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Abstract: For ∈p 2, 3{ } and an even integer k , let −
−

W pk 2( ) be the space of period polynomials of weight −k 2

on +
pΓ0( ) with eigenvalue −1 under the Fricke involution. We determine the dimension formula for −

−
W pk 2( )

and construct an explicit basis for it using period functions for weakly holomorphic modular forms.
Furthermore, for a quadratic form Q, we define the function −F z Q,( ) on the complex upper half-plane as a
generating function of the cycle integrals of the canonical basis elements for the space of weakly holomorphic
modular forms of weight k and eigenvalue −1 under the Fricke involution on pΓ0( ). We also show that −F z Q,( )

is a modular integral on +
pΓ0( ). Our approach focuses on calculating cycle integrals within pΓ0( ) rather than

+
pΓ0( ), which allows us to overcome certain technical challenges. This study extends earlier work by Choi

and Kim (Rational period functions and cycle integrals in higher level cases, J. Math. Anal. Appl. 427 (2015), no. 2,
741–758) which focused on eigenvalue +1, providing new insights by examining eigenvalue −1 cases in the
theory of rational period functions and cycle integrals in this setting.
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1 Introduction and statement of results

For a positive integer p, let pΓ0( ) be the Hecke congruence subgroup consisting of all ×2 2 matrices ⎛⎝
⎞
⎠

a b

c d
with

integer entries satisfying ≡c p0 mod( ). Further, let +
pΓ0( ) be the group generated by pΓ0( ) and the Fricke

involution ⎟⎜=
⎛
⎝

− ∕ ⎞

⎠
W

p

p

0 1

0
p . Let k be an even integer and εC be the character on +

pΓ0( ) defined as

= ∈ = ∈ ±ε γ γ p ε W C C1 for Γ and , where 1 .C C p0( ) ( ) ( ) { }

For a meromorphic function f on the complex upper half plane � , we define the action k ε, C
∣

for = ⎛
⎝

⎞
⎠ ∈

+
γ

a b

c d
pΓ0( ) as

= + −f γ z ε γ cz d f γz .k ε C
k

, C
( ∣ )( ) ( )( ) ( )
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Let ≔ ⎛
⎝

⎞
⎠T

1 1

0 1
and ⎟⎜= =

⎛
⎝

− ∕ ⎞

⎠
U TW

p p

p

1

0
p . For ∈p 1, 2, 3{ }, we consider a rational function q z( ) satisfying

∑+ = =
=

−

q W q q U0 and 0,k ε p

n

n

k ε
n

,

0

1

,C

p

C
∣ ∣ (1)

where =
⎧
⎨
⎩

=
=n

p

p p

3 if 1,

2 if 2, 3.
p Such a function q z( ) is called a rational period function of weight k for +

pΓ0( )

and denote by pRPF k ε, ( ) the set of all such functions for =C ε1 (see [1–4]). Here, we note that, when =p 1,
W1 belongs to =+

Γ 1 SL0 2 �( ) ( ), and hence, we only need to consider the case = +C 1.
For negative k , if the rational period functions are polynomials, we call them period polynomials of weight

k for +
pΓ0( ) and denote by −W pk

ε ( ) the set of all such period polynomials for =C ε1. That is,

∑=
⎧
⎨
⎩

∈ ≤ − + = =
⎫
⎬
⎭−

=

−

W p P z P k P W P P U: deg , 0 .k
ε

k ε p

n

n

k ε
n

,

0

1

,C

p

C
�( ) [ ] ∣ ∣

We define a modular integral on +
pΓ0( ) of weight k to be a holomorphic function f on � that has a Fourier

expansion at ∞:

∑= ∈
=

∞

f z a e nwith some

n n

n
πinz2

0

0

�( )

and satisfies

= +f W f Cqk ε p, C
∣ (2)

for a rational function q z( ), where ∈ + −C 1, 1{ }. Then, ∈q z pRPF k ε,( ) ( ) (see [1–5]).
The study of period polynomials and rational period functions has been a significant area of research in

the theory of modular forms. Knopp [1,2] initiated the study of rational period functions and their relation with
modular integrals on SL2 �( ). Over the years, the theory of period polynomials and rational period functions
has been significantly developed by many authors, and one of the significant advancements in the study of
rational period functions was made by Duke et al. [6]. They provided an effective basis for the space of period
polynomials −

+
W 1k( ) using weakly holomorphic modular forms on SL2 �( ) and by using cycle integrals, expli-

citly constructed modular integrals for rational period functions for SL2 �( ) arising from indefinite binary
quadratic forms. Indeed, Knopp [1,2] already showed that rational period functions for SL2 �( ) have modular
integrals. But his construction is very difficult to compute. Choi and Kim [3,5] extended the results of Duke et al.
to the space −

+
W pk( ) and modular integrals on +

pΓ0( ) for ∈p 2, 3{ } and =C 1. This article aims to further extend
these results by studying the space −

−
W pk( ) and rational period functions for +

pΓ0( ) for ∈p 2, 3{ } and = −C 1.
For any even integer k and a prime p, let M pk( ) (resp. S pk( )) be the space of holomorphic modular forms

(resp. cusp forms) of weight k on pΓ0( ). For ∈ + −ε ,{ }, we denote by M pk
ε( ) the subspace of M pk( ) consisting

of all eigenforms f of the Fricke involution Wk p∣ such that the eigenvalue of f is ε1, that is,

≔ ∈ = ≔ ∈ = −+ −
M p f M p f W f M p f M p f W f: , : .k k k p k k k p( ) { ( ) ∣ } ( ) { ( ) ∣ }

Similarly, we can also define two subspaces +
S pk ( ) and −

S pk ( ) of S pk( ) as

≔ ∈ = ≔ ∈ = −+ −
S p f S p f W f S p f S p f W f: , : .k k k p k k k p,( ) { ( ) ∣ } ( ) { ( ) ∣ }

Here k∣ is the usual slash operator which is given by = +∕ −f γ z γ cz d f γzdetk
k k2( ∣ )( ) ( ) ( ) ( ) for = ⎛

⎝
⎞
⎠ ∈γ

a b

c d
GL 2 �( ).

Further, let M pk
! ( ) be the space of weakly holomorphic modular forms (i.e., meromorphic with poles only at the

cusps) of weight k for pΓ0( ) and let M pk

ε!,
( ) be the subspace of M pk

! ( ) consisting of all eigenforms f of the action
Wk p∣ such that the eigenvalue of f is ε1. Then, it can be easily seen that

= ⊕+ −
M p M p M p .k k k

! !, !,
( ) ( ) ( )
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It is well-known that each ∈f M pk

ε!,
( ) has a Fourier expansion at the cusp ∞ of the form

∑= =
≥

f z a n q q e .

n n

f
n πiz2

0

( ) ( ) ( )

We set =∞ f nord 0 if n0 is the smallest integer such that ≠a n 0f 0( ) . We additionally define the space S pk

ε!,
( ) by

the subspace of M pk

ε!,
( ) consisting of weakly holomorphic modular forms with zero constant term in the

Fourier expansion at the cusp∞. It is known [7,8] that when the genus of +
pΓ0( ) is zero, the space M pk

ε!,
( ) has a

canonical basis: Let mk
ε denote the maximal order of a nonzero ∈f M pk

ε!,
( ) at ∞. For every integer ≥ −m mk

ε,
there exists a unique weakly holomorphic modular form ∈f M p

k m

ε
k

ε

,

!,
( ) with Fourier expansion of the form

at the cusp ∞:

∑= +−

>
f q a m n q,

k m

ε m

n m

k
n

,

k
ε

( )

and together they form a basis for M pk

ε!,
( ).

As previously mentioned, this article focuses on studying the rational period functions for +
pΓ0( ) and

modular integrals on +
pΓ0( ) in the specific cases where ∈p 2, 3{ } and = −C 1. In this case, the functional

equation (1) can be written as

∑− = − =
=

−

q W q q U0 and 1 0,k p

n

p

n
k

n

0

2 1

∣ ( ) ∣

while the functional equation (2) for modular integrals becomes

+ =f f W qk p∣

using the usual slash operator.
The following is our first main result that gives the dimension of the space −

−
W pk 2( ) for ∈p 2, 3{ }

and its relation to the minus space −
S pk ( ) of cusp forms.

Theorem 1.1. Let ∈p 2, 3{ } and let k be a positive even integer greater than 2. Then, we have

= +−
− −

W p S pdim 2 dim 1.k k2( ) ( )

In addition to determining the dimension of the space −
−

W pk 2( ) of period polynomials, our second result
introduces a method to construct an explicit basis for this space. For the basis construction, we utilize
the Eichler integral of the canonical basis, where the Eichler integral is defined as follows: Suppose that >k 2.
For ∈ ∑ ∈f a n q M pf

n
k

ε!,
( ) ( ), we define the Eichler integral of f by

∑≔
≫−∞
≠

−z a n n q .f
n

n

f
k n

0

1� ( ) ( )

In addition, the period function for f is defined by

≔ −
≔ +

+
−

−
−

r f z c W z

r f z c W z

; ,

; ,

k f f k p

k f f k p

2

2

� �

� �

( ) ( ∣ )( )

( ) ( ∣ )( )

where = − −
−ck

k

πi

Γ 1

2 k 1

( )

( )
. We note that for ∈f S pk

ε!,
( ), the function r f z;ε( ) is a polynomial in z of degree at most

−k 2 with coefficients in � . Indeed, this fact follows from Bol’s identity. Specifically, for ∈ −f M pk

ε

2

!,
( )

and ∈γ SL 2 �( ), we have

=−
−

−D f γ D f γ.k
k

k
k

1
2

1( ∣ ) ( )∣

This identity implies that ⊆−
−D M p S pk

k

ε

k

ε1
2

!, !,
( ( )) ( ).

Theorem 1.2. Let ∈p 2, 3{ }, >k 2 be an even integer, and = −
t S pdim k ( ). Then, the set

+ ∪ < ≤− − −
p z r f z m t1 ; 0k

k m

2

,
{( ) } { ( )∣ ∣ ∣ }

forms a basis for the space −
−

W pk 2( ).
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To state our third result, consider a positive integer D congruent to a square modulo p4 . In this context,
D p,� denotes the set of integral binary quadratic forms = + + =Q x y ax bxy cy a b c, , ,2 2( ) [ ], where p divides a,

and the discriminant = −D b ac42 . The group pΓ0( ) acts on D p,� through the operation ↦Q gQ, where

⎜ ⎟=
⎛
⎝

⎞
⎠
∈g

α β

γ δ
pΓ0( ) and ∈Q D p,� . This action is defined by

= ∘ = − − +−gQ x y Q g x y Q δx βy γx αy, , , .1( )( ) ( )( ) ( )

The set of classes p QΓ \
d p0 ,

( ) is finite. Furthermore, if ⎜ ⎟= ±
⎛
⎝

⎞
⎠
∈g

α β

γ δ
pΓ0( ), then = +−g Q τ Q gτ γτ δ, 1 , 11 2( ) ( )( ) .

From now on, assume that D is positive and not a perfect square. Note that ⊆ +
p pΓ ΓQ Q0 0( ) ( ) , where

= ∈ =p g p gQ QΓ ΓQ0 0( ) { ( )∣ } and = ∈ =+ +
p g p gQ QΓ ΓQ0 0( ) { ( )∣ }.

For = ∈Q a b c, , D p,�[ ] , let SQ be the oriented semi-circle defined by + + =a τ τ b cRe 02∣ ∣ ( ( )) , with coun-
terclockwise orientation for >a 0 and clockwise for <a 0. Note that =S gSgQ Q for any ∈g pΓ0( ). Let hQ

be a generator of pΓ Q0( ) . (For a detailed definition of hQ, see Remark 5.2.) For a weakly holomorphic modular
form ∈f M pk

! ( ) and ∈Q d p,� , we define

∫≔r f f τ τd ,Q

C

Q

Q

( ) ( )

where =C C τQ Q 0( ) is the directed arc on SQ from ∈τ SQ0 to h τQ 0, with the same orientation as SQ,

and ≔ −τ Q τ z τd , dQ
1

k

2( ) .
While the following result is parallel to [3, Theorem 1.5(i)(ii)], it has an application (see Corollary 1.5)

which is specific to the case under consideration and has no direct analog in the setting adopted in [3].

Theorem 1.3. Let ∈p 2, 3{ }. For any even integer k and ∈Q D p,� , we define the function −F z Q,( ) by

∑≔−

≥−

−
−

F z Q r f e, .

m m

Q k m

πimz

,

2

k

( ) ( )

Then, the following are true
• The function −F z Q,( ) is holomorphic on � and satisfies

∑ ∑+ = + + − + +− −
−

∈
<

−

∈
<

−F z Q F z Q W c az bz c c az bz c, , sgn sgn ,k p

a b c Q

ac

a b c W Q

ac

2

, ,

0

2 1

, ,

0

2 1
k

p

k

2 2( ) ( )∣ ( )( ) ( )( )
[ ] ( ) [ ] ( ) (3)

where = ∈Q gQ g pΓ0( ) { ∣ ( )} denotes the class containing Q.
• For >k 2, let zΨQ( ) be the polynomial given by

∑ ∑≔ + + − + +
∈
<

−

∈
<

−z c az bz c c az bz cΨ sgn sgn .Q

a b c Q

ac

a b c W Q

ac

, ,

0

2 1

, ,

0

2 1
k

p

k

2 2( ) ( )( ) ( )( )
[ ] ( ) [ ] ( )

Then, zΨQ( ) belongs to the space −
−

W pk 2( ) and can be expressed as

∑= + + −− −

< ≤

− −
z r f p z m r f ψ zΨ 1Q Q k

k

m t

k
Q k m k m,0

2

0

1

, ,
( ) ( )( ( ) ) ( ) ( ) ( )

∣ ∣

with = − −
ψ z r f z;

k m c k m,

1

,k

( ) ( ).

Remark 1.4. We note that −F z Q,( ) is a modular integral on pΓ0( ) since the right-hand side of (3) is a rational
function. If the right-hand side of (3) is 0, one might think that −F z Q,( ) is a weakly holomorphic modular form
on pΓ0( ). However, as described in the following corollary, we can confirm that under certain conditions, not
only is the right-hand side of (3) equal to 0, but also all the Fourier coefficients of −F z Q,( ), i.e., the cycle
integrals −

r fQ k m,
( ), become 0 as well.

4  SoYoung Choi et al.



The following corollary shows that for each ≥ − −
m mk , we have =−

r f 0Q k m,
( ) under some condition.

Corollary 1.5. Let ∈p 2, 3{ } and D be a positive integer that is not a perfect square but is congruent to a square
modulo p4 . For a quadratic form = ∈Q a b c, , D p,�[ ] and an even integer k , let −F z Q,( ) be the function defined
in Theorem 1.3. Denote =ν a b cgcd , ,( ), ′ = ∕a a ν, ′ = ∕b b ν, ′ = ∕c c ν, and ′ = ∕d D ν2. If p D∣ and the Diophantine
equation − ′ =pt d u p42 2( ) has an integer solution t u,( ) with ′ ∈a u p� , then we have

=−
r f 0Q k m,

( )

for each ≥ − −
m mk .

This work extends the understanding of period polynomials with eigenvalue −1 under the Fricke involu-
tion and modular integrals, building upon previous studies such as [6] and [3]. The proofs of Theorem 1.2 and
1.3 are based on the main ideas presented in [6], while our research specifically expands on the results of [3] to
the case of eigenvalue −1 under the Fricke involution. A key distinction of this article from previous work,
particularly that of Choi and Kim [3], is our approach to calculating cycle integrals within pΓ0( ) rather than
+

pΓ0( ). This shift requires a more refined computational method, enabling us to determine the exact values of
cycle integrals. Our method allows for a more precise and comprehensive understanding of the relationship
between cycle integrals and rational period functions in this setting.

The rest of the article is organized as follows. In Section 2, we provide examples illustrating our main
results, including numerical calculations. Section 3 is dedicated to proving the dimension formula for −

−
W pk 2( )

stated in Theorem 1.1. In Section 4, we focus on constructing the basis for −
−

W pk 2( ), as described in Theorem 1.2.
Finally, the proofs of Theorem 1.3 and the proof of Corollary 1.5 are presented in Section 5.

2 Numerical examples

Let =p 2 and =k 10. In this case, the space −
S 210( ) is one dimensional and spanned by

≔ −−
Δ z η z η z E z E z2 2 2 ,2

8
2 2( ) ( ( ) ( )) ( ( ) ( ))

where = ∏ −∕
=

∞
η z q q1n

n1 24
1( ) ( ) denotes the Dedekind eta function and = − ∑ =

∞
E z σ n q1 24 n

n
2 1( ) ( ) is the normal-

ized Eisenstein series of weight 2. Using [8], one can construct the first three basis elements of the space −
M 210

!,
( )

as follows:

=

= −

= − −

−
− −

− − +

− − + +

f z Δ z

f z Δ z j z

f z Δ z j z j z

16

16 8332

10, 1 2

10,0 2 2

10,1 2 2

2

2

( ) ( )

( ) ( )( ( ) )

( ) ( )( ( ) ( ) )

and their q-expansions are of the form

= + − + + +

= + + + + +

= + + + + +

−
−

−

− −

f z q q q q q

f z q q q q

f z q q q q q

16 156 256 870 … ,

1 3960 168960 2094840 16625664 … ,

131904 21947754 1145058304 30480293440 … .

10, 1

2 3 4 5

10,0

2 3 4 5

10,1

1 2 3 4 5

( )

( )

( )

Here, +
j z
2

( ) denotes the Hauptmodul for +
Γ 20( ) described by

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

+ + ⎛
⎝

⎞
⎠

= + + + + + +

+

−

j z
η z

η z

η z

η z

q q q q q q

2
24 4096

2

4372 96256 1240002 10698752 74428120 … .

2

24 24

1 2 3 4 5

( )
( )

( )

( )

( )
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According to Theorem 1.1, the space −
W 28 ( ) is three-dimensional, and by Theorem 1.2, it is spanned by

the polynomials + z1 16 8, −ψ z
10, 1

( ), and ψ z
10,1

( ), where ψ z
m10,

( ) is given by = − −
ψ z r f z;

m m10, 10,
( ) ( ).

Using the nth Fourier coefficients of −
f

m10,
for ≤n 500, one can explicitly compute the coefficients

of the polynomials ψ
m10,
. The coefficients of each polynomial are given in Table 1. (The coefficients presented

in this table are rounded off.)
For each ∈ +

f M 210

!,
( ) and ∈Q d,2� , it follows from the definition of the cycle integral that

∫=r f f τ Q τ τ, 1 d ,Q

C

4

Q

( ) ( ) ( ) (4)

where =C C τQ Q 0( ) is the directed arc on SQ from ∈τ SQ0 to g τ
Q 0.

We consider two cases.
Case (i) =D 8 and = − ∈Q 2, 0, 1 8,2�[ ] : In this case, we find that the smallest positive solution t u,0 0( )

of the Diophantine equation − =t u2 8 82 2( ) is given by =t u, 2, 10 0( ) ( ). Thus, employing [3, Theorem 1.3 (i)],

we see that the group ∕ ±+
Γ 2 1Q0( ) { } is generated by ⎛

⎝
−

−
⎞
⎠ ∈ W

2 1

2 2
Γ 2

1

2
0 2( ) , and hence, hQ in Remark 5.2 is given by

= ⎛
⎝

−
−

⎞
⎠ ∈h

1

2

2 1

2 2
Γ 2 .Q

2

0( )

In (4), we take =τ i0 and use the parametrization

⎟⎜ ⎜ ⎟=
⎛
⎝

≤ ≤
⎛
⎝
−

⎞
⎠
⎞
⎠

−τ e
π

θ
1

2 2
cos

12 2

17
.iθ 1

Then, we can compute that the values of −
r fQ m10,

( ) are equal to zero, as expected from Corollary 1.5.
Case (ii) =D 17 and = − ∈Q 2, 1, 2 17,2�[ ] : In this case, we find that the smallest positive solution t u,1 1( )

of the Pell equation − =t u17 42 2 is given by =t u, 66, 161 1( ) ( ). Thus, employing [3, Theorem 1.3 (ii)], we see
that the group ∕ ±+

Γ 2 1Q0( ) { } is generated by

= ⎛
⎝

−
−

⎞
⎠ ∈h

41 32

32 25
Γ 2 .Q 0( )

Table 1: Period polynomials ψ
m10,

m ψ
m10,

‒1 + + + + + + + +a a z a z a z a z a z a z a z a z0 1 2
2

3
3

4
4

5
5

6
6

7
7

8
8

=a 1.024512715988303681838114790

=a i6.55650787199323284456976181

=a ‒21.17326279709160942465437232

=a i‒45.89555510395262991198833283

=a 74.10641978982063298629030314

=a i91.79111020790525982397666565

=a ‒84.693051188366437698617489236

=a i‒52.4520629759458627565580946107

=a 16.39220345581285890940983662608

1 + + + + + + + +b b z b z b z b z b z b z b z b z0 1 2
2

3
3

4
4

5
5

6
6

7
7

8
8

=b ‒62.2887001330506838361664710

=b i‒320.287980294930185407497231

=b 1111.299802749714132614107072

=b i2242.015862064511297852480623

=b ‒3889.549309623999464149374764

=b i‒4484.0317241290225957049612315

=b 4445.19921099885653045642829266

=b i2562.303842359441483259977846057

=b ‒996.619202128810941378663540506598

6  SoYoung Choi et al.



In (4), we take = − +τ i0

1

4

17

4
and use the parametrization

⎟⎜ ⎜ ⎟= − +
⎛
⎝

≤ ≤
⎛
⎝
−

⎞
⎠
⎞
⎠

−τ e
π

θ
1

4

17

4 2
cos

528 17

2,177
.iθ 1

Then, one can estimate the values of −
r fQ m10,

( ) which are listed in Table 2.
Here, each coefficient was rounded off to 30 digits. Meanwhile, one has

∈ < = − − − − − − − −
∈ < = − − − − − − − − − −

a b c Q ac

a b c W Q ac

, , 0 2, 1, 2 , 2, 1, 2 , 2, 3, 1 , 2, 3, 1 , 4, 1, 1 , 4, 1, 1 ,

, , 0 4, 1, 1 , 4, 1, 1 , 2, 1, 2 , 2, 1, 2 , 2, 3, 1 , 2, 3, 1 .2

{[ ] ( )∣ } {[ ] [ ] [ ] [ ] [ ] [ ]}

{[ ] ( )∣ } {[ ] [ ] [ ] [ ] [ ] [ ]}

Thus, we find that

∑ ∑+ + − + + = − + −
∈
<

∈
<

c az bz c c az bz c z z z zsgn sgn 96 672 1344 768 .

a b c Q

ac

a b c W Q

ac

, ,

0

2 4

, ,

0

2 4 3 5 7

2

( )( ) ( )( )
[ ] ( ) [ ] ( )

Thus, one should have an equality

+ − + = − + −−
−

− −
−r f z r f ψ z r f ψ z z z z z1 16 96 672 1344 768 ,Q Q Q10,0

8

10, 1 10,1 10,1 10, 1

3 5 7( )( ) ( ) ( ) ( ) ( )

which can be verified numerically from the values listed in Tables 1 and 2.

3 Proof of Theorem 1.1

We begin this section by noting that the matrix = ⎛
⎝
− ⎞

⎠μ
1 0

0 1
satisfies the following properties:

• = −μW μ Wp p,
• = −μU μ W U Wζ

p
p ζ

p
2 for every integer < <ζ p0 2 ,

• For a polynomial P z( ) of degree at most −k 2, the equality − − = − =∕
−P z P z μ1 0k

k
2

2( ) ( ) ( )∣ holds if and only
if =P z 0( ) .

Then, for a period polynomial P z( ), we have the following proposition:

Proposition 3.1. Let ∈ −
−

P z W pk 2( ) ( ) be a period polynomial for +
pΓ0( ). Then, the polynomial −P z( ) obtained

by substituting −z for z in P z( ) also belongs to the space −
−

W pk 2( ).

Proof. Using the properties of the matrix μ, we can show that − − = −∕
−P z P μ z1 k

k
2

2( ) ( ) ( ∣ )( ) satisfies the defining
conditions of the space −

−
W pk 2( ). First, we have

− =− − −P μ P μ W 0,k k k p2 2 2∣ ( ∣ )∣ (5)

which follows from the fact that = = =− − −P μW μ P W P P μk p k p k2 2 2
2∣ ∣ ∣ . Furthermore, by using the property

= −μU μ W U Wq
p

p q
p

2 and a straightforward calculation, we obtain

∑ − =
=

−

−P μU1 0.

n

p

n
k

n

0

2 1

2( ) ∣ (6)

Table 2: Values of r fQ m10,

‒( )

m (( ))r fQ
m10,

‒

‒1 i4.02737428315417140776069345524

0 i‒34.297639056538750053187841038

1 i‒211.3807536117333711051672376

Cycle integrals and rational period functions  7



Equations (5) and (6) together imply that ∈− −
−

P μ W pk k2 2∣ ( ), which completes the proof. □

Let us consider two important subspaces of the space −
−

W pk 2( ):

≔ ∈ = −
≔ ∈ = − −

−
−+

−
−

−
−−

−
−

W P W p P z P z

W P W p P z P z

: ,

: .

k k

k k

2 2

2 2

{ ( ) ( ) ( )}

{ ( ) ( ) ( )}

In other words, −
−+

Wk 2 is the subspace of even period polynomials in −
−

W pk 2( ), while −
−−

Wk 2 is the subspace of odd
period polynomials.

Proposition 3.2. The space −
−

W pk 2( ) can be decomposed as a direct sum of its even and odd subspaces:

= ⊕−
−

−
−+

−
−−

W p W W .k k k2 2 2( )

Proof. Given a period polynomial ∈ −
−

P z W pk 2( ) ( ), we can express it as a sum of its even and odd parts:

=
+ −

+
− −

P z
P z P z P z P z

2 2
.( )

( ) ( ) ( ) ( )

It follows from Proposition 3.1 that ∈+ −
−
−+

W
P z P z

k2 2

( ) ( ) and ∈− −
−
−−

W
P z P z

k2 2

( ) ( ) . Hence, we obtain the asser-
tion. □

Let us now turn our attention to the following lemma that will be instrumental in proving our main result:

Lemma 3.3. [9, Proposition 3] For ∈p 2, 3{ } and ∈ + −ε ,{ }, there exist the following isomorphisms:

≃ ≃−
+

−
−

M p W and S p W .k
ε

k
ε

k
ε

k
ε

2 2( ) ( )

With the help of Lemma 3.3, we can now provide a concise proof of Theorem 1.1:

Proof of Theorem 1.1. By Proposition 3.2, the space −
−

W pk 2( ) decomposes as a direct sum of its even and odd
subspaces:

= +−
−

−
−+

−
−−

W p W Wdim dim dim .k k k2 2 2( )

Applying the isomorphisms from Lemma 3.3, we obtain

= + = +−
− − − −

W p M p S p S pdim dim dim 2 dim 1,k k k k2( ) ( ) ( ) ( )

which is the desired result. □

4 Proof of Theorem 1.2

Proposition 4.1. For ∈ −
f S pk

!,
( ), the following statements are equivalent:

• = +− −r f z α p z; 1k 2( ) (( ) ) for some constant ∈α � .

• − ∈ −
−

M pf

α

c k2

!,

k

� ( ).

• ∈ −
−
−

f D M pk
k

1
2

!,
( ( )).

Proof. We will show (i) ⇔ (ii) and (i) ⇔ (iii).
(i) ⇒ (ii): Assume = +− −r f z α p z; 1k 2( ) (( ) ) for some ∈α � . Then, − = − − − Wf

α

c f

α

c k p2
k k

� �( )∣ . From the

definition of f� , we also have − = − − Tf

α

c f

α

c k2
k k

� �( )∣ . Since +
pΓ0( ) is generated by±T and±Wp, any ∈γ pΓ0( ) can

be expressed as a product of an even number of ±Wp and any number of ±T . Therefore, − ∈ −
−

M pf

α

c k2

!,

k

� ( ).

8  SoYoung Choi et al.



(ii) ⇒ (i): Suppose − ∈ −
−

M pf

α

c k2

!,

k

� ( ) for some ∈α � . Then,

⎟⎜⎜ ⎟ ⎜ ⎟

= +

= + ⎛
⎝ − ⎞

⎠
+
⎛
⎝

+ ⎛
⎝ − ⎞

⎠
⎞
⎠

= +

−
−

−

−

c
r f z W z

α

c

α

c

α

c

α

c
W

α

c
p z

1
;

1 .

k

f f k p

k

f

k k

f

k
k

p

k

k

2

2

2

� �

� �

( ) ( ∣ )( )

(( ) )

(i) ⇒ (iii): Assume = +− −r f z α p z; 1k 2( ) (( ) ) for some ∈α � . By (i) ⇒ (ii), we have − ∈ −
−

M pf

α

c k2

!,

k

� ( ).

Then, = = − ∈− − −
−
−

f D D D M pk
f

k
f

α

c

k
k

1 1 1
2

!,

k

� �( ) ( ( )).

(iii) ⇒ (i): Suppose = −f D gk 1 for some ∈ −
−

g M pk2

!,
( ). Note that = ∑ =≫−∞ ≠

−z a n n q g zf n n f
k n

, 0
1� ( ) ( ) ( )

− a 0g( ). Then

= − + − = − +−
−

−r f z c g z a g z a W c a p z; 0 0 0 1 .k g g k p k g
k

2
2( ) ( ( ) ( ) ( ( ) ( ))∣ ) ( )(( ) ) □

Lemma 4.2. Suppose k is a positive even integer. Let p be 1 or a prime for which +
pΓ0( ) has genus zero, and let

= −
t S pdim k ( ). Consider the quotient space = ∕− −

−
−

V S p D M pk
k

k

!, 1
2

!,
( ) ( ( )). If ≥t 1, then V is a t2 -dimensional vector

space with a basis given by

< ≤−
f m t: 0 .

k m,
{[ ] ∣ ∣ }

Here, f[ ] denotes the equivalence class of f in V.

Proof. Let −
mk be the maximal vanishing order of weakly holomorphic modular forms in −

M pk

!,
( ). It is known

from [10] that

= − − = − −−
− −

m m t1 1.k k2

The space −
S pk

!,
( ) is spanned by ≠ ≥ −−

f m m t: 0,
k m,

{ }. The functions ∈−
−

−
−

f M p
k i k2 , 2

!,
( ) have Fourier coefficients

satisfying

= +

= +
⋮
= +
⋮

− +
− − − −

− +
− − − −

−
− − −

f q O q

f q O q

f q O q

,

,

,

k t

t t

k t

t t

k i

i t

2 , 1

1

2 , 2

2

2 ,

( )

( )

( )

and consequently,

= + ∈

= + ∈
⋮
= + ∈
⋮

−
− +
− − − − −

−
− +
− − − − −

−
−
− − − −

D f c q O q S p

D f c q O q S p

D f c q O q S p

,

,

,

k

k t

t t
k

k

k t

t t
k

k

k i i
i t

k

1

2 , 1 0
1 !

1

2 , 2 1
2 !

1

2 ,

!

( ) ( )

( ) ( )

( ) ( )

Thus, −
−
−

D M pk
k

1
2

!( ( )) is spanned by ≥ +−
f m t: 1

k m,
{ }. It is now clear that the set < ≤−

f m t: 0
k m,

{[ ] ∣ ∣ } is linearly
independent in V and spans V . □
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Lemma 4.3. Let ∈p 2, 3{ } and ∈ −
f S pk

!,
( ). Then, the period polynomial −r f z;( ) belongs to the space −

−
W pk 2( ).

Proof. We have

− − − =− − −W W W 0.f f k p f f k p k p2 2 2� � � �∣ ( ∣ )∣

Further, using the relations = − Tf f k2� � ∣ and =TW Up , we can rewrite −r f z;
c

1

k

( ) as = − Uf f k2� � ∣ . Then

∑ ∑− − = − − =
=

−

− −
=

−

− −W U U U1 1 0.

k

p

k
f f k p k

k

k

p

k
f f k k

k

0

2 1

2 2

0

2 1

2 2� � � �( ) ( ∣ )∣ ( ) ( ∣ )∣

Thus, −r f z;
c

1

k

( ) belongs to the space −W pk 2( ), as desired. □

Proof of Theorem 1.2. By Lemma 4.3, we can define a linear map →− −
−
−

r S p W p: k k
!

2( ) ( ) that sends ∈ −
f S pk

! ( )

to its period polynomial −r f z;( ). Proposition 4.1 implies that −r induces an injective linear transformation

∕ → ∕ +− − −
−
−

−
−r S p D M p W p p z: 1 .k

k
k k

k! 1
2

!,

2
2 ( ) ( ( )) ( ) ⟨( ) ⟩

Theorem 1.1 and Lemma 4.2 show that the spaces ∕− −
−
−

S p D M pk
k

k
! 1

2

!( ) ( ( )) and ∕ +−
−W p p z 1k

k
2

2( ) ⟨( ) ⟩ have
the same dimension, so −r is an isomorphism. Furthermore, Lemma 4.2 ensures that the set

+ ∪ < <− − −
p z r f z m t1 ; 0k

k m

2

,
{( ) } { ( )∣ ∣ ∣ }

forms a basis for the space −
−

W pk 2( ). □

5 Proofs of Theorem 1.3 and Corollary 1.5

We first note that the stabilizer group = ∈ =p g p gQ QΓ ΓQ0 0( ) { ( )∣ } and = ∈ =+ +
p g p gQ QΓ ΓQ0 0( ) { ( )∣ }

is an infinite cyclic group. More precisely, we have the following proposition:

Proposition 5.1. [3, Theorem 1.3] Let p be one or a prime, D be a positive integer that is not a perfect square, but
is congruent to a square modulo p4 . Consider a quadratic form = ∈Q a b c, , D p,�[ ] with =ν a b cgcd , ,( ),
′ = ∕d D ν2, ′ = ∕a a ν, ′ = ∕b b ν, and ′ = ∕c c ν. We define ∈ +

g pΓ
Q 0( ) subgect to the following conditions:

• If p D∣ and the Diophantine equation − ′ =pt d u p42 2( ) has an integer solution t u,( ) with ′ ∈a u p� , then we set

≔

⎛

⎝

⎜
⎜⎜

+
′

− ′
−

⎞

⎠

⎟
⎟⎟
∈g

p

pt bu
c u

a u
pt bu

p W
1 2

2

Γ ,
Q p

0 0

0

0

0 0

0( )

where t u,0 0( ) is the smallest positive solution of − ′ =pt d u p42 2( ) with ′p a u0∣ .
• Otherwise, we set

≔

⎛

⎝

⎜
⎜⎜

+ ′
′

− ′
− ′

⎞

⎠

⎟
⎟⎟
∈g

t b u
c u

a u
t b u

p
2

2

Γ ,
Q

1 1

1

1

1 1

0( )

where t u,1 1( ) is the smallest positive solution of the Pell equation − ′ =t d u 42 2 with ′p a u1∣ .

Then, g
Q
generates ±+

pΓ \ 1Q0( ) { }.
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Remark 5.2. If the condition in Proposition 5.1(i) is satisfied, we define hQ as =h gQ Q

2; otherwise, if the condition
in Proposition 5.1(ii) holds, we define hQ as =h gQ Q

. In either case, noting that ⊆ +
p pΓ ΓQ Q0 0( ) ( ) , we can easily

deduce that pΓ Q0( ) is an infinite cyclic group generated by hQ.

The following lemma provides a fundamental relation between the cycle integrals associated with
a quadratic form Q and the integrals over the fundamental domain � for pΓ0( ).

Lemma 5.3. Let p be a prime, ∈f M pk
! ( ), � be the standard fundamental domain for pΓ0( ), and ∈Q D p,�

with >D 0 not a perfect square. For any ∈τ SQ0 , we have

∫ ∫∑=
∈ ∩

f τ τ f τ τd d ,

C τ

Q

q Q S

q

Q q0 �

( ) ( )

( ) ( )

where = ∈Q gQ g pΓ0( ) { ∣ ( )}.

Lemma 5.3, inspired by [6, Lemma 1], can be obtained by similar arguments as in the proof of [6, Lemma 1].
For the reader’s convenience, we provide a proof of Lemma 5.3.

Proof. Let ≔ ∕ ±p pΓ Γ 10 0( ) ( ) { } and define

= ⎧⎨⎩
∈
∉

f τ
f τ τ

τ

if ,

0 if .

�

�
( )

( )͠

Note that = ∑f τ f g τ˜
g k( ) ( ∣ )( ) holds on CQ except for a discrete set of points. This allows us to write

∫ ∫

∫

∫

∫

∑

∑ ∑

∑

∑

=

=

=

=

∈

∈ ∕ ∈

∈ ∕

∈ ∕

f τ τ f g τ τ

f g σ τ τ

f g τ τ

f τ τ

d d

d

d

d .

C

Q

C g p

k Q

g p p σ p C

k k Q

g p p S

k Q

g p p S

gQ

Γ

Γ Γ Γ

Γ Γ

Γ Γ

Q Q

Q Q
Q

Q
Q

Q
gQ

0

0 0 0

0 0

0 0

( ) ( ∣ )( )

( ∣ ∣ )( )

( ∣ )( )

( )͠

͠

͠

͠

( )

( ) ( ) ( )

( ) ( )

( ) ( )

The last equality follows from the change of variables ≔ω gτ and the transformation properties of modular
forms. More precisely, letting ≔ω gτ , we have

= − −τ j g ω τd , d .Q
k

gQ
1( )

Hence,

∫ ∫

∫

∫

=

=

=

−

− − − −

f g τ τ f gτ j g τ τ

f ω j g g ω j g ω τ

f ω τ

d , d

, , d

d .

S

k Q

S

k
Q

gS

k k
gQ

gS

gQ

1 1

Q Q

Q

Q

( ∣ )( ) ( ) ( )

( ) ( ) ( )

( )

͠

͠

͠

͠

Therefore, we arrived at the desired result

∫ ∫∑=
∈ ∩

f τ τ f τ τd d .

C

Q

q Q S

q

Q q �

( ) ( )
( )

□
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Proposition 5.4. Let ≔−
−

−
−f τ f τ

k k m, k

( ) ( ). Then, the basis elements −
f

k m,
of the space −

M pk

!,
( ) satisfy the following

properties:

• For a fixed ∈z � with ≠
+

0
j z

z

d

d

p
( )

, the residue of the expression
−

−
−
−

+ +
f τ f z

j z j τ

k k

p p

2
( ) ( )

( ) ( )
at =τ z is given by

−
==

−
−
−

+ +
f τ f z

j z j τ πi
Res

1

2
.τ z

k k

p p

2
( ) ( )

( ) ( )

• The expansion

∑
−

=
−

−
−

+ +
≥−

−
−

f τ f z

j z j τ
f τ e

k k

p p n m

k n

πinz2

,

2

k

( ) ( )

( ) ( )
( )

converges uniformly on compact subsets in τ for fixed ∈z � having sufficiently large zIm( ) with
>z τIm Im( ) ( ).

Proof.
• We first observe from [8, p. 322] and [3, p. 756] that

= = = −−
−
− + +

+

+

+

f z f z f z
Δ

Δ πi

j

z

1

2

d

d
.

k k

p δ

p

p

2 2,1

, 2

( ) ( ) ( )

Using this identity, a direct computation yields

−
= −

−

= −
⎛

⎝
⎜

⎞

⎠
⎟ ⋅ ⎛⎝−

⎞
⎠ ⋅

=

=

−
−
−

+ + →

−
−
−

+ +

→

+

=

− +

f τ f z

j z j τ
τ z

f τ f z

j z j τ

j

τ πi

j

z

πi

Res lim

lim 1

d

d

1

2

d

d

1

2
.

τ z

k k

p p
τ z

k k

p p

τ z

p

τ z

p

2 2

1

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( )

• Recall that

= = +− + −
+

+ − +−
−

f Δ Δ F j q O q ,
k m p

l
p r k m m p

m m

, , ,
1k

k k

k( ) ( ) ( )

where F xk D, ( ) is a monic polynomial of degree D in x . Moreover, the modular forms +
+

Δp δ, 2, −
Δp r, k

,
and −

−Δp r, k2
satisfy the identity =+

+ − −
−Δ Δ Δp δ p r p r, 2 , ,k k2
, and the exponents lk and −l k2 are related by = − −−l l 1k k2

(see [8, p. 322]).
Using the Cauchy integral formula, we can express the polynomial + −F ζk m m, k

( ) as

∮ ∮=
−

=
−+ ′ ′

−

+ −−F ζ
πi

F t

t ζ
t

πi

q

t ζ Δ Δ
t

1

2
d

1

2
d ,k m m

C

k D

C

m

p
l

p r

,

,

,
k k

k

( )
( )

( )( )

where ′C is a counterclockwise circle centered at ζ in the t-plane. Changing variables ↦ =t q e πiz2 and using

the identity = − +
+

+q
t

q

Δ z

Δ z

d

d

p δ

p

, 2( )

( )
with = +

t z j z
p

( ) ( ), we obtain

∮

∮

∮

=
−

=
−

=
−

+
+

+ − −

+ + −

− − −

+ +

−
− − −

−

−

F ζ
πi

Δ z q

t z ζ Δ z Δ z
q

πi

Δ z q

t z ζ Δ z
q

πi

f z q

t z ζ
q

1

2
d

1

2
d ,

1

2
d ,

k m m
C

p δ
m

p
l

p r

C

p r
m

p
l

C

k

m

,

, 2
1

1
,

,
1

1

2

1

k k

k

k

k

2

( )
( )

( ( ) )( ) ( ) ( )

( )

( ( ) )( ) ( )

( )

( )
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where C is a counterclockwise circle centered at 0 in the q-plane with some radius. Replacing ζ with t z( )

and multiplying by + −
Δ τ Δ τp

l
p r,

k

k
( ) ( ) ( ), we arrive at the integral representation

∮=
−

−
−

−
− − −

f τ
πi

f τ f z q

t z t τ
q

1

2
d .

k m
C

k k

m

,

2

1

( )
( ) ( )

( ) ( )
(7)

Let ∈z � with sufficiently large zIm( ) and let K be any compact subset of ∈ >τ z τ: Im Im�{ ( ) ( )}. Choose
>A 1 such that > >z A τIm Im( ) ( ) for all ∈τ K . Changing variables ↦q z in (7) and deforming the contour

by Cauchy’s theorem, we have

∫=
−

−

− +

+ −
−
−

−f τ
f τ f z

t z t τ
e zd .

k m

iA

iA

k k πimz

,

1

2

1

2

2 2( )
( ) ( )

( ) ( )

We now move the contour of integration downward to a height ′ <A τIm( ) for all ∈τ K . We can take
′ >A 0 such that

≔
−

−
−
−

−G τ z
f τ f z

t z t τ
e,

k k πimz2 2( )
( ) ( )

( ) ( )

has no poles on + ′ − ≤ <t iA t:
1

2

1

2
{ } as a function of z. As we do this, each pole τ0 of G τ z,( ) in the region

=
⎧
⎨
⎩
∈ − < < ′ < <

⎫
⎬
⎭

R z z A z A:
1

2
Re

1

2
and Im� ( ) ( )

contributes a term ⋅ =πi G τ z2 Res ,z τ0
( ) to the equation. Note that the poles of G τ z,( ) occur only when z

is equivalent to τ under the action of +
pΓ0( ), and there are only finitely many such poles in R. To calculate

the residues, we can use the following alternative formula for G τ z,( ):

=
−

= −

⎛
⎝ − ⎞

⎠
−

− + − −

+ +

−

+ −

+ −

−
G τ z

e Δ τ Δ τ Δ z

Δ z t z t τ

πi
e

Δ τ Δ τ t z t τ

Δ z Δ z t z t τ

,

1

2
,

πimz
p

l
p r p r

p
l

πimz

p
l

p r z

p
l

p r

2
, ,

1

2

,

d

d

,

k

k k

k

k

k

k

k

2

( )
( ( )) ( ) ( )

( ( )) ( ( ) ( ))

( ( )) ( ) ( ( ) ( ))

( ( )) ( )( ( ) ( ))

which follows from the identity

= =
−

⋅ =
−+ −

− −

+

− −

+

+
−Δ Δ

Δ

Δ Δ

Δ πi

j

z πi

t

z

1

2

d

d

1

2

d

d
.

p δ k p r

p

p r p r

p

p, 2 , , ,k k k2

Using the fact that

− =

⎧

⎨
⎪

⎩
⎪

− = ±⎛⎝
⎞
⎠

± ≠ ±⎛⎝
⎞
⎠

→

−

− −
πi z γτ G τ z

e γ
n

e j γ τ γ
n

2 lim ,

if
1

0 1
,

, if
1

0 1
,

z γτ

πimτ

πimγτ k

2

2

( ) ( )

( )

for any ∈n � , we obtain the equation

∫ ∑= − ±
− + ′

+ ′

− − − −G τ z z f τ e j γ τ e, d , ,

iA

iA

k m

πimτ

γ

k πimγτ

1

2

1

2

,

2 2( ) ( ) ( )

where the sum runs over some finite set of ∈ ⎧⎨⎩
⎛
⎝

⎞
⎠ ∈ ⎫⎬⎭

+
γ p

n
nΓ \

1

0 1
0 �( ) ∣ satisfying ∈γτ R.
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Multiplying both sides of the equation by −e πmv2 yields

∫ ∑= − ±−

− + ′

+ ′

− − − − − −e G τ z z e f τ e j γ τ e, d , .πmv

iA

iA

πmv

k m

πimu

γ

k πimγτ πmv2

1

2

1

2

2

,

2 2 2( ) ( ) ( ) (8)

The function −

−
−
−

f τ f z

t z t τ

k k2
( ) ( )

( ) ( )
is continuous on the set

= ×
⎧
⎨
⎩
+ ′ − ≤ ≤

⎫
⎬
⎭

K t iA tΩ :
1

2

1

2
,

and therefore bounded on Ω. Consequently,

=
−

≤−
−

−
−

′
G τ z e

f τ f z

t z t τ
e M, πimz k k πmA2 2 2∣ ( )∣ ∣ ∣

∣ ( ) ( )∣

∣ ( ) ( )∣

for all ∈τ z, Ω( ) and for some constant ∈ >M 0� . This implies

∫ ≤ ≤−

− + ′

+ ′

− − ′
e G τ z z e M M, dπmv

A i

A i

πm v A2

1

2

1

2

2( ) ( )

since > ′v A when ≥m 0. Moreover, for the sum ∑ − − −j γ τ e,γ
k πimγτ πmv2 2( ) appearing in (8), we can show that

∑ ∑

∑

≤

<

≤ ⋅

− − − − − −

− − −

− −

j γ τ e j γ τ e

j γ τ e

N e

, ,

,

γ

k πimγτ πmv

γ

k πm v γτ

γ

k πm v A

πm v A

2 2 2 Im

2

2

( ) ∣ ( )∣

∣ ( )∣

( ( ))

( )

( )

for some constant ∈ >N 0� for all ∈τ K . Combining this with (8) yields

≤ + + ⋅− − − −e f τ M N e1mπv

k m

πm v A2

,

2∣ ( )∣ ( )

for all ∈τ K , which implies

≤ + +− − −f τ e M e N1
k m

mπv πm v A

,

2 2∣ ( )∣ ( ) ( ) (9)

for some constants M and N independent of m and for any ∈τ K . From bound (9), it follows that

≤ + +− − − − −f τ e e M e N1 .
k m

πimz mπ z v πm z A

,

2 2 Im 2 Im∣ ( ) ∣ ( )( ( ) ) ( ( ) )

Since − >z vIm 0( ) for any ∈v K and − >z AIm 0( ) , the Weierstrass M-test implies that ∑ ≥−
−−f τ em m k m

πimz

,

2

k
( )

converges uniformly on K . Moreover, by [8, Theorem 4.2],

∑ =
−≥−

− −
− −

+ +
−
f τ e

f z f τ

j z j τ
,

m m

k m

πimz k k

p p

,

2 2

k

( )
( ) ( )

( ( ) ( ))

which completes the proof. □
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Proof of Theorem 1.3 (i). By Proposition 5.4 (ii), for zIm( ) sufficiently large, we have

∫

∫

∫

∑ ∑

∑

= =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

=
−

−

≥−

−

≥−

−

≥−

−

−
−
−

+ +

− −

−

F z Q r f e f τ τ e

f τ e τ

f τ f z

j z j τ
τ

, d

d

d ,

m m

Q k m

πimz

m m C

k m Q
πimz

C m m

k m

πimz
Q

C

k k

p p

Q

,

2

,

2

,

2

2

k k
Q

Q
k

Q

( ) ( ) ( )

( )

( ) ( )

( ) ( )

where CQ can be any smooth curve joining an arbitrary point ∈τ0 � to h τQ 0. As in the proof [6, Theorem 3],
one can show that −F z Q,( ) extends analytically to � with a convergent Fourier expansion.

Let ∈p 2, 3{ } and � be the closure of ∪ ′+� � where +� is the fundamental domain for +
pΓ0( ) described

in [11] and ′� is its image under ↦ −z
pz

1 . Then, ∪ ′+� � is a fundamental domain for pΓ0( ). By Lemma 5.3,

∫∑=
−

−
−

−
−

+ +F z Q
f τ f z

j z j τ
τ, d ,

A

k k

p p

Q

2

q

( )
( ) ( )

( ) ( )

where the sum is over all ∈q Q( ) such that ∩ ≠ ∅S intq �( ) , with = ∩A Sq q � .
We note from [3, (11)] that

⎜ ⎟∩ ≠ ∅ ⇔ <
⎛
⎝

> > +
⎞
⎠

S ac ac
b a

p
c0 or 0 and

2
.a b c, , �[ ] (10)

As in [3, p. 750], each arc Aq corresponding to the first condition in the right-hand side of (10) is deformed to

a curve Bq within � having the same endpoints as Aq, but leaving z and −
pz

1 in the same connected component

C determined by Bq. By Proposition 5.4 (i),

∫ −
= −

⎛

⎝
⎜ −

+ +
⎞

⎠
⎟

= − + +

−

−
−
−

+ + =

−
−
−

+ +
−

−

f τ f z

j z j τ
τ a πi

f τ f z

j z j τ
aτ bτ c

a az bz c

d sgn 2 Res

sgn .

A B

k k

p p

q τ z

k k

p p

2 2 2 1

2 1

q q

k

k

2

2

( ) ( )

( ) ( )
( )( )

( ) ( )

( ) ( )
( )

( )( )

For Aq corresponding to the second condition on the right-hand side of (10), z and −
pz

1 are already in the same
connected component [3, p. 757]. Therefore,

∫ ∫∑ ∑ ∑=
−

+
−

− + +−

∈

> > +

−
−
−

+ +
∈
<

−
−
−

+ +
∈
<

−F z Q
f τ f z

j z j τ
τ

f τ f z

j z j τ
τ a az bz c, d d sgn .

a b c Q

ac c

A

k k

p p

q

a b c Q

ac
B

k k

p p

q

a b c Q

ac

, ,

0,

2

, ,

0

2

, ,

0

2 1

b a
p

q q

k

2

2( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )( )

[ ] ( ) [ ] ( ) [ ] ( )

As in [3, p. 757], for some open neighborhood of z,

∑ ∑ ⎜ ⎟+ = + + + ⎛
⎝

− + ⎞
⎠

− −
−

∈
<

−

∈
<

−

F z Q F z Q W c az bz c c cpz bz
a

p
, , sgn sgnk p

a b c Q

ac

a b c Q

ac

2

, ,

0

2 1

, ,

0

2

1

k

k

2

2

( ) ( )∣ ( )( ) ( )
[ ] ( ) [ ] ( )

(11)

By the identity theorem, (11) holds for any ∈z � .
Let ′ = =Q W Q W a b c, ,p p[ ]. Then, ′ = − ∕ =Q cp b a p A B C, , , ,[ ] [ ], so

∑ ∑

∑

⎜ ⎟
⎛
⎝

− + ⎞
⎠

= + +

= − + +

∈
<

−

∈
<

−

∈
<

−

c cpz bz
a

p
A Az Bz C

c az bz c

sgn sgn

sgn

a b c Q

ac

A B C W Q

AC

a b c W Q

ac

, ,

0

2

1

, ,

0

2 1

, ,

0

2 1

k

p

k

p

k

2

2

2

( ) ( )( )

( )( )

[ ] ( ) [ ] ( )

[ ] ( )

Hence, by (11), the theorem follows. □
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Proof of Theorem 1.3 (ii). We first note that in Theorem 1.3 (i) −F z Q,( ) is a modular integral. This implies that
the polynomial zΨQ( ) is a period polynomial for a modular integral −F z Q,( ), and hence, ∈ −

−
z W pΨQ k 2( ) ( )

for ∈p 2, 3{ } and an even integer >k 2 (see [1, 4,5]). Thus, by Theorem 1.2, there exist some complex number
ai such that

∑= + +−

< ≤
z a p z a ψ zΨ 1 ,Q

k

m t

m k m0
2

0

,
( ) ( ( ) ) ( )

∣ ∣

with = −
t S pdim k ( ) and ≔ − −

ψ z r f z;
k m c k m,

1

,k

( ) ( ).
Note that ≔ −F z zk m f,

k m,
�( ) ( ) is a modular integral for period polynomials ψ z

k m,
( ), that is,

= = +− −
−− −ψ z

c
r f z W z

1
; .

k m
k

k m f f k p, , 2
k m k m, ,

� �( ) ( ) ( ∣ )( )

If we define = − ∑ −−
< ≤G z F z Q a F z a, m t m k m0 , 0( ) ( ) ( )∣ ∣ , then

∑
+ =

+ = − + − =−
−

< ≤

G z G z

G z G z W z a q p z a ψ z

1 ,

Ψ 0,k p Q
k

m t

m k m2 0
2

0

,

( ) ( )

( ) ( )∣ ( ) ( ( ) ) ( )
∣ ∣

which implies ∈ −
−

G M pk2

!,
( ).

If G is nonzero, then we have ≥ −∞G tord , which contradicts the fact = − −−
−

m t1k2 . Thus =G 0, and so

∑= +−

< ≤
F z Q a a F z, .

m t

m k m0

0

,( ) ( )
∣ ∣

Comparing Fourier coefficients, we obtain that

= −
a r fQ k0 ,0

( )

and for nonzero m with − ≤ ≤t m t,

= − −
−

−
a m r f .m

k
Q k m

1

,
( ) ( )

Therefore,

∑= + + −− −

< ≤

−
−

−
z r f p z m r f ψ zΨ 1Q Q k

k

m t

k
Q k m k m,0

2

0

1

, ,
( ) ( )( ( ) ) ( ) ( ) ( )

∣ ∣

as desired. □

Proof of Corollary 1.5. To prove the assertion, we first find the condition for the right-hand side of (3) to be 0.
For g

Q
, the generator of ∕ ±+

pΓ 1Q0( ) { } defined in Proposition 5.1, we first claim that if ∈g W pΓ
Q p 0( ),

then =Q W Qp( ) ( ), and if ∈g pΓ
Q 0( ), then ≠Q W Qp( ) ( ). Assume =g W γ

Q p for some ∈γ pΓ0( ). For any
∈δ pΓ0( ), we have

= = = ′δQ δg Q δW γQ δγ W Q
Q p p

for some ′ ∈γ pΓ0( ). Hence, ⊆Q W Qp( ) ( ). Now, for any ∈δ pΓ0( ),

= = = = ∈δ W Q δW Q δW g Q δW W γQ δγQ Q .p p p Q p p( ) ( )

Therefore, ⊆W Q Qp( ) ( ), and hence, =Q W Qp( ) ( ). Conversely, suppose =Q W Qp( ) ( ). Then, =γQ W Qp for some
∈γ pΓ0( ), implying ∘ ∈−γ W W pΓp p

1
0( ) and =−γ W Q Qp

1 . However, since ∈g pΓ
Q 0( ), we have ∉−γ W W pΓp p

1
0( ),

which is a contradiction. Thus, ≠Q W Qp( ) ( ). Therefore, if ∈g W pΓ
Q p 0( ), then the right-hand side of (3) becomes

zero, and otherwise, the left-hand side of (3) is a rational function.
Note that since +

pΓ0( ) is generated by ±T and ±Wp, any ∈γ pΓ0( ) can be written as =γ μ μ μ…
r1 2
with each

∈ ± ±μ T W,
i p{ } and an even number of μ

i
equal to ±Wp. Therefore, as shown above, the fact that the right-hand

side of (3) is 0 is sufficient to confirm that −F z Q,( ) is a weakly holomorphic modular form of weight − k2

on pΓ0( ). Noting ∞
−F z Qord ,( ) must be less than equal to −

mk and = − −−
− −

m m 1k k2 , we have =−F z Q, 0( ) .
Now, using Proposition 5.1, the assertion follows. □
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