Let R be a non-empty subset of A satisfying (P1) ((PY), and (P1”) resp.). Then, R is a regularity
(a lower semiregularity, an upper semiregularity resp.).

Different from the definition of regularity (lower semiregularity, upper semiregularity resp.), the property
of (P1) ((PY), and (P1”) resp.) does not involve the identity 14. We can see that R, &1{[1, (ﬂ;l, and A1 satisfy (P1),
and that both R, and Exp(A) satisfy (P1). Indeed, property (P1) ((P1), and (P1”) resp.) is only a sufficient
condition of regularity (lower semiregularity, upper semiregularity resp.). For instance, the set of operators
possessing generalized inverse is a regularity in B(X) without property (P1) [26, Chapter II 13 Lemma 4-5].

3 SBD property

Suppose that (R, Ry) is a pair of semiregularities in A. The aim of this section is to characterize the relation
ogp(a) = og,(a) with the help of SBD property defined below, where a € A.

3.1 Definition and properties

For some semiregularities R; and R, in B(X), we have already known that the inclusion dog (T) C agg,(T) C
og,(T) is valid for every T € B(X). The pair (B, R,) is such an example, where R, is the set of Weyl operators in
B(X) and R, is the set of Fredholm operators in B(X). As a result, one has 00x,(T) € 0g,(T) C gg(T) for every
T € B(X) [7]. Now, we consider this inclusion in the axiomatic theory of spectrum.

Definition 4. Let (R, R;) be a pair of semiregularities in A. R, is said to be an SBD of R, (abbreviated as R,
is R—SBD) if dog(a) C ap,(a) € og(a) holds for every a € A. Meanwhile, we say the pair (B, R;) possesses
SBD property.

Remark 1. If the pair of semiregularities (R, R,) possesses SBD property, then gg,(a) is closed for everya € A.
This is because dog,(a) € gg(a) for every a € A when R, is R—SBD.

The following examples provide some pairs possessing SBD property in Banach algebras.
Example 2. The concepts of the operator mentioned in (1)-(3) can be found in [25].
(1) Now, we consider the collections of classical Fredholm-type operators. Set

R,={T € B(X) : T is a Browder operator};
Rs;={T € B(X): T is a Weyl operator};
R¢={T € B(X) : T is aFredholm operator}.
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Then, R, and R are regularities in B(X) and Rs is an upper semiregularity in B(X). Referring to inclusions
of spectra associated with R(4<i<9) proved by Mili¢i¢ and Veseli¢ in [7], we know that the pairs Ry, Bs)
and (Rs, Rg) possess SBD property.

(2) The following collections of semi-Fredholm-type operators, as extensions of Fredholm-type operators,
form different semiregularities. Set

R;={T € B(X) : T is an upper semi-Browder operator};
Ry={T € B(X) : T is alower semi-Browder operator};
Ry={T € B(X) : T is an upper semi-Weyl operator};
Ri={T € B(X) : T is alower semi-Weyl operator};

Ry ={T € B(X) : T is an upper semi-Fredholm operator};
Ry, ={T € B(X) : T is alower semi-Fredholm operator};
Ri3={T € B(X) : T is a semi-Fredholm operator}.

Then, R; (i = 7, 8, 11, 12) are regularities, Ry3 is a lower semiregularity, while Ry and Ry are upper semiregula-
rities in B(X). Referring to relationships of spectra associated with R; (4 < i < 13) proved by RakoCevi¢ in [24]
and by Mili¢i¢ and Veseli¢ in [7], the following pairs possess SBD property:
(R4) R7)) (R71 Rg)’ (ng Rll)) (I‘élly R13)y (R4y Rg)y (RS) RlO)) (Rl(): Rlz)y
(ﬁlz’ §13)1 (1?5) §9): (§55 ﬁlo): (1?61 Ell): (ﬁﬁr ﬁlZ): (Eﬁx EB)‘
The aforementioned conclusions can be shown in the Figure 1, where the notation —> means that
the pair (R, R,) possesses SBD property.

R7 Rg Rll
R4 R5 RG Rl?»
Rg Ry Rio

Figure 1: SBD property between R, and R, (4 < m < n < 13).

Note that in Figure 1, there is no arrow from R, to R, even if there exists an arrow from R, to R,. If not,
then o (T) and 0 ,(T) are coincident for all T € B(X), which is impossible. Besides, we also cannot conclude
that the pair (R, Ry) or (R,, R,) possesses SBD property if there is no arrow between them.

For instance, let A € B(¢%) be defined by

A(Xl, X2, X3, ) = (0, X1, 0, X2, ) (6)

Then, 0 4,(A) = 03,(A) = D, and 0 4,(A) = 0,(A) = D, which implies that neither (&, R;) nor (R, Rs) possesses
SBD property.

In addition, for operators S and T given in equations (4) and (5), we know o 3,(S) = 0D, 04,(S) =D,
0(T) = 0D and 0,(T) = D. It induces that neither (R, R;) nor (Rs, Ry) possesses SBD property.

On the other hand, from the adjoints of A4, S, and T given in equations (4)-(6), respectively, one can see
that there is no arrow between R; and Rg, nor between Rg and Ry,.

(3) As a variant of Fredholm-type operators, and semi-Fredholm-type operators, BR operators are
described as follows. We call T € B(X) a BR operator if there exists some positive integer n such that the
restriction of T on the range of T" is a R operator, where R denotes any of the following classes: upper (lower) semi-
Fredholm (Weyl/Browder) operators, Fredholm (Weyl/Browder) operators, and semi-Fredholm operators.



6 = Ying Liu et al.

Let

Ru={T € BX):
Rs={T€BX):
Rs={T € BX):
Ry ={T € B(X):
Rg={T € B(X):
Ro={T€BX):
Ry={T€BX):
Ry={T€BX):
Ry={T € BX):
Ry ={T € B(X) :

T
T
T
T
T
T
T
T
T
T

DE GRUYTER

is a B-Browder operator};

is a B-Weyl operator};

is a B-Fredholm operator};

is an upper semi-B-Browder operator};
is a lower semi-B-Browder operator};

is an upper semi-B-Weyl operator};

is a lower semi-B-Weyl operator};

is an upper semi-B-Fredholm operator};
is a lower semi-B-Fredholm operator};
is a semi-B-Fredholm operator}.

Then, R; (i = 14, 16, 17,18, 21, 22) are regularities in B(X), Rj (j = 15,19, 20) are upper semiregularities in B(X),
while Ry is a lower semiregularity in B(X). Referring to relationships of spectra associated with
R; (14 < i < 23), which can be seen in [25], we obtain the following pairs possessing SBD property:

(R14y R‘517)) (R17, RIQ)) <R19) R21), (ﬁm, R23)’ (R14; RlS);
(Iélg) RZO)) (R'ZO) RZZ)! (EZZ: EZ3)) (Iéls) R19)) (§15) RZO))
(1?16: R21), (RIG: RZZ)) (R14, RlS)) (ﬁ15) Rl(i)) (Rl(;, R‘523)'

Continue to use the legend in (2) of Example 2, we can obtain Figure 2.
In Figure 2, arrows in the opposite direction do not exist. Meanwhile, using the operators S, T, and A

again, one can see that Ris and Ry;(or Ryg), Rig and Rig(or Ry) cannot be connected by arrows.

Rig Rao Roo
Ria Rys Rig Ros
Ri7 Rig Ry

Figure 2: SBD property between R, and R, (14 < m < n < 23).

(4) The following collections of left(right) Fredholm-type operators, as other extensions of Fredholm-type
operators, form semiregularities, which are different from semi-Fredholm-type operators. The concepts
of these operators can be found in [30,31]. Set

Ry ={T € BX):
Rs={T€BX):
Rg={T€BX):
Ry={T€BX):
Rg={T € BXX):
Ry ={T € BX):
Ry ={T € BX):
Ry ={T € B(X):

e T B M B I I I

is a left Browder operator};

is a right Browder operator};

is a left Weyl operator};

is a right Weyl operator};

is a left Fredholm operator};

is a right Fredholm operator};

is left Fredholm or right Fredholm};
is an essentially Saphar operator}.

Then, R; (i = 24, 25, 28,29, 31) is a regularity, R,s and Ry, are upper semiregularities, while Ry, is a lower
semiregularity. According to relationships of spectra associated with R (i€ 4,5,6,24,25,26,27,28, 29,30, 31})
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given by [30, Theorem 10] and [31, Theorem 4.3], the following pairs possess SBD property:

(R, R), 24<i<3l,

(R, Ry), j=126,28,30,31,
(Rys, Ry), k =27,29,30,31,
(R, By), p =28,30,31,
Ry, Ry), q=129,30,31,

(Ros, Rso), (Rog, Rag), (Ros, Rs1), (Rg, Ra1), (a0, Ryy).
(5) Let T: A — B be a Banach algebra homomorphism with the strong Riesz property defined by [1].
An element a € A is T-Fredholm if T(a) is invertible in B, while the element a is T-Weyl if a = b + c,
where b € A~ and T(c) = 0g. In addition, an element a € A is T-Browder ifa = b + ¢ with b € A, T(c) = 0g
and bc = c¢b [1]. Set

Ri={a € A :a isa T-Browder element};

Ry;={a € A :a isa T-Weyl element};
R3={a € A :a isa T-Fredholm element}.

From [29, Theorem 2.3, Corollary 2.1], one can see that the pairs of semiregularities (R;, Rj), Ry, R3),
and Ry, R3) possess SBD property.

Proposition 2. Figures 1 and 2 cannot be connected by an arrow. Namely, there is no arrow from I?j 4<j<13)
to R (14 < k < 23) and no arrow from Ry to R;.

Proof. It is clear that the spectra associated with semiregularities R; (4 < i < 23) are bounded. By virtue
of Theorem 1.2 in [32], one has that in Figures 1 and 2, na3,(T) = nop (T) is valid for T € B(X), provided
that the pair (R, R,) possesses SBD property, or equivalently, there is an arrow from R, to R,. Furthermore,
if R, and R, are both in Figure 1 or in Figure 2, through the transmission of equality of connected hulls,
nog (T) = no (T) for T € B(X).

Now, we prove this proposition by contradiction. Assume that Figures 1 and 2 can be connected by an arrow,
which is from some R; in Figure 1 to some Ry in Figure 2, or from Ry to R;. Then, na,(T) = noz(T) 4 < m,n < 23)
for T € B(X). Taking X = ¢ @ ¢2, we define N € B(¢?) by

N(Xl) X2, X3, "') = (0) X1, 01 0) "')'

Then, N is nilpotent, but not Fredholm. Furthermore, T € B(X) is defined by

(S+20 0
T‘[ 0 N]’

where S is the operator given in equation (4) and I is the identity of B(X). Then,

_ [(s +20)2 0
0 0

Since T? |p(r2) = (S + 2I)* is Fredholm, it follows that T |2 is Fredholm, which implies that T is B-Fredholm.
After a tedious computation, we obtain 63(T) = {0} U{A € C : A - 2| =1} and 0z (T) ={A EC : |A - 2| = 1}.
Furthermore, no,(T) = {0} U{A € C : |A - 2| <1}, while no(T) ={A € C : |A - 2| £ 1}. It contradicts with
the equality no3 (T) = noz(T) (4 £ m,n < 23).

Hence, Figures 1 and 2 cannot be connected by an arrow. 0

Proposition 3. Let (R, Ry) be a pair of semiregularities in A such that ag(a) is closed for everya € A.If R, is
open and R, is the union of some connected components of Ry, then the pair (R, R;) possesses SBD property.

Proof. For a € A, one has that og,(a) € og(a) since By C R,. Without loss of generality, we assume that ag,(a)
is non-empty. If a — ylg is in Ry, then either a — uly € R, — Ry ora - ply € Ry. In the first case, since R, is the
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union of some connected components of R,, we have yu is an interior point of g (a). The second case induces
that u is not in gg(a). Furthermore, u € dag(a) since gg(a) is closed. So far, we have proved that the pair
(R, Ry) possesses SBD property. O

Example 3. Suppose that A is a Banach algebra.

(1) Let Ry, = A1 and Ry = A;* U AL, where A;" (A;Y) means the set of left (right) invertible elements in
A. Then, both Rs, and Rs3 are open regularities in A such that Ry, C Rs3 [26]. As is known, Rs3\Ry is also open
such that (R;3\R3) N Ry, = @, which implies that R;, is the union of some connected components of Ris.
It follows from [26] that the pair (Rs, Rs3) possesses SBD property.

(2) Let Ry = Exp(A). It is well known that Rs, is the principle component of Rs. Moreover, the pair
(Ra4, R3y) possesses SBD property from [3].

(3) Let A be B(X). Then, R; is the principle component of Rg, while Rg is the union of some connected
components of Ry, Ry, and R, respectively [33]. Moreover, Ry is the union of some connected components
of Ry, and Ry, is the union of some connected components of Ry;. SBD property among these semiregularities
mentioned above is shown in Example 2.

Set B ={R: R C A a semiregularity, gg(a) is closed for every a € A}, and write R, < R if R, R, € R
such that the pair (B, R,) possesses SBD property.

Proposition 4. (R, <) is a partial order relation.

Proof. Reflexivity. Suppose R € R and a € A, ddg(a) < gr(a) € gr(a) is valid as or(a) is closed.

Antisymmetry. Suppose that R, <R, and R < Ry, which are equivalent to dog(a) € og,(a) € og(a)
and dag,(a) € ag(a) C og,(a) for every a € A. It follows that og(a) = ogg,(a) for everya € A.

If R, # Ry, then at least one of the sets R|\R, and R,\R; is non-empty. Without loss of generality, we suppose
that R,\R; is non-empty. Then, there is x € Ry\R;, which implies 0 € gg,(x) and 0 & gg,(x). It is a contradiction
with gp,(x) = gg,(x). Therefore, R, = Ry.

Transitivity. Suppose that R, < R and R; < R. It is easy to see that intog,(a) € intog(a) for everya € A.
Combined with dog(a) € og,(a), one has

dag(a) € dap,(a) C ag,(a) € ag(a).

Due to Rs < Ry,

6oRl(a) - aoRZ(a) c GRs(a) c oRz(a) c O'Rl(a).

Hence, R; < R;. In all, (R, <) is a partial order relation. O

Figures 1 and 2 partly show the partial order relation for semiregularities in B(X), where the symbol
R, < R, indicates that there exists an arrow from R, to R,, which is shown in Example 2.

Let R be a semiregularity in A. We write rz(a) = sup,c UR(a)l/ﬂ for a € A, provided that oz(a) is non-empty,
called spectral radius of a associated with R. The following proposition induces that the equation rg,(a) = rg,(a)
is valid as long as the pair (B, R,) or (R,, Ry) possesses SBD property.

Proposition 5. Let (R, R,) be a pair of semiregularities in A possessing SBD property. Then, rg(a) = rg,(a)
and ianeJRz(a)MI > infyg%(aﬂm for a € A, provided that og,(a) is non-empty.

Proof. Note that supAEURz(a)I/ll = MaXqepap,(a)|a] aNd MaXjeqy (@)|A| = MaAXaeyy @lal as both nog,(a) and nog(a)
are compact and non-empty. It follows from Theorem 1.2 in [32] that nog,(a) = nog(a) since the pair (R}, R;)
possesses SBD property. Then, we obtain the equality

sup |A| = maxyeq @il
A€ag,(a)
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Moreover, with the help of gg,(a) € gg(a), we obtain the inequality

inf |A] 2 min |y|. 0

A€agy(a) u€ap,(a)

3.2 Equality of spectra related to SBD property

As is well known, for a closed subalgebra C of a Banach algebra A with common identity 14, d0-1(a) € 0 41
(a) € gc1(a) holds for every a € C and that g 4-1(a) = g.-1(a) does not hold in general. However, the afore-
mentioned equation is always valid when A is a C*-algebra and C is C*-subalgebra of A. It is natural to consider
when og(a) = agg,(a) is valid for a in A, where R and R, are semiregularities in A.

In view of the axiomatic theory of spectrum, we will give criteria such that gg(a) = og,(a) for some a in A
with the premise that the pair (R, R;) possesses SBD property.

Theorem 6. Let (Ry, R,) be a pair of semiregularities in A possessing SBD property anda € A. If the complement
of ag,(a) is open and connected, then og(a) = og,(a).

Proof. As the complement of og,(a) is connected, C\og,(a) has only one connected component, i.e., the
unbounded connected component. It induces that gg,(a) = gg,(a) = nag,(a). It follows from Theorem 7.10.3
in [34] and Theorems 1.2 and 1.3 in [32] that og(a) € nog,a) since (R, R,) possesses SBD property. Hence,
og(a) = op,(a). O

Example 4. (1) Recall that a Banach algebra A is semiprime if it has no non-zero nilpotent ideal, and that the
socle of a semiprime Banach algebra A is the algebraic sum of all the minimal left ideals of A (which coincides
with the algebraic sum of all the minimal right ideals of A) [35, Definition 8.2.7]. Assume that A is a modular
annihilator Banach algebra, namely, a semiprime algebra satisfying that the hull of its socle is empty [35,
Definition 8.4.6]. By [35, Theorem 8.6.4] and [35, Theorem 4.3.6], 0 4-1(a) is at most countable for a € A, which
implies 00 z-1(a) = 0 z-1(a) = no z-(a). For any semiregularity R in R, the complement of oz(a) is open and
connected. It follows from Theorem 6 that og(a) = og(a) when Ry and R, are semiregularities in A
with R, < Ry.

(2) Recall that an element a in a Banach algebra A is Riesz if the accumulation of ¢ 4-1(a) is contained in
{0}, which implies that o 4-1(a) is at most countable. Analogous to (1), og,(a) = og,(a) is valid for semiregula-
rities By and R, in A with R, < R;.

Remark 2. The condition in Theorem 6 that the complement of og,(a) is connected is indispensable. Consid-
ering the semiregularities B; and Ry in B(X) mentioned in Example 2, we have known that (R, Ry) possesses
SBD property. Taking X = ¢2, we define A € B(¢?) by

B(Xl’ X2, X3, ) = (0) X1, X2, X3, ) (7)

Then, o3,(B) = 0D, which implies that the complement of ¢ 3,(B) is not connected. However, 0 3,(B) = D is not
coincident with o 3,(B). It shows that if the complement of gg,(a) is not connected, then gg,(a) = og,(a) may fail.

In the following, we continue to probe the condition such that og,(a) = og,(a) for some a € A, where R
and R, are semiregularities in A. Different from Theorem 6, the conditions such that og(a) = og,(a) in the
following no longer only depend on the topological properties of spectra. In more detail, we discuss
the condition in a hermitian Banach*-algebra A with a pair (&, R;) possessing SBD property. Let us recall
the definition of hermitian Banach *-algebra.

Definition 5. [36] Let A be a Banach algebra. An involution on A is a map * : A — A satisfying the following
conditions:

1 (Aa + b)* = *a* + b*,VAEC,a,b € A,

(2) (ab)* = b*a*,Va,b € A;

3 (a¥)* =a,Va € A.
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An element h € A is hermitian if h = h*. Furthermore, A is called a hermitian Banach*-algebra if each
hermitian element h in A satisfies g 41(h) € R.

For a semiregularity R in Banach *-algebra A, R* = R is not automatic. For instance, suppose that X
is a infinity dimensional Hilbert space. Then, R = Ry, is not coincident with Ry;.

Definition 6. Let ‘A be a hermitian Banach *- algebra and R € A be a semiregularity. R is called hermitian
if R* = R.

Theorem 7. Let A be a hermitian Banach *-algebra and a € A be a normal element. If R, and R, are nonempty
subsets of A satisfying the following conditions:

(1) both R, and R, satisfy property (P1);

(2) the pair (R, Ry) possesses SBD property;

(3) R, is hermitian,

then ag(a) = ag,(a).

Proof. Due to dop,(a) S agg,(a) € or(a), og(a) is an empty set when ag,(a) is empty. Without loss of generality,
we suppose that gg,(a) is non-empty.

First, we assume that a € A is a hermitian element. It follows from Proposition 1 that R, and R,
are regularities in A. Then,

op,(a) € op(a) € 0 41(a) CR,
as A is a hermitian Banach*-algebra and (R, R,) possesses SBD property. It induces that
or(a) = oag(a) C og,(a),

which implies og(a) = og,(a).
Now, let a be a normal element of A. For A € og,(a), both a - A1z and (a — Alz)* are in R, since R,
is hermitian. Meanwhile, we have

(a - Alg)*(a - Alg) = (a - Alg)(a — Aln)* € Ry,

since R, satisfies (P1). Furthermore, the hermitian element (a - Algz)*(a - Alzx) € Ry since
0 € og,((a — Alx)*(a — Aln)) = og((a - Alx)*(a - Alg)). Then, a - A1y is in R, because of property (P1).
Therefore, og(a) C ogg,(a).

The converse inclusion is natural. O

In fact, the condition in Theorem 7 that a is a normal element is indispensable. For instance, let A = B(¢2)
and the operator S be given in equation (4). Then, A is a hermitian Banach*-algebra and S is a non-normal
operator. Choose R, = R, and R, = Rg. It has been shown in Example 2(2) that the pair (R, R;) possesses SBD
property. Also, one can see from [26] that R, is hermitian, and both R, and R, satisfy property (P1). However,
o,(S) = D is not equal to gg,(S) = 0D. Therefore, ag(a) = og,(a) may fail when a is not a normal element.

Example 5. (1) Take A = B(I*(D)), the algebra of bounded linear operators on Hilbert space L*(D ), where D
denotes the closed unit disk in C. Then, A is a unital hermitian Banach*-algebra, where for each T € A, T*
is the adjoint of T

Considering the regularities Ry, and R3; mentioned in Example 3, we know that both Rs; and Rs; satisfy the
property (P1), and that the pair (Rs;, Rs3) possesses SBD property. Moreover, Rs; is hermitian since T € B(LA(D ))
is left (right) invertible if and only if T* is right(left) invertible. Let N € B(I*(D)) be defined by Nf(z) = zf(z)
for all f in L*(D). Referring to Proposition 2.5 in [37], N is a normal operator with 03,(N) = D. By virtue
of Theorem 7, one has g 3,(N) = 04,(N).

(2) Let A be the algebra of all continuous functions on Q, where Q is a non-empty compact subset of C. For
f in A, define f*(z) = f(2). Then, A is a unital commutative C*-algebra with ||| = sup,o|f(z)|; furthermore,
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a hermitian Banach*-algebra. Let us think of regularities Ry, and Ry in A, where Ry is the complement
of the set of topological zero divisors in A. From Example 5 and Definition 6 in [26, Chapter I 6], both Rj,
and Ry are nonempty subsets of A satisfying conditions (1), (2) and (3) mentioned in Theorem 7.

Then, 0 z,5(f) = 0z, (f) = f(Q).

4 SBD property relative to a Banach algebra homomorphism

The purpose of this section is to study the transfer of SBD property in view of the axiomatic theory of spectrum
through a Banach algebra homomorphism T'. For this aim, we consider the transfer of semiregularity through
T and the preservation of the associated spectra in the axiomatic theory of spectrum at first.

4.1 Axiomatic theory of spectrum relative to a Banach algebra homomorphism

Fredholm theory relative to a Banach algebra homomorphism was initiated in [1] and has been enriched by
many scholars. Along with the direction, many spectra have been defined and studied. More abstractly, spectra
relative to a Banach algebra homomorphism deserve being studied in axiomatic theory of spectrum. Now,
we consider the preservation of semiregularities by a homomorphism T.

Proposition 8. Suppose that A and B are Banach algebras. Let T: A — B be a homomorphism satis-
fing T(ln) = T(1g).

() IfRis a regularity in 8, then T"(R) is a regularity in A.

(2) IfR is a lower semiregularity in B, then T"Y(R) is a lower semiregularity in A.

(3) If R is an upper semiregularity in 8 and T is bounded, then T™(R) is an upper semiregularity in A.

Proof. (1) It is easy to see that T"X(R) is non-empty. Ifa € A andn € N, then T(a) €ER © T(a)" = T(a") €R
as T is a homomorphism. It follows that
a € TY(R) & a" € TY(R).
For elements a, b, ¢, and d mutually commuting in A, if ac + bd = 14, we have
T(a)T(c) + T(D)T() = 1.
Since R is a regularity in 8,
T(a)T(b) = T(ab) ER < T(a) € R, T(b) ER.
It shows that ab € T™Y(R) if and only if a € T™(R), b € T™(R). Hence, T"Y(R) is a regularity in A.
(2) It is analogous to (1).
(3) It suffices to verify T"Y(R) contains a neighborhood of 1z, provided that T is bounded. Assume

R contains an open neighborhood V of 1. Then, the non-empty subset T7X(V) € T7(R) is open since T
is bounded. Furthermore, T"X(V) is an open neighborhood of 14 as T(1z) = T(1g). O

Proposition 9. Let T : A — B be a homomorphism and R € B be a non-empty set.

(1) If R satisfies (P1), then T"\(R) C A either is an empty set or satisfies (P1).

(2) If R satisfies (P1), then T"Y(R) C A either is an empty set or satisfies (P1).

(3) If R satisfies (P1") and T is bounded such that T(1z) = T(1g), then T"Y(R) C A satisfies (P1").

Proof. (1) Without loss of generality, we assume that T-X(R) is non-empty. For arbitrary commuting elements
a,b € A, we have T(a)T(b) = T(b)T(a). Then,

a,b € TY(R) & T(a), T(h) € R & T(a)T(h) = T(ab) € R < ab € T\(R).
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(2) It is analogous to (1).
(3) Using Proposition 8(3), it suffices to show that T7(R) is a semigroup. Indeed, for any a, b € T™\(R),
T(ab) = T(a)T(b) € R since R is a semigroup in 8. And it is evident that T-(R) satisfies associative law. [J

Next, we will consider the relation between ogz(T(a)) and g7y (a) associated with a semiregularity
R in 8 and T"Y(R) in A, respectively.

Theorem 10. Let T : A — B be a homomorphism satisfying T(1z) = T(1g). If R is a regularity in 8B, then for
everya € A and ¢ € kerT,

ar(T(a)) = a71gy(@) = Op1py(@+ o).

Proof. If or(T(a)) is empty for some a € A, then T(a — A1) = T(a) - Alg € R for all A € C. It follows that
UT-l(R)(a) is empty.

Assume that op(T(a)) is non-empty for a € A. Ifa - A1z € T™Y(R), which is equivalent to T(a — A1) € R,
then A € ox(T(a)) by means of T(1z) = T(1g). Conversely, if T(a) — ulg € R, then T(a - ulg) € R, which
implies u & ar-yg)(a). Hence, ap(T(a)) = a1z (a).

We obtain gr-1gy(a + ¢) = op(T(a + ¢)) = op(T(a)) immediately since T(a) = T(a + ¢) for every a € A,
c € kerT. (I

Moreover, one has the following results for semiregularities.

Remark 3. Let T : A — B be a homomorphism satisfying T(14) = T(1g).
(1) If R is a lower semiregularity in 8B, then for everya € A and ¢ € kerT,

ar(T(@)) = 07r1g(@) = Or1gy @+ c).
(2) If R is an upper semiregularity in 8 and T is bounded, then for every a € A and ¢ € kerT,
ar(T(@)) = a7-1gy(@) = ap1gya+ c).

Note that the equation g7-1z)(a) = gr-1gy(a + ¢) in Theorem 10 may fail for ¢ € kerT as T is not bounded.
However, this equation is possible when T-1(R) has some continuity property. In [13], Miiller considered
several continuity properties of regularity, and we list them as follows. Let R € A be a regularity and og
be the associated spectrum.

P2) Ifa,,a € A, a, — a, A, € or(ay,), An = A, then A € ap(a).

(P3) Ifa,, a € A, a, ~ a, ana = aa, for every n, A, € or(a,), Ay ~ A, then A € ag(a).

PYHIfay, a € A,a, ~ a,a,a = aay, for everyn, then A € gy(a) if and only if there exists a sequence A, € gr(ay,)
such that A, — A.

Naturally, properties (P2)-(P4) can be applied to semiregularity. Then, g1 zy(a) = grig(a + ¢) for
¢ € kerT when T7Y(R) is a semiregularity satisfying (P2). Next, we will consider the preservation of properties
(P2)—(P4) of the spectrum associated with a semiregularity R € 8 by homomorphism T.

Corollary 11. Let T : A — B be a continuous homomorphism satisfying T(14) = T(1g). If R is a semiregularity
in B possessing property (P2) (P3), (P4) resp.), then T"\(R) C A is a semiregularity possessing property (P2)
((P3), (P4) resp.) as well.

Proof. If aj,,a€ A, a,— a, then T(ay),T(a) € A, and T(ay) — T(a) by the continuity of T.
And T(a,)T(a) = T(a)T(ay) if a,a = aa,.

Assume that a semiregularity R € B satisfies property (P2) (or (P3)). If Ay € aripy(an), An = 4,
then A, € gz(T(ay)) by Theorem 10 and Corollary 3; furthermore, A € gr(T(a)) = gr-1gy(a). It induces that

the semiregularity T"Y(R) € A satisfies property (P2) (or (P3)).
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Assume that a semiregularity R C 8 satisfies property (P4). It remains to prove that if A € g7-1z)(a), then
there exists a sequence A, € gr1g)(ay,) such that A, — A. According to Theorem 10, we have A € ar(T(a)).
Furthermore, there exists a sequence A, € 0r(T(ay)) = 07-1g)(@,) such that A, — A since R satisfies (P4).
The proof is complete. O

Specially, let A be a closed subalgebra of 8 with the same identity and i : A — B be the inclusion
mapping. Referring to Theorem 10, we have the following result.

Corollary 12. If R is a semiregularity in B, then ag(a) = ogna(a) for every a € A.

It should be noted that R N A in Corollary 12 is a semiregularity in A, but not a semiregularity in 8.

4.2 SBD property transferred through a Banach algebra homomorphism

From now on, we always assume that T : A — B is a continuous homomorphism satisfying T(14) = T(1g).
This subsection devotes to the transfer of SBD property from B to A through T.

Evidently, if (R, Ry) is a pair of semiregularities in 8 possessing SBD property, then the pair (TX(R)),
T7Y(R,)) possesses SBD property by virtue of Theorem 10. As an application, we will give the conditions such
that T"X(R) is A~-SBD or Exp(A)-SBD.

Theorem 13. Let R be a semiregularity in 8 such that R is B~1-SBD. If T satisfies one of the following conditions:
(1) T is bounded below;

(2) T is an injective open mapping,

then T™(R) is A1-SBD.

Proof. First, suppose that T is bounded below. We know 90 4-1(a) € g4-(T(a)) from [1, (3.1)]. Furthermore,
80 41(a) € 30 41(T(a)) since T(A™) is contained in 871, or equivalently, o451(T(a)) € g 41(a). According
to Theorem 10,

00 g1(a) € da5(T(a)) € ap(T(a)) = ar1ga) € arygs(a), (VYa € A).

It follows from Proposition 8 (1) that T7(8™) is a regularity containing A ! because 87! is a regularity in 3.
Then, a71g1(a) € 0 z1(a).

Second, suppose that T is an injective open mapping. If A € grg)(a) = or(T(a)), then either

A € intag+(T(a)) or T(a) - Mg € B7L.
Case 1: A € intoz1(T(a)).

Because of g4-1(T(a)) C g 4-1(a), we have A € intog-(T(a)) C into 4(a), i.e, A & 30 41(a).
Case 2: T(a) - Alg is invertible in 8.

We will prove that T7Y(R) is A~'-SBD by contradiction. According to Theorem 10, it suffices to prove
arig1(a) € o x1(a) for every a € A.

Assume that A € 9o 4-1(a). Then, there exists a sequence {&,} in the complement of g 4-1(a) and a sequence
{n,} in 0 z-1(a) such that both {£,} and {n,} converge to some A together. In other words, the sequence {a - &,14}
in A7 converges to a - Alg, while the sequence {a - 1,14} in A\A ™ also converges to a — Alz. It induces that
a - Mg is in the boundary of A1, furthermore, a — A14 is a topological zero divisor in A [26, Chapter I 1
Theorem 14]. In other words, there exists a sequence {s;} C A with ||s,]| =1 such that (a - Alg)s, ~ 0
and sp(a - Algz) — 0 [26, Chapter I 1 Definition 13].

Since T is an open mapping, there exists some &§ >0 such that {y € 8 :||y|| < 6} is contained
in {Tx : x € A : ||x|]| < 1}. Furthermore, § < ||T(sy)|| < ||T|| as T is injective. It follows from the continuity
of T that both {T(a - A14)T(sp)} and {T(s,)T(a - A14)} converge to zero.
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Lett, = ”52'3“. Then, both {T'(a - Alg)ty} and {t,T(a - A1)} converge to zero. It induces that T'(a) - Alg
is a topological zero divisor in 8, which contradicts with the assumption T(a) - Alg € 87 O

Remark 4. The condition that T is either a bounded below operator or an injective open mapping in Theorem
13 is necessary. For instance, let X be an infinite dimensional Banach space. We consider the canonical
quotient mapping 7 : B(X) - C(X) and the regularity R = {[T] € C(X) : [T] is invertible in C(X)}. Then,
is a surjective continuous homomorphism, which implies 7(1gx)) = 1¢x). Meanwhile, 7 is not injective,
which implies that 7 does not satisfy the condition shown in Theorem 13. Note that 77'(R) is Rs.
Then, dapxy1(T) = apxy(T) € 0 ,(T) fails if T is a compact operator with nonzero eigenvalues.

As an application of Theorem 13, we can pull elements back from QN(8) (or rad(8)) to QN(A)
(or rad(A)) by T. Recall that QN(A) is the set of all quasinilpotent elements in A and that the radical
rad(A) is the intersection of all maximal left(or right) ideals of A. In addition, rad($8) can be written as
the set {b € B : Bb C QN(8)}.

Corollary 14. Let T, A, and B be as mentioned in Theorem 13.
(1) Ifbisin T(A) N QN(B), then T™\(b) is in QN(A).
(2) Ifbis in T(A) N rad(B), then T™(b) is in rad(A).

Proof. (1) Suppose that b is in T(A) N QN(B). We choose R=A"' in Theorem 13. Then,
90 4-(T7(D)) C o7-151(T7'(b)) = {0} since 0 5-1(b) = {0} = a5 g1(D). It induces that T-'(b) is in QN(A).

(2) Suppose that b is in T(A) N rad(B). For arbitrary a in A, T(a)b ia a quasinilpotent element of 8. Then,
aT~'(b) is a quasinilpotent element of A from (1). It follows that T'(b) is in Rad(A). O

Similar to Theorem 13, one can think of the case that T7%(R) is Exp(A)-SBD, where Exp(A) =
{e%e® .. e% : q; € A,1<i<nn€EN]} is the principle component of AL Denote by g4(a) the spectrum
associated with Exp(A).

Corollary 15. Let T, A, and B be as mentioned in Theorem 13. If R is a semiregularity in 8 such that R
is Exp(8B)-SBD, then T™Y(R) is Exp(A)-SBD.

Proof. It is easy to see that T(Exp(A)) is connected due to the fact that T is continuous and Exp(A)
is connected. It induces T(Exp(A)) € Exp(B). One can see from Proposition 8 (3) that T"(Exp(8B)) 2 Exp(A)
is an upper semiregularity in A; furthermore,

eg(T(a)) = Or1expesy(@) € €a(a)

due to Theorem 10.

If T is bounded below, then dgx(a) € eg(T(a)) by Theorem 213 in [21]. Furthermore, T7(R)
is Exp(A)-SBD as gr(T(a)) = 0r-1g)(@).

Now assume that T is an injective open mapping. We see that the boundary of Exp(A) is a subset of
the boundary of A! since Exp(A) is the principle component of AL, Furthermore, the boundary of Exp(A)
is a subset of the set of all topological zero divisors in A. Using the same trick as in Theorem 13, we can prove
that dgx(a) € or-1gy(a) for all a € A. ([l
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