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Abstract: Based on an equivalent derivative non-linear Schrödinger equation, we derive some periodic
and non-periodic two-parameter solutions of the deformed continuous Heisenberg spin (DCHS) equation.
The ill-posedness of these solutions is demonstrated through Fourier integral estimates in the Sobolev space
H

s

S
2 (for the periodic solution in H

s

S
2 �( ) and the non-periodic solution in H

s

S
2 �( ), respectively). When ≠α 0,

the range of the weak ill-posedness index is < <s1
3

2
for both periodic and non-periodic solutions. However,

the periodic solution exhibits a strong ill-posedness index in the range of < <s
3

2

7

2
, whereas for the non-periodic

solution, the range is < <s1 2. These findings extend our previous work on the DCHS model to include
the case of periodic solutions and explore a different fractional Sobolev space.
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1 Introduction

The deformed continuous Heisenberg spin (DCHS) equation is an important physical model that has received
significant attention in the past few decades. Mikhailov and Shabat [1] were the first to construct an integrable
SO 3( )-invariant DCHS equation, which can be written as

= ∧ + αS S S S S ,t xx x x
2( ) (1)

where ∧ denotes the cross-product of the vector =x t S x t S x t S x tS , , , , , ,1 2 3( ) ( ( ) ( ) ( )), with ⋅ =S S 1 and Sx
2( )

= ⋅S Sx x .
The DCHS equations encompass a wide range of equations that can be transformed into various orders of

non-linear Schrödinger (NLS) equations. Porsezian et al. [2] were the first to demonstrate that (1) is gauge
equivalent to the integrable derivative NLS equation, which has applications in two-photon self-induced
transparency and the propagation of ultra-short light pulses in optical fibers. Similarly, Lakshmanan et al.
[3–7] explored higher-order integrable DCHS equations and found that they can be transformed into higher-
order NLS equations by associating the spin vector with the tangent to a moving curve in Euclidean space. For
the higher-dimensional integrable DCHS [8], methods for deriving the corresponding gauge-equivalent NLS
equations have also been proposed [9].
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If =α 0, then (1) reduces to an isotropic Heisenberg spin (IHS) equation [10], which is an exactly integrable
equation and can be considered as the simplest case of the Landau-Lifshitz (LL) equation [11–13]. The following
articles illustrate some typical progress on the LL equation. Alouges and Soyeur [14] established some neces-
sary conditions for the existence of a global weak solution. When the spatial dimension is =n 1 with periodic
boundary conditions, Guo and Huang [15] proved the existence of a unique smooth solution using the tech-
nique of spatial differences. In 3� , Carbou and Fabrie [16] proved the local existence and uniqueness of regular
solutions, as well as the global existence when the initial data are sufficiently small. Chang et al. [17] estab-
lished the existence of small-data global solutions in cylindrical coordinates. In normal coordinates, a global
solution with small initial values was also shown to exist [18] under certain norms. In dimensions larger than
three, the global existence and uniqueness of mild solutions were demonstrated [19] under a smallness
condition. Similarly, under a smallness constraint in Morrey spaces, Lin et al. [20] extended this result to
establish the existence of a global solution. Moreover, the solution with small initial data in critical Besov space
was shown [21] to be globally well-posed in dimensions ≥n 3.

Inspired by studies of heat flow in harmonic maps [22] and the Ginzburg-Landau equation [23], estimates
of the concentration set of the stationary weak solutions of the LL equation have been made [24–26] to analyze
the solution’s behavior near singular points. Moreover, the singularity properties, including finite-time
blowup, have been demonstrated for a special type of solution. In particular, when the topological degree
is one, the equivariant solution exhibits blowup behavior, and its blowup rate was predicted in previous
studies [27–29]. It is well known that exact solutions to the LL equation provide a more intuitive way to study
its dynamic behavior. For further details, we refer the reader to [30–35].

Since (1) is a quasilinear equation, analyzing the well-posedness of the system directly presents significant
challenges. The theory of well-posedness for partial differential equations (PDEs) is not fully developed. As a
result, many studies rely on an equivalent system of the original equation (particularly the equivalent NLS
equation) to demonstrate the well-posedness of solutions to these PDEs. Examples include the Schrödinger
equation with derivative:

− = −
+

∇ ⋅ ∇W W
W

W
W Wi Δ

2 *

1
t 2∣ ∣

and its equivalent covariant derivative form:

− = −iD D D Ψ iIm ΨΨ* Ψ .t j j k j j j( ) ( )

In a similar manner, we use an equivalent complex equation to study the DCHS equation. Let the curvature
κ and torsion τ be defined as

= ⋅ =
⋅ ×

κ τ
κ

S S
S S S

and ,x x

x xx

2

1

2( )
( )

respectively.
We apply the following Hasimoto transform [2,36,37]:

∫=
⎛

⎝
⎜ ′ ′

⎞

⎠
⎟

−∞

Q κ τ t x xexp i , d

x

( )

to convert (1) into the following non-linear derivative Schrödinger equation (see [2]):

+ + − =Q Q Q Q α Q Qi
1

2
i 0,

t xx x
2 2∣ ∣ (∣ ∣ ) (2)

where the parameter α specifies the contribution of the non-linear term Q Q x
2(∣ ∣ ) .

Equation (2) is a combination of the cubic Schrödinger equation and the Alfvén equation. If iα Q Q x
2(∣ ∣ )

is omitted, (2) reduces to the well-known cubic Schrödinger equation, which has been thoroughly studied.

However, if the cubic term Q Q
1

2

2∣ ∣ is removed, (2) becomes the Alfvén equation, which originates from plasma
physics [38]. For the Alfvén equation, various well-posedness results have been established. Hayashi [39]
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proved its global well-posedness in H 1. Similar results can also be found in [40,41]. Furthermore, Takaoka [42]

examined solutions with rougher initial data and demonstrated local well-posedness in Hs with >s
1

2
using an

equivalent equation. When the initial condition Q
0
satisfies <Q π2L0

2‖ ‖ , Hayashi and Ozawa [43] used mass
conservation to show that the solution is global. However, a soliton-type solution is ill-posed in Hs

for < <s0
1

2
[44].

In comparison with well-posedness results, studies on the ill-posedness of PDEs are relatively scarce.
The ill-posedness often depends on the specific solutions. Different solutions may correspond to different
ill-posedness spaces and have varying ill-posedness indices. This variability makes it challenging to obtain
a general ill-posedness result. Although Bigioni and Linares established the ill-posedness for a class of solu-
tions as early as 2001, it remains unclear whether solutions with general initial boundary data or more general
derivative Schrödinger equations also exhibit ill-posedness in certain specific spaces. Notably, the solution
discussed in [44] is considered in the entire space Hs �( ).

To the best of our knowledge, there are few studies on the ill-posedness of the DCHS equation. In a recent
study [45], we provided a proof of the ill-posedness of the solution and identified an exact index range for
the first time. As far as we know, no other studies have addressed this topic, and further research is needed.
In light of this, we build upon our previous work [45] to further explore the ill-posedness of the DCHS equation,
extending the results to various solutions (periodic and non-periodic solutions) and different fractional
Sobolev spaces (which will be defined below).

Here, we investigate the ill-posedness of (1) and (2). For ≥σ 0, let J σ denote the Fourier multiplier
→ + ∕ξ ξ1 σ2 2( ∣ ∣ ) . The spaces Hσ (including Hσ �( )) and the periodic space Hσ �( ) (where the period is � ) are

defined by the norm =f J fH
σ

L
σ 2‖ ‖ ‖ ( )‖ , where L2 is defined over � or � , characterizing complex fractional

Sobolev spaces.
With the initial condition Q

0
, the solution of equation (2) is classified as ill-posed in Hs (whether in Hs �( )

or Hs �( )) and can be characterized as follows:
(I) Weak ill-posedness: Let C̃ be a given constant. For any real >δ 0, the solution is weakly ill-posed in Hs if
and only if

− ≤Q x Q x δ, 0 , 0 ,
c ω c ω H, ,

s

1 1 2 2
‖ ( ) ( )‖

⋅ ∈ ⋅ − ⋅ ≥Q T H Q T Q T C, , , , ˜.
c ω

s

c ω c ω H, , ,j j

s

1 1 2 2
( ) ‖ ( ) ( )‖

(II) Strong ill-posedness: For any >ε 0 and >δ 0, the solution is strongly ill-posed in Hs if and only if

− ≤

⋅ − ⋅ ≥

⋅ = ⋅ >

−

−

Q x Q x δ

Q T Q T ε

Q T Q ε

, 0 , 0 ,

, , ,

, , 0 .

c ω c ω H

c ω c ω H

c ω H c ω H

, ,

, ,

1

, ,

1

s

s

j j

s

j j

s

1 1 2 2

1 1 2 2

‖ ( ) ( )‖

‖ ( ) ( )‖

‖ ( )‖ ‖ ( )‖

Given that =κ Q‖ ‖ ‖ ‖ and = ⋅κ S Sx x

1

2( ) , there exists an equivalence between the norms of Q and S.
Thus, we can use the norm of Q to estimate the norm of S. Let =F F F F, ,1 2 3( ) and =G G G G, ,1 2 3( ). We define
the induced distance as

∑=
⎡
⎣⎢

−
⎤
⎦⎥=

d F G F G, ,σ

l

l l H

1

3

2
σ

1

2

( ) ‖ ‖

which is used to define the vector norm in ∗H
σ as follows:

∑ ⎟⎜=
⎛
⎝

⎞
⎠=

∗F F .H

l

l H

1

3

2
σ σ

1

2

‖ ‖ ‖ ‖

Similarly, the induced norm of H
σ

S
2 (H σ

S
2 �( ) and H

σ

S
2 �( )) for the vector S (where ∞S is the value of S at = ∞x )

is defined as

= ∗S SH H
σ σ

S
2 � �‖ ‖ ‖ ‖( ) ( )
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and

= − ∞ ∗S S S ,H H
σ σ

S
2 � �‖ ‖ ‖ ‖( ) ( )

respectively.
It is straightforward to observe that if ∈Q C T H0, ; σ([ ] ) is the solution of (2), then the solution of (1)

satisfies ∈ +
C T HS 0, ;

σ

S

1
2([ ] ). Similarly, in H

s

S
2 �( ) or H

s

S
2 �( ), two types of ill-posedness are defined as follows:

(I) Weak ill-posedness: The solution is weakly ill-posed in H
s

S
2 if and only if

− ≤x x δS S, 0 , 0 ,c ω c ω H, ,
s

1 1 2 2
S

2
‖ ( ) ( )‖

⋅ ∈ ⋅ − ⋅ ≥T H T T CS S S, , , , ˜.c ω
s

c ω c ω H, S , ,j j
s2

1 1 2 2
S

2
( ) ‖ ( ) ( )‖

(II) Strong ill-posedness: The solution is strongly ill-posed in H
s

S
2 if and only if

− ≤x x δS S, 0 , 0 ,c ω c ω H, ,
s

1 1 2 2
S

2
‖ ( ) ( )‖

⋅ − ⋅ ≥ −T T εS S, , ,c ω c ω H, ,
1

s
1 1 2 2

S
2

‖ ( ) ( )‖

⋅ ⋅ > −T εS S, , , 0 .c ω H c ω H, ,
1

j j
s

j j
s

S
2

S
2

‖ ( )‖ ‖ ( )‖

Using Fourier analysis, we obtain the following result:

Theorem 1. There exists a solution x tS ,( ) of (1) in H
s

S
2, and the mapping → tS S0 ( ) is ill-posed. Specifically,

if ≠α 0, there exist the following two-parameter solitary wave solutions Sc ω, :
(I) Weak and strong ill-posedness for periodic solutions: If Sc ω, satisfies the constrained curvature condition

⎟⎜⋅ =
⎛
⎝

⎛
⎝

⎞
⎠ +

⎞
⎠

−

A B A ξ CS S 2 cos
1

2
,x x 1 1 1

2

1

1

2

1

2

( )

where = −ξ x ct, = +A c ω41
2 , = − + +B α ω αc4 11

2 , and = − − − + + −C αc α ω αc2 1 21
2 , then the solu-

tion is weakly ill-posed in H
s

S
2 �( ) for < <s1

3

2
, and strongly ill-posed in H

s

S
2 �( ) for < <s

3

2

5

2
.

(II) Weak and strong ill-posedness for non-periodic solutions: If Sc ω, satisfies the constrained curvature
condition

⎜ ⎟⋅ =
⎛
⎝

+ +
⎞
⎠

− −
e B

A

e B

A

C

A
S S 2 ,x x

A ξ A ξ
2

2

2

2

2

2

2

2

2

1

2

2 2

1

2

( )

where = −ξ x ct, = − −A c ω42
2 , = − + +B ωα αc 12

2 , and = +C αc 22 , then the solution is weakly ill-posed

in H
s

S
2 �( ) for < <s1

3

2
, and strongly ill-posed in H

s

S
2 �( ) for < <s1 2.

Remark 1. In addition to (1), many more general DCHS models exist. For instance, Lakshmanan and Ganesan
[46] proposed a generalized case that includes linear inhomogeneities (as well as higher-order integrable DCHS
equations), which is given by

= + ∧ + ∧ − + − ⎛
⎝ + ⎞

⎠γ μ x μ γ μ x γS S S S S S S S S
3

2
,t xx x x xx x

x

2 2 2 1 1

2( ) ( ) (3)

where the parameters γ
1
and γ

2
represent the constant coefficients that modulate the linear terms of the spin

field dynamics. The terms with coefficients μ
1
and μ

2
introduce linear inhomogeneities, meaning that the

influence of the respective terms varies linearly with the spatial coordinate x . γ is a crucial parameter that
regulates the non-linear effects within the spin field.

To the best of our knowledge, the well-posedness and ill-posedness of (3) remain open problems.
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The Hσ norm of Q is equivalent to the +
H

σ

S

1
2 norm of S. To prove Theorem 1, it suffices to prove the

following equivalent theorem:

Theorem 2. Let ≠α 0 and = −ξ x ct; Ai, Bi, and Ci ( =i 1, 2) are as defined in Theorem 1. Then, (2) has a two-
parameter solitary wave solution:

= −Q ξ t e ϕ ξ e, ,
c ω

ωt ψ ξ

,

i i( ) ( ) ( ) (4)

where ϕ ξ( ) and ψ ξ( ) can be given by

⎟⎜=
⎛
⎝

⎛
⎝

⎞
⎠ +

⎞
⎠

−

ϕ ξ A B A ξ C2 cos
1

2
,1 1 1

2

1

1

2

( ) (5)

=
+

⎛

⎝

⎜
⎜

⎛
⎝

⎞
⎠

+

⎞

⎠

⎟
⎟ +ψ ξ

αA

B C C

C A ξ

B C C
cξ

3
arctan

tan
1

2
,

1

1 1 1

1

1

2 1

1 1 1

( )
( ) ( )

(6)

or

⎜ ⎟=
⎛
⎝

+ +
⎞
⎠

− −

ϕ ξ
e B

A

e B

A

C

A
2 ,

A ξ A ξ
2

2

2

2

2

2

2

2

2

2 2

1

2

( ) (7)

⎜ ⎟= − ⎛
⎝

+ ⎞
⎠

+ψ ξ
e B C

αA
cξ3 arctan

2 1

2
.

A ξ
2 2

2

2

( ) (8)

These two types of solutions are ill-posed:
(I) Solution (4), where ϕ ξ( ) and ψ ξ( ) are given by (5) and (6), respectively, is weakly ill-posed in Hs �( )

for < <s0
1

2
, and strongly ill-posed in Hs �( ) for < <s

1

2

3

2
.

(II) Solution (4), where ϕ ξ( ) and ψ ξ( ) are given by (7) and (8), respectively, is weakly ill-posed in Hs �( )

for < <s0
1

2
, and strongly ill-posed in Hs �( ) for < <s0 1.

Remark 2. The Alfvén equation has a class of ill-posed solutions in Hs �( ) for < <s0
1

2
[44]. As shown in case

(I), when the cubic term Q Q
1

2

2∣ ∣ is added to the Alfvén equation, ill-posed solutions still exist. Additionally,
previous studies have focused only on the weak ill-posedness of soliton-type solutions over the entire space
Hs �( ). However, Theorem 2 demonstrates that solutions to the derivative Schrödinger equation with the

Q Q
1

2

2∣ ∣ term exhibit both weak and strong ill-posedness in Hs �( ) and Hs �( ).
Moreover, it has been shown [4] that (3) is geometrically and gauge equivalent to the generalized NLS

equation with linear inhomogeneities:

∫+ + + + + + +
⎛

⎝
⎜ + ′

⎞

⎠
⎟ + + =

−

Q μ Q γ μ x Q γ μ x Q Q Q μ Q Q Q x γ Q Q Qi i i 2 2 d i 6 0.
x xx x

x

x

xxx x1 1 1 1 2 2

2

2

2 2( ) ( )( ∣ ∣ ) ∣ ∣ ( ∣ ∣ ) (9)

Similar to (3), the questions of well-posedness and ill-posedness for (9) remain open.

This article is organized as follows: in Section 2, we construct the (non-)periodic traveling wave solutions
for the equivalent non-linear derivative Schrödinger equation associated with the DCHS equation. In Section 3,
we prove the ill-posedness of the periodic traveling wave solution and present the range of the ill-posedness
index. In Section 4, we establish the weak and strong ill-posedness of the non-periodic solution (soliton
solution) and estimate the corresponding ill-posedness indices.
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2 (Non-) periodic solutions to the DCHS equation

Under the plane wave variable = −ξ x ct, we assume that the soliton solution of (2) is given by

= −Q t x e ϕ ξ e, ,
c ω

ωt ψ ξ

,

i i( ) ( ) ( ) (10)

where the parameter c represents the wave speed of the traveling wave solution.
By substituting (10) into (2) and separating the real and imaginary parts, we obtain

⎜ ⎟+ − ⎛
⎝

⎞
⎠

+ + + =cϕ
ψ

ξ
αϕ

ψ

ξ

ψ

ξ
ϕ ωϕ ξ ϕ

ϕ

ξ

d

d

d

d

d

d

1

2

d

d
03

2

3

2

2
( ) (11)

and

⎟⎜− − + + ⎛
⎝

⎞
⎠

=c
ϕ

ξ
αϕ

ϕ

ξ

ψ

ξ

ϕ

ξ

ψ

ξ
ϕ

d

d
3

d

d
2

d

d

d

d

d

d
0,2

2

2
(12)

where the parameter α (the same one as in (2)) quantifies the strength of the non-linearity in the system.
Note that (11) and (12) form a system of first-order differential equations with respect to the variable ξ .

To solve this system, from (12), we find

∫= + +
+

ψ c
cξ αϕ c

ϕ
ξ

2

3 4

4
d .2

4
1

2
(13)

Substituting (13) into (11), we obtain

⎟⎜
⎛
⎝

⎞
⎠

+ + + − + + − =
ϕ

ξ
ϕ α ϕ αcϕ ϕ c αϕ c ϕ ωϕ c16

d

d
3 8 8 8 4 16 16 0.

2

2

3 2 8 6 6
1

4 2 4 4
1

2 (14)

To solve (14), we define an auxiliary function

∑⎜ ⎟
⎛
⎝

⎞
⎠

=
=

ϕ

ξ
h ϕ

d

d
,

j

j
j

2

0

6

(15)

where hj are the undetermined coefficients.
By (15), the second derivative of ϕ must satisfy the following equation:

∑=
=

−ϕ

ξ
jh ϕ ξ

d

d

1

2
.

j

j
j

2

2

1

6

1( ) (16)

Substituting (15) and (16) into (14) and comparing the powers of ϕ, we obtain

⎜ ⎟ ⎟⎜
⎛
⎝

⎞
⎠

= − + ⎛
⎝− − ⎞

⎠ + ⎛
⎝

− − ⎞
⎠

− −ϕ

ξ

α
ϕ

αc
ϕ

αc c
ω ϕ c ϕ

d

d 16 4

1

4 2 4
.

2 2

6 4 1
2

2
1

2 2 (17)

Next, in (17), we consider the case where =c 01 , which simplifies to

⎜ ⎟
⎛
⎝

⎞
⎠

= −⎡
⎣⎢

+ ⎛
⎝− − ⎞

⎠ − − ⎤
⎦⎥

ϕ

ξ

α
ϕ

αc
ϕ

c
ω ϕ

d

d 16 4

1

4 4
.

2 2

4 2

2

2 (18)

For the ordinary differential equation (18), if = = = =h h h h 00 1 3 5 , <h 06 , − >h h h4 04

2
2 6 , >h 02 ,

and <h 04 , then (15) has the following bell-shaped solution:

=

⎧

⎨
⎪

⎩⎪

⎛
⎝

⎞
⎠

− − ⎛
⎝ − + ⎞

⎠
⎛
⎝

⎞
⎠

⎫

⎬
⎪

⎭⎪
ϕ ξ

h h ξ

h h h h h h h h ξ

2 sech

2 4 4 sech

2
2

2

4

2
2 6 4

2
2 6 4

2
2

1

2

( )
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and a singular solution:

=

⎧

⎨
⎪

⎩⎪

⎛
⎝±

⎞
⎠

− + ⎛
⎝ − − ⎞

⎠
⎛
⎝±

⎞
⎠

⎫

⎬
⎪

⎭⎪
ϕ ξ

h h ξ

h h h h h h h h ξ

2 csch

2 4 4 csch

.

2
2

2

4

2
2 6 4

2
2 6 4

2
2

1

2

( )

By (15), we have = = = =h h h h 00 1 3 5 , = − −h c ω2

1

4

2 , = − −h αc4

1

4

1

2
, and = −h α6

1

16

2. Hence, we obtain
the following theorem:

Solution 3. Equation (2) has the following solution:

= −Q e e ϕ ξ ,ωt ψ ξi i ( )( ) (19)

where = −ξ x ct and

∫= +ψ ξ
αϕ

ξ
cξ3

4
d

2
.

2

( ) (20)

(I) If >α 0, < − −c α2 1, and < +
ω

αc

α

1

2 , then the equation has the following trigonometric solution:

=

⎧

⎨
⎪

⎩
⎪

⎛
⎝ + ⎞

⎠
⎛
⎝ + ⎞

⎠

− + + − ⎛
⎝ − + + + + ⎞

⎠
⎛
⎝ + ⎞

⎠

⎫

⎬
⎪

⎭
⎪

ϕ ξ

c ω c ω ξ

α ω αc α ω αc c ω ξ

2 sec

1 1 sec
αc

1

4

2 2
1

4

2

2
1

2

2

4

1

2

2
1

4

2

1

2

( ) (21)

and the singular trigonometric solution:

=

⎧

⎨
⎪

⎩
⎪

− ⎛
⎝ + ⎞

⎠
⎛
⎝± + ⎞

⎠

− + + − ⎛
⎝ − + + − − ⎞

⎠
⎛
⎝± + ⎞

⎠

⎫

⎬
⎪

⎭
⎪

ϕ ξ

c ω c ω ξ

α ω αc α ω αc c ω ξ

2 csc

1 1 csc

.
αc

1

4

2 2
1

4

2

2
1

2

2

4

1

2

2
1

4

2

1

2

( ) (22)

(II) If >α 0, < −ω c
1

4

2, and − <−α c2 1 , then the equation has the following bell-shaped solution:

=

⎧

⎨
⎪

⎩
⎪

− ⎛
⎝ + ⎞

⎠
⎛
⎝ − − ⎞

⎠

− + + − ⎛
⎝ − + + − − ⎞

⎠
⎛
⎝ − − ⎞

⎠

⎫

⎬
⎪

⎭
⎪

ϕ ξ

c ω c ω ξ

α ω αc α ω αc c ω ξ

2 sech

1 1 sech
αc

1

4

2 2
1

4

2

2
1

2

2

4

1

2

2
1

4

2

1

2

( ) (23)

and the singular solution:

=

⎧

⎨
⎪

⎩
⎪

− ⎛
⎝ + ⎞

⎠
⎛
⎝± − − ⎞

⎠

− + + + ⎛
⎝ − + + + + ⎞

⎠
⎛
⎝± − − ⎞

⎠

⎫

⎬
⎪

⎭
⎪

ϕ ξ

c ω c ω ξ

α ω αc α ω αc c ω ξ

2 csch

1 1 csch

.
αc

1

4

2 2
1

4

2

2
1

2

2

4

1

2

2
1

4

2

1

2

( ) (24)

Remark 3. Solutions (21) and (22) can be rewritten in a unified form as follows:

=

⎧

⎨
⎪

⎩
⎪

+

− + + ⎛
⎝ + ⎞

⎠ − − − + + −

⎫

⎬
⎪

⎭
⎪

ϕ ξ
c ω

α ω αc c ω ξ αc α ω αc

4 4

4 1 cos 4 2 1 2

.

2

2 2
1

2

2 2

1

2

( )
( )

Similarly, (23) and (24) can also be expressed in a unified form as follows:

=

⎧

⎨
⎪

⎩
⎪

− +
⎛
⎝ − − ⎞

⎠ − + + + − − + + +

⎫

⎬
⎪

⎭
⎪

ϕ ξ
c ω

c ω ξ ωα αc αc ωα αc

4 4

4 cosh 4 1 2 1 2

.

2

2
1

2

2 2 2

1

2

( )
( )
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Figure 1: Complex plane image of the solution when ϕ ξ( ) takes (21), =t 1, and = ∕ω c c‒ 42 . In order to ensure that the image
of periodic solution is drawn continuously, t and x shall meet ⩽ + ⩽c ω x ct‒ 4 ‒

π π

2

1

2

2
1 2
( ) . It is observed from the figure that

the complex plane image of the solution is axisymmetric. Moreover, with the synchronous increase of α and C , the number of times
the complex plane images of the solution around the coordinates origin are intertwined with each other will increase: (a) =α 10,

=c ‒10, =ω ‒15, ∈x 10.4967, ‒9.50327[ ], (b) =α 50, =c ‒50, =ω ‒575, ∈x ‒50.2221, ‒49.7779[ ], (c) =α 500, =c ‒500, =ω ‒62,000 ,
∈x ‒500.07, ‒499.93[ ], and (d) =α 1,000 , =c ‒1,000 , =ω ‒2,49,000 , ∈x ‒1000.05, ‒999.95[ ].
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Remark 4. The evolution of solutions (21) and (23) is illustrated in Figures 1–4, which demonstrate the ill-
posedness of both (21) and (22). By comparing Figures 3 and 4, it is evident that under different parameter
settings, an initial value with a sufficiently small distance at the initial time (Figure 4) can evolve into a solution
with a significantly larger distance at a later time (Figure 3).

Figure 2: Complex plane image of the solution for different but similar c when ϕ ξ( ) takes (21), =t 1, and = ∕ω c c‒ 42 . It can be seen
that when α is fixed and = ∕ω c c‒ 42 , if c changes slightly, the solution will rotate around the coordinates origin: (a) =α 500,

=c ‒501, =ω 24,89,974 , ∈x ‒501.07, ‒500.93[ ], (b) =α 500, =c ‒502, =ω ‒62,499 , ∈x ‒502.07, ‒501.93[ ], (c) =α 500, =c ‒503,
=ω 25,09,974 , ∈x ‒503.07, ‒502.93[ ], and (d) =α 500, =c ‒504, =ω ‒63,000 , ∈x ‒504.07, ‒503.93[ ].

Ill-posedness of the (non-)periodic traveling wave solution  9



3 Ill-posedness of the periodic solution

We establish the ill-posedness property of the solution in (21) and similarly for (22). Equation (21) can be
transformed into the form

⎟⎜=
⎛
⎝

⎛
⎝

⎞
⎠ +

⎞
⎠

−

ϕ ξ A B A ξ C2 cos
1

2
,1 1 1

2

1

1

2

( )

Figure 3: Comparison of the non-periodic solution and periodic solution when =t 1. It can be seen that when c increases, the complex
plane image of the solution accelerates to rotate clockwise, and the heart-shaped ring in the middle also increases: (a) complex plane
image of the solution for different c when ϕ ξ( ) takes (23), =t 1, =α 10, = ∕ω c c‒ 42 , and ∈x ‒15, 15[ ] and (b) complex plane image
of the solution for different but similar c when ϕ ξ( ) takes (23), =t 1, and = ∕ω c c‒ 42 .

Figure 4: Comparison between the non-periodic solution and periodic solution when =t 0. It can be seen that the shape of the complex
plane image of the solution is almost the same when Cchanges slightly, for both the periodic and non-periodic solutions: (a) complex
plane image of the solution for different c when ϕ ξ( ) takes (23), =t 1, =α 0, = ∕ω c c‒ 42 , and ∈x ‒15, 15[ ] and (b) complex plane
image of the solution for different but similar c when ϕ ξ( ) takes (23), =t 0, and = ∕ω c c‒ 42 .
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where

= +

= − + +

= − − − + + −

A c ω

B α ω αc

C αc α ω αc

4 ,

4 1 ,

2 1 2.

1
2

1
2

1
2

Thus, (20) becomes equivalent to

=
+

⎛

⎝

⎜
⎜⎜

⎛
⎝

⎞
⎠

+

⎞

⎠

⎟
⎟⎟

+ψ ξ
αA

B C C

C A ξ

B C C
cξ

3
arctan

tan
1

2
.

1

1 1 1

1

1

2 1

1 1 1

( )
( ) ( )

Let

=

=

d A

d A

1

2
,

2 ,

4 1

5 1

and define

= + −h x B x Ccos .1
1

2
1

1

2( ) ( ( ) )[ ]

Then,

⎟⎜

=

=
+

⎛

⎝ +
⎞

⎠
+

ϕ x d h d x

ψ x
αA

B C C

C d ξ

B C C
cξ

,

3
arctan

tan 1

2
.

5
1

4

1

1 1 1

1 4

1 1 1

( ) ( )

( )
( )

( )

( )

[ ]

Define

⎟⎜=
+

⎛

⎝ +
⎞

⎠
g x

αA

B C C

C x

B C C

3
arctan

tan
,1 1

1 1 1

1

1 1 1

( )
( )

( )

( )
[ ]

and

=F x e h x .g x1 i 1
1

( ) ( )[ ] ( ) [ ][ ]

Using (19), we define

= = ∕φ x Q x d e F d x, 0 .
c ω c ω

cx

,

1

, 5
i 2 1

4( ) ( ) ( )[ ] [ ]

We define the Fourier transform on the interval ≔ −T πγ πγ,γ [ ] as

∫=
−

−f ξ
π

f x e x
1

2
d .

πγ

πγ

xξ
1

i� ( )( ) ( )

Let = −γ γZ ,γ [ ]. Then, H Ts
γ( ) is complete in the space of ∞C functions with period Tγ and norm

≔f ξ f ξ .H T
s

L1 Z
s

γ γ
2�‖ ‖ ‖⟨ ⟩ ( )( )‖( ) ( )

In the following, we study the ill-posedness of solution (21). Since solution (21) is periodic in � , its norm
could be infinite in Hs �( ). Therefore, we analyze its ill-posedness over a single period. We first estimate its
inner-product norm over an integer period (with a sufficiently large period λ� ) and then estimate the norm
over a single period � .

Ill-posedness of the (non-)periodic traveling wave solution  11



Proposition 4. If ≠α 0, then the Cauchy problem for equation (2) in Hs �( ) can be ill-posed, i.e., the mapping
→Q Q t

0
( ) is not uniformly continuous. With the initial condition

= = ∕Q φ x d e F d x ,
c ω

cx

0 ,

1
5

i 2 1
4( ) ( )[ ] [ ]

the solution of equation (2) is ill-posed in Hs �( ). Specifically, we have the following:

(I) If < <s0
1

2
, then the solution is weakly ill-posed.

(II) If < <s
1

2

3

2
, then the solution is strongly ill-posed.

Proof. Using the scaling and time-shifting properties of the Fourier transform, we obtain:

⎜ ⎟= ⎛
⎝ − ⎞

⎠
φ ξ

d

d
F

ξ

d

c

d2
.

c ω,

1 5

4

1

4 4

� �( )( ) ( )[ ] [ ]

Next, we compute the norm under different initial conditions:

∫

∫

∫

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

− = −

= ⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

= ⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

≃ + +

⎜ ⎟
⎛

⎝

⎞

⎠

φ φ ξ φ ξ φ ξ ξ

ξ
d

d
F

ξ

d

c

d

d

d
F

ξ

d

c

d
ξ

d d η
d

d
F η

c

d

d

d
F η

d

d

c

d
η

P P P

d

2 2
d

2 2
d

,

c ω c ω

H T

s

c ω c ω

s

s

,

1

,

1 2

Z

,

1

,

1 2

Z

51

41

1

41

1

41

52

42

1

42

2

42

2

41

Z

41

51

41

1 1

41

52

42

1 41

42

2

42

2

1

1

2

1

3

1

s
γ

d
γ

d

γ

d

γ

d

1 1 2 2

41
41

1 1 2 2

41

41

� �

� �

� �

‖ ‖ ⟨ ⟩ ∣ ( )( ) ( )( )∣

⟨ ⟩ ( ) ( )

⟨ ⟩ ( ) ( )

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

(25)

where

∫

∫

∫

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

= ⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

= ⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

= − ⎛
⎝ − ⎞

⎠

+

+

+

P d η
d

d
F η

c

d
F

d

d
η

c

d
η

P d η
d

d
F η

d

d

c

d
F η

d

d

c

d
η

P d η
d

d

d

d
F η

d

d

c

d
η

2 2
d ,

2 2
d ,

2
d .

s s

s s

s s

1

1

41
2 1

Z

51

2

41

2

1 1

41

1 41

42

1

41

2

2

1

41
2 1

Z

51

2

41

2

1 41

42

1

41

1 41

42

2

42

2

3

1

41
2 1

Z

51

2

41

2

52

2

42

2

1 41

42

2

42

2

γ

d

γ

d

γ

d

41

41

41

� �

� �

�

( ) ⟨ ⟩ ( ) ( )

( ) ⟨ ⟩ ( ) ( )

( ) ⟨ ⟩ ( )

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

If Nj ( =j 1, 2) and N are large integers, then we have the following approximation:

= − ≃ − = −c N N ω N

N

,
4

.j j j j

λs
j

2

Assuming <N N1 2 without loss of generality, we obtain

= = − ≃ − −d N d N d d N N N
1

2
, 2 , .j j

λs

j j

λs
λs

4

1

2
5

1

2
41 42 1 2

1
1

2∣ ∣ ∣ ∣

With the estimation

⎜ ⎟
⎛
⎝

−
⎞
⎠

=
d

d

d

d
0,

51

2

41

2

52

2

42

2

2

we conclude that

=P 0.3

1[ ]
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Let ≃η
c

d2

j

j4

. If γ is a positive integer, let ≥γ N and ≃γ N . Considering the Fourier transform on the unit

sphere ∈ −η B N λs
1

1
1

2( ), we apply the mean-value theorem and the Cauchy-Schwarz inequality:

∫

∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

⎜ ⎟ ⎜ ⎟≃ ⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

≃ ′

≤ ′

≃ − ′

≃ − ′

+

+
⎛
⎝ − ⎞

⎠

−

−

+

−

−

−

−

+

−

−

+ −

−

−

P N η F η
c

d
F

d

d
η

c

d
η

N N F ζ ζ η

N dβ F ζ ζ η

N
d

d
η F ζ ζ η

N N N η F ζ ζ η

2 2
d

d d

d d

1 d d

d d .

λs s s

λs s
s λs

d

d
η

c

d

η
c

d

λs s

η
d

d

c

d

η
c

d

η
d

d

c

d

η
c

d

λs s

η
d

d

c

d

η
c

d

λs s

η
d

d

c

d

η
c

d

1

1 2 1

Z

1 1

41

1 41

42

1

41

2

2 1
2 1

Z

2

2

1

2

2

Z

2

2

2

2

1 2

2 41

42
Z

2

2

1 2

2 1
1 2

Z

2

2

1 2

γ

d

γ

d

γ

d

γ

d

γ

d

1

2

41

1

2

1

2

41

41

42

1

41

1

41

1

2

41

41

42

1

41

1

41

41

42

1

41

1

41

1

2

41

41

42

1

41

1

41

1

2

41

41

42

1

41

1

41

� �

�

�

�

�

⟨ ⟩ ( ) ( )

( ( )) ( )

∣( ( )) ( )∣

∣ ∣ ∣( ( )) ( )∣

∣ ∣ ∣ ∣ ∣( ( )) ( )∣

[ ] ( ) [ ] [ ]

( ) [ ]

[ ]

[ ]

[ ]

(26)

By the Fubini theorem,

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫

∫

∫

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

′

= ′ − ′

= ′ − ′

= ′ ⎛
⎝ + ⎞

⎠
⎡

⎣⎢
⎛
⎝

⎞
⎠

−
⎤

⎦⎥

− ′ ⎛
⎝ + ⎞

⎠
⎡

⎣⎢
− ⎛

⎝
⎞
⎠

⎤

⎦⎥

= ′ ⎛
⎝ + ⎞

⎠
⎡

⎣⎢
⎛
⎝

⎞
⎠

−
⎤

⎦⎥

−

−

−

−

− −

−

− +

+

−

−

+

+

−

−

−

η F ζ ζ η

η F ζ ζ η η F ζ ζ η

F ζ η η ζ F ζ η η ζ

F ζ ζ
c

d

d

d
ζ

F ζ ζ
c

d

d

d
ζ

F ζ ζ
c

d

d

d
ζ

d d

d d d d

d d d d

1

2 2
1 d

1

2 2
1 d

1

2 2
1 d .

η
d

d

c

d

η
c

d

γ

d

η
d

d

c

d

η
c

d

γ

d
η

d

d

c

d

η
c

d

c

d

γ

d

ζ
c

d

ζ
c

d

d

d

γ

d

c

d

ζ
c

d

d

d

ζ
c

d

c

d

γ

d

γ

d

c

d

Z

2

2

1 2

0

2

2

1 2

0

2

2

1 2

2

1 2

2

2 2

1 2

2

2

2

1 2 1

41

2

42

41

2

1

2

1 2 1

41

2

42

41

2

Z

1 2 1

41

2

42

41

2

γ

d

γ

d

41

41

42

1

41

1

41

41

41

42

1

41

1

41

41

41

42

1

41

1

41

1

41

41

1

41

1

41

42

41

41

1

41

1

41

42

41

1

41

1

41

41

41

41

41

�

� �

� �

�

�

�

∣ ∣ ∣( ( )) ( )∣

∣( ( )) ( )∣ ∣( ( )) ( )∣

∣( ( )) ( )∣ ∣( ( )) ( )∣

∣( ( )) ( )∣

∣( ( )) ( )∣

∣( ( )) ( )∣

[ ]

[ ] [ ]

[ ]

( )

[ ]

( )

[ ]

[ ]

[ ]

(27)
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Note that

−
=

−
≃

−
=

−−d d

d

N N

N

N N N

N

N N

N
.

λs λs

λs

λs

λs

41
2

42
2

41
2

1 2

1

1 2
1

1 2( )

Then, by (26) and (27), we have

∫

∫

⎜ ⎟ ⎜ ⎟

⎜ ⎟

≤ − ′ ⎛
⎝ + ⎞

⎠
⎡

⎣⎢
− ⎛

⎝
⎞
⎠

⎤

⎦⎥

≃ − ′ ⎛
⎝ + ⎞

⎠

≃ − ′

= − ′

⎜ ⎟

⎜ ⎟

+ −

+ −

+ −
⎛
⎝ − ⎞

⎠
⎛

⎝

⎞

⎠

− +
⎛

⎝

⎞

⎠

P N N N F ζ ζ
c

d

d

d
ζ

N N N F ζ ζ
c

d
ζ

N N N N F ζ

N N N F ζ

2
1 d

2
d

.

λs s

λs s

λs s λs

L

λs s

L

1
1 2 1

1 2

Z

1 2 1

41

2

42

41

2

2 2
1 2

2

Z

1 2 1

41

2

2 2
1 2

2 2 1 1

Z

2

2
1 2

2 1

Z

2

γ

d

γ

d

γ

d

γ

d

1

2

41

1

2

41

1

2

1

2

2

41

1

2

2

41

�

�

�

�

∣ ∣ ∣( ( )) ( )∣

∣ ∣ ∣( ( )) ( )∣

∣ ∣ ∥( ( )) ( )∥

∣ ∣ ∥( ( )) ( )∥

[ ] [ ]

[ ]

[ ]

[ ]

(28)

Similar to the computation of P1,

∫

∫ ∫

∫ ∫ ∫

∫ ∫

⎜ ⎟ ⎜ ⎟ ⎜ ⎟≃ ⎛
⎝

⎞
⎠

⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

≃ ′

⩽ ′

≃ − ′

≃ − ′

≃ − ′

⎜ ⎟

⎜ ⎟

+
+

+
⎛
⎝ − ⎞

⎠

−

−

+

−

−

−

−

+

−

−

+
⎛

⎝

⎞

⎠

− +
⎛

⎝

⎞

⎠

P d
d

d
η F η

c

d
F η

c

d
η

N N F ζ ζ η

N ζ F ζ ζ η

N
c

d

c

d
F ζ ζ η

N
c

d

c

d
F

N N N F

2 2
d

d d

d d d

2 2
d d

2 2

.

s

s

s

λs s s λs

η
c

d

η
c

d

λs s

η
c

d

η
c

d

η
c

d

η
c

d

λs s

η
c

d

η
c

d

λs s

L

λs s

L

2
1

41
2 1 42

41

2 1

Z

2 1 1

41

1 2

42

2

2 1 2 1

Z
2

2

1

2

2

Z
2

2

2

2

1 2

2 1

41

2

42
Z

2

2

1 2

2 1

41

2

42

2

1

Z

2

2
2 1

2 1

Z

2

γ

d

γ

d

γ

d

γ

d

γ

d

γ

d

41

1

2

1

2

41

2

42

1

41

1

2

41

2

42

1

41

2

42

1

41

1

2

41

2

42

1

41

1

2

2

41

1

2

2

41

� �

�

�

�

�

�

( ) ∣ ∣ ( ) ( )

( ( )) ( )

∣( ( )) ( )∣

∣( ( )) ( )∣

∥( ( )) ∥

∣ ∣ ∥( ( )) ∥

[ ] [ ] [ ]

( ) [ ]

[ ]

[ ]

[ ]

[ ]

(29)

Note that

∫′ = =
+ +

= +∞
−∞

+∞

F xh x
x

B x B C
x

2

cos 2 2
d .

L L

1 2 1 2

2

1 1 1

2 2� �
�∥( ( )) ∥ ∥ ( )∥

( )
[ ]

( )
[ ]

( )

This implies that the estimates of the supremum in (28) and (29) for P1

1[ ] diverge to infinity, because F∣ ∣

is a function with period π .
Moreover, using the Plancherel theorem, we can estimate F as follows:

∫

=

=
+ +

−

F h x

x

B x B C

2d

cos 2 2

L L T

γπ

d

γπ

d

1

Z

2 1 2

1 1 1

γ

d

γ

d

2

41

2

41

41

41

�∥ ( )∥ ∥ ( )∥

( )

[ ]
( )

[ ]
( )

(30)
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∫ ∫

∫ ∫

=
+ +

+
+ +

≤
+

+

=
+

+

≃

−

−

−

x

B x B C

x

B x B C

x

B C

x

C

γπ

B C d

γπ

C d

γ

d
N

2d

cos 2 2

2d

cos 2 2

2d

2

d

2

2

.

γπ

d

γπ

d

γπ

d

γπ

d

0
1 1 1

0

1 1 1

0
1 1

0

1

1 1 41 1 41

41

1

41

41

41

41

( ) ( )

( )

Similarly,

∫

∫ ∫

∫ ∫

′ =

=
+ +

=
+ +

+
+ +

≤
+

+

=
+

+

≃

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

−

−

−

−

F xh x

x x

B x B C

x x

B x B C

x x

B x B C

x x

B C

x x

C

γ π

B C d

γ π

C d

γ

d
N

2 d

cos 2 2

2 d

cos 2 2

2 d

cos 2 2

2 d

2

d

2

3 2 3

.

L L T

γπ

d

γπ

d

γπ

d

γπ

d

γπ

d

γπ

d

1

Z

2 1 2

2

1 1 1

0

2

1 1 1

0
2

1 1 1

0

2

1 1

0
2

1

3 3

1 1 41
3

3 3

1 41
3

3

41
3

1

γπ

d

γπ

d

2

41

2

41

41

41

41

41

41

41

�∥( ( )) ∥ ∥ ( )∥

( )

( ) ( )

( )

[ ] [ ]

(31)

Similarly, we can estimate the lower bound of ′F�( ( )) ,

∫ ∫

∫ ∫

′ =
+ +

+
+ +

≥
+

+
+

=
+

+
+

≃

⎜ ⎟
⎛

⎝

⎞

⎠ −

−

−

F
x x

B x B C

x x

B x B C

x x

B C

x x

B C

γ π

B C d

γ π

B C d

γ

d
N

2 d

cos 2 2

2 d

cos 2 2

d d

2

3 3 2

.

L

γπ

d

γπ

d

γπ

d

γπ

d

1

Z

2

0

2

1 1 1

0
2

1 1 1

0

2

1 1

0
2

1 1

3 3

1 1 41
3

3 3

1 1 41
3

3

41
3

1

γ

d

2

41

41

41

41

41

�∥( ( )) ∥
( ) ( )

( ) ( )

[ ]

(32)
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Equations (31) and (32) indicate that ′F�( ( )) is in a scale of −N
γ

d

1
3

41
3 . Combining (25), (28), (29), (31), and (32),

we have the estimate in ⎛
⎝

⎞
⎠H Ts γ

d41

− ≤ −
⎜ ⎟
⎛

⎝

⎞

⎠

− + −φ φ N N N
γ

d
.

c ω c ω

H T

λs s

,

1

,

1 2 2 1
2 1

2

3

41
3

s
γ

d

1 1 2 2

41

1

2‖ ‖ ∣ ∣[ ] [ ]

We integrate the function in one period and choose the period as follows:

= ⎡
⎣⎢−

⎤
⎦⎥ = ⎡

⎣⎢−
⎤
⎦⎥T

π

d

π

d
Z

d d
, ,

1
,

1
.

41 41 41 41
d d

1

41

1

41

Then, we have the estimate in ⎛
⎝

⎞
⎠H Ts

d

1

41

− ≤ −
⎜ ⎟
⎛
⎝

⎞
⎠

− + +φ φ N N N .
c ω c ω

H T

λs s

,

1

,

1 2 2 2 1
2 1

2

s

d

1 1 2 2

1

41

‖ ‖ ∣ ∣[ ] [ ]

If − + + <λs s2 2 1 0, let = − + +b λs s2 2 1∣ ∣. Then, we can control the distance between solitons

− =N N δN ,εs
2 1 (33)

to control the norm

− ≤ ≤
⎜ ⎟
⎛
⎝

⎞
⎠

−φ φ Cδ N Cδ˜ ˜ ,
c ω c ω

H T

εs b

,

1

,

1 2 2 2 2

s

d

1 1 2 2

1

41

‖ ‖[ ] [ ]

where >C̃ 0 is a constant, and ε and δ are any real values larger than 0.
Similarly, we can estimate the lower bound of F 1�( )[ ]

∫ ∫

∫ ∫

=
+ +

+
+ +

≥
+

+
+

≃

⎜ ⎟
⎛

⎝

⎞

⎠ −

−

−

F
x

B x B C

x

B x B C

x

B C

x

B C

γ

d
N

2d

cos 2 2

2d

cos 2 2

d d

2

.

L

γπ

d

γπ

d

γπ

d

γπ

d

1

Z

2

0
1 1 1

0

1 1 1

0
1 1

0

1 1

41

1

γπ

d

2

41

41

41

41

41

�∥ ( )∥
( ) ( )

[ ]

(34)

Combining (30) and (34), we then compute the norm of φ
c ω,

1[ ] in ⎛
⎝

⎞
⎠H Ts γ

d41

∫ ⎜ ⎟≃ ⎛
⎝ − ⎞

⎠

≃

≃

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

+

⎛
⎝

⎞
⎠ + ⎛

⎝ − ⎞
⎠

⎛

⎝

⎞

⎠

+ −

φ d
d

d
η F η

c

d
η

N N h x

N
γ

d

2
d

.

c ω

H T

s s

λs s s λs

L T

sλ s

,

1 2
4

2 1 5

2

4

2

Z

2 1

4

2

2 1 2 1
1 2

2 1

41

s
γ

d
γ

d

γ

d

41
41

1

2

1

2

2

41

1

2

�‖ ‖ ∣ ∣ ∣ ( ) ∣

‖ ( )‖

[ ] [ ]

( ) [ ] (35)

We then have the estimate of the norm of φ
c ω,

1[ ] in ⎛
⎝

⎞
⎠H Ts

d

1

41

≃
⎜ ⎟
⎛
⎝

⎞
⎠

−φ N .
c ω

H T

s

,

1 2 2 1

s

d

1

41

‖ ‖[ ]

(36)
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Assume that the solution is Q x T,
c ω,j j

( ) at =t T . By the translational invariant of the traveling wave
solution and (36), we have

= ≃
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

−Q x T φ N, .
c ω

H T

c ω

H T

s

,

2

,

1 2 2 1

j j
s

d

j j
s

d

1

41

1

41

‖ ( )‖ ‖ ‖[ ]

On the other hand,

= −− −Q x T e e d h d x c T, .
c ω

iω T iψ x c T
j j j, 5

1
4

j j

j j( ) ( ( ) )( ) [ ]

Restricting Q x T,
c ω,j j

( ) on the sphere −B Tcd j
j4

1( )( ) , we can choose cj and ωj to determine the phase. Then,
combining (30) and (34), we have

∫

− ≃ +

≃ −

≃

≃

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

−

⎛

⎝

⎞

⎠

−

Q x T Q x T Q x T Q x T

d h d x c T x

d
d h x

N
γ

d

, , , ,

d

1

,

c ω c ω

L T

c ω

L T

c ω

L T

j

γπ

d

γπ

d

j j

j

j

L T

λs

, ,

2

,

2

,

2

5
2 1 2

4

4

5
2 1 2

1

41

γ

d

γ

d

γ

d

γ

d

1 1 2 2
2

41

1 1
2

41

2 2
2

41

41

41

2

41

1

2

‖ ( ) ( )‖ ‖ ( )‖ ‖ ( )‖

( ( ))

‖ ( )‖

[ ]

[ ]

So

∫− = + −

≥ −

≃

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠ −

⎛

⎝

⎞

⎠

+ −

Q x T Q x T μ Q μ Q μ μ

N Q x T Q x T

N
γ

d

, , 1 ˆ ˆ d

, ,

.

c ω c ω

H T γ

d

γ

d

s

c ω c ω

s

c ω c ω

L T

s λs

, ,

2 2

, ,

2

2

, ,

2

2 1

41

s
γ

d

γ

d

1 1 2 2

41
41

41

1 1 2 2

1 1 2 2
2

41

1

2

‖ ( ) ( )‖ ( ∣ ∣ ) ∣ ( ) ( )∣

‖ ( ) ( )‖

Furthermore,

− ≥
⎜ ⎟
⎛
⎝

⎞
⎠

−Q x T Q x T N, , .
c ω c ω

H T

s

, ,

2 2 1

s

d

1 1 2 2

1

41

‖ ( ) ( )‖

In the following, we study the separability of the wave packet. We select c1 and c2 such that the wave
exhibits separability on the scale of −N λs

1

2 . Specifically, we need to choose N such that ≫+ −N Tδλs εs 1
1

2 ( ) .
Given the phase difference − =N N δNεs

1 2 from (32), we obtain:

⎜ ⎟− = − ≫ ⎛
⎝

⎞
⎠

≃ −T c c T N N
d d

Nmax
1

,
1

.λs
2 1 2 1

41 42

1

2( ) ( )

As a summary,

− ≤

∈ ⎛
⎝

⎞
⎠ − ≥

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Q x Q x δ

Q x T H T Q x T Q x T ε

, 0 , 0 ,

, , , , .

c ω c ω

H T

c ω

s

c ω c ω

H T

, ,

2

, , ,

2

s

d

j j d
s

d

1 1 2 2

1

41

1

41
1 1 2 2

1

41

‖ ( ) ( )‖

( ) ‖ ( ) ( )‖
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Then, this force >λ 0 and >s 0 to be

⎧
⎨
⎩

− > − + + < − <
⎫
⎬
⎭

λ s sλ λs s s, 1
1

2
0, 2 2 1 0, 2 1 0 .( )∣

We then have the range of the weak ill-posedness index s:

< <s0
1

2
.

Similarly, if we solve the system

⎧
⎨
⎩

− > − + + < − >
⎫
⎬
⎭

λ s sλ λs s s, 1
1

2
0, 2 2 1 0, 2 1 0 ,( )∣

we obtain the strong ill-posedness index s as follows:

< <s
1

2

3

2
. □

4 Ill-posedness of the non-periodic solution

In this section, we study the ill-posedness of (23) and (24). Since equation (23) is not periodic in � and has finite
energy in Hs �( ), we can apply the Fourier transform over the entire real line. We define the Fourier transform
of a Lebesgue integrable function →f : � � as

∫=
−∞

+∞
−f ξ

π
f x e x

1

2
d ,xξ

2
i� ( )( ) ( )

where ξ is any real number.
Let ≔ +x x1 2

1

2⟨ ⟩ ( ∣ ∣ ) . Then, the Sobolev space Hs �( ) is a complete space of ∞C functions with the norm

≔f ξ f ξ .H
s

L2
s 2� ��‖ ‖ ‖⟨ ⟩ ( )( )‖( ) ( )

Note that

= + − −xsech 2 e e .x x 1( ) ( )

Then, the solution in (23) can be transformed to

=
⎛

⎝
⎜

− + + + − + + + +
− −

⎞

⎠
⎟

− − − − −
−

ϕ ξ
ωα αc ωα αc αc

c ω
2

e 1 e 1 2

4
.

c ω x c ω x4 2 4 2

2

2 2

1

2

( )

Let

= − − = − + + = +A c ω B ωα αc C αc4 , 1 , 2.2
2

2
2

2

Then, (23) is transformed to

⎜ ⎟=
⎛
⎝

+ +
⎞
⎠

− −

ϕ ξ
B

A

B

A

C

A
2

e e
.

A ξ A ξ
2

2

2

2

2

2

2

2

2

2 2

1

2

( )

At the same time, (20) is in the form of

⎜ ⎟= − ⎛
⎝

+ ⎞
⎠

+ψ ξ
B C

αA
cξ3 arctan

2e 1

2
.

A ξ
2 2

2

2

( )
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Let

=

=

d A

d
B

A

,

2 ,

4 2

5

2

2

2

and

⎜ ⎟= ⎛
⎝ + + ⎞

⎠
−

−

h x
C

B
e e .A x A x2 2

2

2 2

1

2

( )[ ]

Then,

=ϕ x d h d x .5
2

4( ) ( )[ ]

Let

⎟⎜= − ⎛
⎝

+ ⎞
⎠

g x
B C

αA
3 arctan

2e
,

A x

2 2 2

2

2

( )[ ]

and

=F x e h x .g x2 i 2
2

( ) ( )[ ] ( ) [ ][ ]

By (19), we define

= = ∕φ x Q x d e F d x, 0 ,
c ω c ω

cx

,

2

, 5
i 2 2

4( ) ( ) ( )[ ] [ ]

The transformation formula in � is

⎜ ⎟= ⎛
⎝ − ⎞

⎠
φ ξ

d

d
F

ξ

d

c

d2
.

c ω2 ,

2 5

4

2
2

4 4

� �( )( ) ( )[ ] [ ]

Proposition 5. If ≠α 0, then the Cauchy problem for (2) can be ill-posed in H Ts
λ( ). Specifically, the mapping

→Q Q t
0

( ) is not uniformly continuous. Given the initial condition

= = ∕Q φ x d e F d x ,
c ω

cx

0 ,

2
5

i 2 2
4( ) ( )[ ] [ ]

the solution of (2) can also be ill-posed in Hs �( ). More precisely, we have the following:

(I) If < <s0
1

2
, then the solution is weakly ill-posed.

(II) If < <s0 1, then the solution is strongly ill-posed.

Proof. Similar to (25), we have

∫− = −

≃ + +

φ φ ξ φ ξ φ ξ ξ

P P P

d

,

c ω c ω H

s

c ω c ω,

2

,

2 2
2 ,

2
2 ,

2 2

1

2

2

2

3

2

s

1 1 2 2 1 1 2 2�

�

� �‖ ‖ ⟨ ⟩ ∣ ( )( ) ( )( )∣[ ] [ ]
( )

[ ] [ ]

[ ] [ ] [ ]

(37)

where

∫

∫

∫

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

= ⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

= ⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

= − ⎛
⎝ − ⎞

⎠

+

+

+

P d η
d

d
F η

c

d
F

d

d
η

c

d
η

P d η
d

d
F η

d

d

c

d
F η

d

d

c

d
η

P d η
d

d

d

d
F η

d

d

c

d
η

2 2
d ,

2 2
d ,

2
d .

s s

s s

s s

1

2

41
2 1 51

2

41

2 2
2 1

41

2
2 41

42

1

41

2

2

2

41
2 1 51

2

41

2 2
2 41

42

1

41

2
2 41

42

2

42

2

3

2

41
2 1 51

2

41

2

52

2

42

2 2
2 41

42

2

42

2

�

�

�

� �

� �

�

( ) ⟨ ⟩ ( ) ( )

( ) ⟨ ⟩ ( ) ( )

( ) ⟨ ⟩ ( )

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

Ill-posedness of the (non-)periodic traveling wave solution  19



Assuming ≃η
c

d2

j

j4

, we perform the Fourier transformation on the unit sphere ∈ −η B N λs
1

1
1

2( ).

We can estimate P1

2[ ], as with (26), to obtain

∫ ∫

∫ ∫ ∫

∫ ∫

≃ ′

≤ ′

≃ − ′

+
⎛
⎝ − ⎞

⎠

−

−

+
⎛
⎝ − ⎞

⎠

−

−

−

−

+
⎛
⎝ − ⎞

⎠

−

−

P d
d

d
N F β β η

d
d

d
N α F β β η

d
d

d
N

d

d
η F β β η

d d

d d d

1 d d .

s
s λs

d

d
η

c

d

η
c

d

s
s λs

η
d

d

c

d

η
c

d

η
d

d

c

d

η
c

d

s
s λs

η
d

d

c

d

η
c

d

1

2

41
2 1 51

2

41

2

2 1

2

2

2
2

2

41
2 1 51

2

41

2

2 1

1

2

1

2

1

2

1

2

2
2 2

41
2 1 51

2

41

2

2 1 41

42
1

2

1

2

2
2 2

1

2

41

42

1

41

1

41

1

2

41

42 41

41

41

42 41

41

1

2

41

42 41

41

�

�

�

�

�

�

( ) ( )( )

( ) ∣ ( )( )∣

( ) ∣ ∣ ∣ ( )( )∣

[ ] [ ]

[ ]

[ ]

(38)

Denote

∫ ∫= ′
∞

−

−

I η L β β ηˆ d d .

η
d

d

c

d

η
c

d

1

2

0 1

2

1

2

2

41

42 41

41

∣ ( )∣
[ ]

By Fubini’s theorem, we can change the order of integration

∫ ∫

∫ ⎜ ⎟ ⎜ ⎟

= ′

= ′ ⎛
⎝ + ⎞

⎠
⎡

⎣⎢
⎛
⎝

⎞
⎠

−
⎤

⎦⎥

−

∞

+

⎛
⎝ + ⎞

⎠

−

∞

I F β η η β

F β β
c

d

d

d
β

d d

1

2 2
1 d .

c

d
β

c

d

β
c

d

d

d

c

d

1

2

1

2

2
2 2

1

2

1

2

1

2

2
2 2 1

41

2

42

41

2

41 41

41

42

41

41

�

�

∣ ( )( )∣

∣ ( )( )∣

[ ] [ ]

[ ]

(39)

Moreover, we set

∫ ∫= ′
−∞ −

−

I η F β β ηd d .

η
d

d

c

d

η
c

d

2

2

0

1

2

1

2

2
2 2

41

42 41

41

�∣ ( )( )∣
[ ] [ ]

Similarly,

∫ ⎜ ⎟ ⎜ ⎟= ′ ⎛
⎝ + ⎞

⎠
⎡

⎣⎢
− ⎛

⎝
⎞
⎠

⎤

⎦⎥−∞

−

I F β β
c

d

d

d
β

1

2 2
1 d .

c

d

2

2

1

2

2
2 2 1

41

2

42

41

241

�∣ ( )( )∣
[ ] [ ] (40)

Let Nj ( =j 1, 2) and N be large positive integers with the following relation:

= ≃ = − −c N N ω N

N

,
4

j j j j

λs
j

2

= =
⎛

⎝
⎜⎜

+ ∕ + + ⎞

⎠
⎟⎟ ≃ ≠

−
− +

d N d

α N N αN

N
N α2 ,

4 1

2
, 0.j j

λs

j

j

λs

j j

j

λs j

λs

4

1

2
5

2 2
1

2

1

2

1

2

( )

Assume that <N N1 2. Then, we have

− ≃ − −d d N N N .λs
41 42 1 2

1
1

2∣ ∣ ∣ ∣
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Similarly,

−
=

−
≃

−
=

−−d d

d

N N

N

N N N

N

N N

N

4 4

4

λs λs

λs

λs

λs

41
2

42
2

41
2

1 2

1

1 2
1

1 2( )

and

− = − ≃
−c

d

c

d

N

N

N

N

N N

N2 2
2 2

.
λs λs

1

41

2

42

1

1

2

2

1 2

1

2

1

2

Combining (38)–(40), we obtain

∫⎜ ⎟ ⎜ ⎟

⎜ ⎟

≤ − −

≃ − − ⎛
⎝

⎞
⎠

′ ⎛
⎝ + ⎞

⎠

≃ − − ⎛
⎝

⎞
⎠

′

= − ′

− +

− +

− +
⎛
⎝ − ⎞

⎠

− − +

P N N N I I

N N N
d

d
F β β

c

d
β

N N N
d

d
N F

N N N F

1
2

d

1

,

λs s

λs s

λs s λs

L

λs s

L

1

2 2 2
1 2 1

2

2

2

2 2
1 2

42

41

2

2
2 2 1

41

2

2 2
1 2

42

41

2

2 1

2
2 2

1 2
1 2

2
2

2 2

1

2

1

2

1

2

1

2
2

1

2
2

�

�

�

�

∣ ∣( )

∣ ∣ ∣ ( )( )∣

∣ ∣ ∥ ( )∥

( ) ∥ ( )∥

[ ] [ ] [ ]

[ ]

[ ]

[ ]

(41)

and, similarly,

∫

∫ ∫

∫ ∫

⎜ ⎟ ⎜ ⎟ ⎜ ⎟≃ ⎛
⎝

⎞
⎠

⎛
⎝ − ⎞

⎠
− ⎛

⎝ − ⎞
⎠

≃ ′

≤ − ′

≃ − ′

≃ − ′

+
+

+ ⎛
⎝ − ⎞

⎠

−

−

+ ⎛
⎝ − ⎞

⎠

−

−

+ ⎛
⎝ − ⎞

⎠

− +

P d
d

d

d

d
η F η

c

d
F η

c

d
η

d d

d
N F α α η

d d

d

c

d

c

d
N F α α η

d d

d

c

d

c

d
N F

N N N F

2 2
d

d d

2 2
d d

2 2

.

s

s

s

s
s λs

η
c

d

η
c

d

s
s λs

η
c

d

η
c

d

s
s λs
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L
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2
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2
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2
2
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2
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2
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2
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2
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2

2

2
2

2
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2
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2 1
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2

1
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2
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2

2

2
2 2
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2
42
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2

1
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2
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2
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2
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2
2

2 2

1

2

2
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1

41

1

2

2
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1

41

1

2
2

1

2
2

�

�

�

� �

�

�

�

�

( ) ∣ ∣ ( ) ( )

( )( )

∣ ( )( )∣

∥ ( )∥
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We compute

− ≃
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ ≃ −

− + − +
−d

d

d

d

N

N

N

N

N N N ,

λs
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λs
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2

41
2

52
2

42
2

1

1

2

2

2

2

1 2
2

1

2

1

2

1

2

1

2

1

2

1

2

( )

and so,

∫

∫

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

≃
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⎝

−
⎞
⎠

⎛
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⎠

≃
⎛
⎝

−
⎞
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⎛
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⎞
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⎛
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⎠
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⎞
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+

+
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d
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d

d

c

d
η

d
d

d

d

d

d

d
η F η

c

d
η

N N N
c

d
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2
d

2
d

2

.

s s

s

s
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λs s

L

3

2

41
2 1 51

2

41

2

52

2
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2

2

2
2

2 41
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2
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2

41
2 1 51

2

41

2

52

2

42

2

2

42

41

2 1

2
2

2 2

42

2

4
1 2

2 2

42

2

2
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4 2
1 2

2 2 2

2 1

2

1

2
2

�

�

�

�

�

( ) ∣ ∣ ( )

( ) ∣ ∣ ( )

∣ ∣ ∥ ( )∥
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(43)
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Let = ∕K C B2 2, where C̃ is a constant. Thus, we have

∫

∫ ∫

=

=
+ +

≤ +

≤

−∞

+∞

−

+∞

−∞
−

F h x

x

K

x x

C

d

e e

d

e

d

e

˜.

L L

x x

x x

2 2 2 2

0

0

2 2∥ ∥ ∥ ( )∥[ ] [ ]

(44)

Similarly, we have

∫

∫ ∫

′ =

=
+ +

≤ +

≤

−∞

+∞

−

+∞

−∞
−

F xh x

x x

K

x x x x

C

d

e e

d

e

d

e

˜.

x x

x x

2
2 2 2 2

2

0

2
0

2

�∥ ( )∥ ∥ ( )∥[ ] [ ]

(45)

If − >λs1 0
1

2
, substituting (45) with (41) and (42),

≤ −

≤ −

− − +

− +

P CN N N

P CN N N

˜ ,

˜ .

λs s

λs s

1

2 1 2
1 2

2

2

2 3 2
1 2

2

1

2

1

2

( )

( )

[ ]

[ ]

Combining (43) and (44), the following holds:

≤ −− +P CN N N˜ .λs s
3

2 4 2
1 2

2
1

2 ( )
[ ]

If − − + <λs s1 2 0
1

2
, − + <λs s3 2 0

1

2
, and − + <λs s4 2 0

1

2
, (37) satisfies

− ≤
−

φ φ
C N N

N

˜

,
c ω c ω H b,

2

,

2 2 1 2
2

s

1 1 2 2

‖ ‖
( )[ ] [ ]

where

= ⎧⎨⎩ − − + − + − + ⎫⎬⎭b λs s λs s λs sMin
1

2
1 2 ,

1

2
3 2 ,

1

2
4 2 .

Then, we can control the distance between solitons

− =N N δNεs
2 1

to control the norm

− ≤ ≤−φ φ Cδ N Cδ˜ ˜ .
c ω c ω H

εs b

,

2

,

2 2 2 2 2
s

1 1 2 2

‖ ‖[ ] [ ] (46)

According to (44), there is an upper bound of F
L

2 2
2∥ ∥[ ] . Moreover, the lower bound of it can be estimated

as follows:

∫

=

=
+ +

−∞

+∞

−

F h x

x

K

d

e e

L L

x x

2 2 2 2
2 2∥ ∥ ∥ ( )∥[ ] [ ]
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⎧
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⎪
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⎪
⎪

−
⎛
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⎞
⎠

>

=
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⎛

⎝
−

⎛
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⎞
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K

K

K

K

K

K

K

K

π K

C α

2

4

arctanh

4

, 2,

1, 2,

1

4

2 arctan

4

, 0 2,

˜ 0,

2 2

2 2

( )

where C α˜( ) is a constant that depends on α.
So, we have

∫ ⎜ ⎟≃ ⎛
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≃
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+∞
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⎛
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⎠
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d

d
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c

d
η
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N

2
d
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L
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2
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2 1 5

2
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2

2
2

2

4
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2 1 1 2 1 2 2
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s

1

2

1

2
2

1

2
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‖ ‖

[ ]

( ) [ ]

In the following deduction, we consider the time-dependent solution (i.e., the solution Q x T,
c ω,

2

j j

( )[ ] at =t T ).
As we know, the solitary wave satisfies the translational invariance property. Thus, we have

⋅ = ≃ + −Q T φ N, .
c ω H c ω H

λs s

,

2 2

,

2 2 1

j j

s
j j

s

1

2‖ ( )‖ ‖ ‖[ ]

By

∫⋅ − ⋅ = + −Q T Q T μ Q μ Q μ μ, , 1 ˆ ˆ d ,
c ω c ω H

s

c ω c ω,

2

,

2 2 2

,

2

,

2
2

s

1 1 2 2 1 1 2 2

�

‖ ( ) ( )‖ ( ∣ ∣ ) ∣ ( ) ( )∣[ ] [ ] [ ] [ ]

we have

⋅ − ⋅ ≥ ⋅ − ⋅Q T Q T N Q T Q T, , , , .
c ω c ω H

s

c ω c ω L,

2

,

2 2 2

,

2

,

2 2
s

1 1 2 2 1 1 2 2
2‖ ( ) ( )‖ ‖ ( ) ( )‖[ ] [ ] [ ] [ ] (47)

In addition, we noted that

= −− −Q x T e e d h d x c T, ,
c ω

iω T iψ x c T
j j j,

2
5

2
4

j j

j j( ) ( ( ) )[ ] ( ) [ ]

so we restrict Q T
c ω,

2

j j

( )[ ] on the sphere −B Tcd j
j6

1( )( ) . At the same time, different values of cj and ωj can be used
to avoid the superposition of peaks, such that

∫
⋅ − ⋅ ≃ ⋅ + ⋅

≃ −

≃

≃ −

Q T Q T Q T Q T

d h d x c T x

d
d F

N

, , , ,

d

1

.

c ω c ω L c ω L c ω L

j j j

j

j L

λs

,

2

,

2 2

,

2 2

,
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5
2 2 2

4

4

5
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1
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1

2

‖ ( ) ( )‖ ‖ ( )‖ ‖ ( )‖
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‖ ‖
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(48)

By (47) and (48), we have

⋅ − ⋅ ≥ + −Q T Q T N, , .
c ω c ω H

λs s

,

2

,

2 2 2 1
s

1 1 2 2

1

2‖ ( ) ( )‖[ ] [ ]

We now consider the possibility of dispersion for the soliton solution. If Q T
c ω,

2

j j

( )[ ] is within −B Tcd j
j4

1( )( )

for =j 1, 2, we can select c1 and c2 to ensure dispersion at the scale of −N λs
1

2 . Specifically, we choose N such

that ≫+ −N Tδλs εs 1
1

2 ( ) . Simultaneously, we maintain − =N N δNεs
1 2 , as used in (45). This yields

⎜ ⎟− = − ≫ ⎛
⎝

⎞
⎠

≃ −T c c T N N
d d

Nmax
1

,
1

.λs
2 1 2 1

41 42

1

2( ) ( )
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Based on the aforementioned analysis, to achieve weak ill-posedness, λ and s ( >s 0) must satisfy
the following conditions:

⎧
⎨
⎩

− > − + < + < + < + <
⎫
⎬
⎭

λ s λs λs s λs s λs s λs s, 1
1

2
0,

1

2
2 1,

1

2
2 1,

1

2
2 3,

1

2
2 4 ,( )∣

which indicates that the ill-posedness index is

< <s0
1

2
.

Similarly, in order to obtain the strong ill-posedness of the solution, the set of λ and s is as follows:

⎧
⎨
⎩

− > − + < + > + < + <
⎫
⎬
⎭

λ s λs λs s λs s λs s λs s, 1
1

2
0,

1

2
2 1,

1

2
2 1,

1

2
2 3,

1

2
2 4 ,( )∣

which indicates that the range of s is

< <s0 1. □

Proof of Theorem 2. With Propositions 4 and 5, Theorem 2 is now proved. □

Proof of Theorem 1. If f x( ) is square-integrable in Tγ, the Plancherel theorem states that

∫ ∫=f x x f ξ ξd d ,

T

2

Z

2

γ γ

�∣ ( )∣ ∣ ( )( )∣

which can be used to estimate the relationship between Q and S as follows:

∫

∫

∫

∫

=
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≃ + +

≃ + +
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d

d

d

d

.
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s
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s
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s
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1
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2

2
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3
2
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2

1 2
2

1 3
2

Z

2
1 1

2
1 2

2
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2
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γ

γ

γ
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S
2

1

�
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( )

Hence, we have

≃ +Q S .
H T H T

2 2
s

γ
s

γ
S

2
1∥ ∥ ∥ ∥( ) ( ) (49)

Sj ( =j 1, 2) falls on the sphere, and ⋅ =S S 1j j . Furthermore, the components of the vector Sj are non-
intersecting traveling wave solutions. Hence, it may be assumed that ≃S Si x i x1, 2, ( =i 1, 2, 3). Then, we have

∫

∫

∫

∫

− = −

≃ + −

≃ + −

≃ − + − + −∧ ∧ ∧

Q Q ξ Q ξ Q ξ ξ
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d
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d
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s

s

s
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2
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∫≃ − + − + −

≃ − +

ξ ξ S S ξ S S ξ S S ξ ξ

S S

d

,

s

H T

2
1 1,1 2,1

2
1 1,2 2,2

2
1 1,3 2,3

2

1 2
2

s
γ

S
2

1

�
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which indicates

− ≃ −+ Q QS S .
H T H T1 2
2

1 2

2
s

γ

s
γ

S
2

1∥ ∥ ∥ ∥
( ) ( ) (50)

Similar to (49) and (50), the non-periodic case admits the following isometric isomorphism relationship:

≃ − ≃ −+ +Q Q QS S S, .
H H H H

2 2
1 2

2

1 2

2
s s s s

S
2

1

S
2

1� � � �∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥( ) ( ) ( ) ( ) (51)

With the equivalence relationship (49)–(51), and Theorem 2, we complete the proof of Theorem 1. □

5 Conclusions

In this article, we studied two distinct types of two-parameter solitary wave solutions for the DCHS equation
(1). Using the derivative Schrödinger equation, we constructed these solutions and analyzed their ill-posedness
in both the periodic space H

s

S
2 �( ) and the non-periodic space H

s

S
2 �( ). Although different spaces were used to

evaluate the two solutions, the range of the weak ill-posedness index was identical: < <s1
3

2
. Notably, =s

1

2

emerges as a critical index that determines the ill-posedness behavior. However, the strong ill-posedness
indices differed between the two cases. By extending the analysis used in the weak cases, we found that

the periodic and non-periodic solutions cannot be well-posed in a bounded subset of H
s

S
2 with indices < <s

3

2

5

2

and < <s1 2, respectively.
In both weak and strong cases, it is important to note that our discussion focused exclusively on the setting

where ≠α 0. Whether the ill-posedness index range remains the same as α approaches zero ( →limα 0) remains
an open question, and further investigation is needed in our future work. Additionally, since the solutions
considered in this article assume = =c c 01 2 , another interesting avenue for future research is to explore the ill-
posedness properties when ≠c c, 01 2 .
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