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Abstract: In this article, we mainly study the geometric properties of spherical surface of a curve on a
hypersurface X in four-dimensional Euclidean space. We define a family of tangent height functions of a
curve on £ as the main tool for research and combine the relevant knowledge of singularity theory. It is shown
that there are three types of singularities of spherical surface, that is, in the local sense, the spherical surface is
respectively diffeomorphic to the cuspidal edge, the swallowtail, and the cuspidal beaks. In addition, we give
two examples of the spherical surface.
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1 Introduction

Singularity theory is a subject with strong application, which runs through the fields of differential geometry
and differential topology, and is also one of the flourishing fields in modern mathematics. The classification
of singular points of curves has always been the focus of research in singularity theory. For surfaces, we can
also study their differential geometric properties from the viewpoint of singularity theory. In other words,
when studying an unknown surface, we hope to make its local diffeomorphic to a familiar surface, thereby
obtaining the properties of the unknown surface.

The application of singularity theory has achieved significant results in different spaces. Most of
the research focuses on the classification of singular points of sub-manifolds [1-12]. On the other hand, the
study of singularities on hypersurface has also received extensive attention from scholars. In [13], Sun and Pei
introduced in detail the geometric property of Lorentzian hypersurfaces on pseudo n-spheres and the one
parameter Gauss indicatrices on Lorentzian hypersurfaces. Moreover, they used the Legendrian singularity
theory to complete the singularity analysis of the one parameter Gauss indicatrices of Lorentzian hypersur-
faces on pseudo n-spheres. In [14], Izumiya et al. classified singularities of lightlike hypersurfaces in Min-
kowski 4-space. As a generalization of the study on lightlike hypersurface in Minkowski space, Pei et al. studied
the singularities of lightlike hypersurface and Lorentzian surface in semi-Euclidean 4-space with index 2
in [15]. The aforementioned research makes the obtained results more systematic, which is what scholars
are willing to see. In [16], Izumiya et al. defined the hyperbolic surface and de Sitter surface of a curve
in a spacelike hypersurface in Minkowski 4-space and techniques from singularity theory were applied to
obtain the generic shape of such surface and their singular value sets. There are also many studies on spherical
surfaces. Not only in the field of mathematics but also in fields such as chemistry and physics [17-19]. However,
the classification of singular points on spherical surfaces has not been resolved yet. This is also our main
research motivation.
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Inspired by the aforementioned research, we chose the four-dimensional Fuclidean space R* as the outer
space. Then we considered a embedding IT : U — R*, from an open subset U C R? and identify hypersurface &
and U through the embedding II. For a curve whose curvature does not disappear y : I — £, we defined
a spherical surface in 3 associated with curve y. We used the classical deformation theory of singularity
theory to study the generic differential geometry of spherical surfaces and their singular sets. The conclusion
reached is that spherical surface is respectively diffeomorphic to the cuspidal edge, the swallowtail, and the
cuspidal beaks.

The article is organized as follows: In Section 2, we introduce the definition of Aj-singularities and
discriminant sets. Moreover, we build a moving frame along y and calculate the Frenet-Serret type formulae.
In Section 3, we define the tangential height functions that measure the contact of curve t with special
hyperplanes and whose differentiation yields invariants related to each surface. In Section 4, the spherical
surface of y is described as the discriminant set of the family of tangential height functions. By using the theory
of deformations, we get a classification and a characterisation of the diffeomorphim type of such surfaces.
Finally, we provide some examples of spherical surfaces in Section 5.

2 Preliminaries

The four-dimensional Euclidean space is
R* = {(ay, a1, ay, az)|a; € R(i = 0,1, 2, 3)}
with scalar product
(a,b) = aghy + @by + b, + aghs,

for any vectors a = (o, @, a, a3), and b = (by, by, by, b3) in R%. We define the vector product of a, b and
z = (20, 21, 7, 23) as follows:

€ €1 €y é3

ay a4 A, as

by by by b3|’

20 & L Z3

anbAz=

wherea, b, z € R%, and {e, ey, e,, e3} is the canonical basis of R%, ¢, = (1, 0, 0, 0). The norm of a nonzero vector
a € R* is defined by ||a|| = \/{a, @), and when ||a|| = 1, we call a a unit vector.
For a non-zero vector v € R* and a real number ¢, we define a hyperplane with pseudo-normal v by

HP(v, ¢) = {a € R*(a, v) = c}.
The sphere in R* is defined by
S$3={a € R¥{a, a) = 1}.

We consider an embedding IT : U - R*, where U is an open subset in R3, We write £ = II(U) and identify
L and U through the embedding II. Let y : I = U be a regular curve. Then we have a curve y : [ - £ C R*
defined by y(s) = II(y(s)). We say that y is a curve in the hypersurface X. To facilitate calculation, we repar-
ametrize y by the arc length s. So we have the unit tangent vector t(s) = y(s) with ||¢(s)|| = 1. In this case, we call
y a unit speed curve. Then, we have a unit normal vector field n along £ = II(U) defined by

My (u) A Tyy(u) A Ty(u)
[Ty (W) A Ty(w) A Ty’

n(p) =

for p = TI(u), where II,, = 811/du;, i = 1, 2, 3. A unit normal vector field n, along y is defined by n)(s) = n = y(s).
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Under the assumption that [|t'(s) - (t'(s), ny(s))n,(s)|| # 0, we can construct

t'(s) = (t'(s), ny(s)Hny(s)
lIt'(s) = (t'(s), ny(s)Hmy(S)||”

It follows that (t,n;) =0 and (n,, n;) = 0. Moreover, we have a unit vector defined by ny(s) = t(s) A
n,(s) A ny(s). Then, we have a orthonormal frame {t(s), n,(s), ni(s), ny(s)}. By standard arguments, we have
the Frenet-Serret type formulae for the aforementioned frame as follows:

t'(s) = kn(s)ny(s) + kg(s)n(s)

ny(s) = —kn()t(s) + a(s)n(s) + w(s)n(s)
n{(s) = —nu($)ny(s) = ke()t(s) + 1g(s)ny(s)’
n;(s) = ~n(s)ny(s) = (sH)m(s)

where ky(s) = (ny(s), t'(s)), a(s) = (ny(s), m(s)), n(s) = (ny(s), nas)), kg(s) = [|t’(s) = (t’(s), ny(s)Hny(s)l| =
[t'(S) — kn(S)n,(s)||, and 7z(s) = (n;(s), ny(s)). The invariant k; is called a normal curvature, 5 is a first normal
torsion, % is a second normal torsion, k, is a geodesic curvature, and 7, is a geodesic torsion. Under the
assumption k,(s) = |[t'(s) — {t'(s), n,(s))n,(s)|| # 0, we have kg > 0.

ny(s) =

Definition 2.1. Let X : R* —» R be a submersion and y : I — £ be a regular curve. We say that y and X (0) have
contact of order k at sy, if the function g(s) = X  y(s) satisfies g(so) = £(o) = ... = g®(sy) = 0 and g**V(sy) = 0,
ie, g has an Ay-singularity at .

LetG : R x R, (Sp, Xo) = R be a family of germs of functions. We call G an r-parameter deformation of f
if f(S) = Gy (s). We assume that f has an Ax-singularity (k > 1) at sy, we can write
k-1

(s0) = 2 ai(s = o),
j=0

jk—l

oG
6_x,-(s’ Xo)

fori=1,..,r. Then G is a versal deformation if the k x r matrix of coefficients (a;) has rank k(k < r).
The discriminant set of G is given by

Z)G =

il

G
x € (R, xo)|G = o5 =0 at(s,x) forsome s € (R, sp)

and the bifurcation set of G is given by

oG _ 8%G
x € (R", xo)l -~

B = s o5t

=0 at(s,x) forsome s € (R, so)’.

The next result is from [20].

Figure 1: Cuspidal edge (left) and swallowtail (right).
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Theorem 2.2. Let G : R x R”, (8o, Xg) ~ R be an r-parameter deformation of f such that f has an Ax-singularity
at sy. We assume that G is a versal deformation, then Dy is locally diffeomorphic to

(D) CxR™%ifk =2,

(2) SW xR 3ifk =3,

where C xR = {(x, X, x3)|x? = X3} x R is the cuspidal edge and SW = {(x, x;, X3)|xq = 3u? + uv, x, = 4u+
2uv, x3 = v} is the swallowtail surface (Figure 1).

3 Tangential height functions

In this section, we define a family of functions on a curve in a hypersurface X.
Lety : I - £ C R, we give the following definitions:

H:IxS8>R;(sv)~ (t(s),v).

The functions H are called a family of tangential height functions of y. The meaning of H is that it measures the
contact of the curve t with hyperplanes in R*. Generically, this contact can be of order k, k = 1, 2, 3. For any
fixed v € S, we denote h,(s) = H(s, V).

In the following proposition, we find the conditions for characterizing the Ay-singularity, k = 1, 2, 3.

Proposition 3.1. Lety : I — X be a unit speed curve, we assume thatk, # 0,k; # 0,50k, > 0, and (k. + k7, )(s) # 0.
Thus, we obtain the following:
(1) hy(s) = 0 if and only if there exists &, &, 9 € R such that §* + &2 + ¢? = 1 and
V= 6ny(s) + §ny(s) + pny(s).
(2) hy(s) = hy(s) = 0 if and only if there exists 8 € R such that

v 0 shny(s) + ku(sImls)) + sinbrs(s).

JKE(S) + ki (s)
(3) hy(s) = hy(s) = hy(s) = 0 if and only if

v 0 hshny(s) + ku(sImuls)) + sinbrs(s)

2 2
VKg(s) + ki ()
kkg = kim ~ kgkn ~ ki

JKE+ K2 (ke + KgT) ().
(4) hy(s) = hi(s) = hy(s) = h’(s) = 0 if and only if

and tanf =

%wz(‘kg(s)ny(s) *+ kn($)m(s)) + sinfny(s),
kg(s) + ky(s)

(s) and x(s) = 0, where

kkg = kin = kgkn = kigi
\/‘ K2+ K (knTy + KgTg)
x(8) = ((=kyky + 2kgkyn + kit + keknTs + K3T,T + 2knkym + Ki{ + Kok
= kiTy — knkgTo)(Kny + KyTy) + 2Ky = Koy + KnTiTy + 2k57,
+ kaTy + koTg)(knkg = k3t = ki = knkg))(s).

tanf =

5) hy(s) = hi(s) = h/(s) = h’(s) = h{¥(s) = 0 if and only if
cos6

== (k($)N)($) + Kn($)ny(8)) + sinOny(s),
JK(s) + ki(s)
(s) and x(s) = x'(s) = 0.

kkg = kn = kgkn = ki

tanf = ——
N kg + ki (knTz + kgTg)
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Proof. (1) We can know v € S3, there are A,6,& ¢ € R with A% + §%+ &2+ ¢? =1 such that v = At(s)
+6n,(s) + &m(s) + ny(s). According to hy(s) = (t(s),v) =0, we have A1 =0. So 62+ &2+ ¢?=1 and v =
dn,(s) + &ni(s) + gny(s). Thus, (1) holds.

(2) Because hy(s) = h;(s) = 0, so we have

(t(s), v) =(t"(s), v)
= (kn($)ny(s) + kg(s)ny(s), 8ny(s) + &ny(s) + ony(s))
= 8kn(s) + Eky(s) = 0.

k(s) kS +ki) |y 5 _
TGy’ and [ ) ¢4+ ¢* =1. It follows that 6 =

cos 0k, (s)
JKHs) +Kis)

cosOkn(s)
NFORSON

we calculate that § = -¢ £=
@ = sinf. Thus, (2) holds.
(3) When hv(s) = h\;(s) = h‘;/(s) = 0’ we have <t(s), V) - (t’(s), V> - <t”(s), V) — 0 Where V=

cosf
VKES) + Ki(s)

(=kg(s)ny(s) + ky(s)ny(s)) + sinBny(s), and we calculate that

t"(s) = (=kz(s) = kg(s)(s) + (ki(s) = kg(s)m(s))n,(s)
+ (kn(s)a(s) + kg(s)m(s) + (kn($)n(s) + Kg($)7g(s)Ina(S).
Kikeg = k2t = kgkn = ki1
K+ KE o + KgTy)

(4) Based on (3) and h;”(s) = 0, we have (t”(s), v) = 0. Then we calculate that

Hence, there exists 6 such that tanf = (s). Thus, (3) holds.

t7(5) = (=3kn($)ky(8) = 3kg($)ky(SNL(S) + (=K () = kz(s)kn(s) + k;/(5)
= 2ky($)T(S) = Kg()T(S) = kn(S)TL(S) = Kn(S)T3(5) = Kg($)Te($)T(S)INy(S)
+ (=k3(s) = ki($)kg(s) + kg (s) + 2ky($)n(s) + kn(S)T{(5) — Kg($)T{(5)
= kg($)T(8) = kn(8)Tg(8)T($))M(s) + (2K (5)Ta(S) = Kg($)T(S)Ta(S)
+ kn($)Te($)n(s) + 2kg($)Tg(s) + Kn($)T5(S) + Kg($)Tg(s))na(s).

Thus, hy(s) = hy(s) = hy(s) = h)”(s) = 0 if and only if

0
v %(‘kg(s)ny@) + kn($)n(s)) + sinfny(s),
kg(s) + kn(s)
tan = kikg ~ kga — kg ~ Ko

— (s),
JKE + K2 (knTy + KoTy)

and
X(8) = ((=kykg + 2kgkyn + kit{ + keknTs + k3T, + 2knkymy + Kat{ + ok
= kityTy = knkgTo)(KnTy + KyTy) + (2KiT = KgyTi + KTy + 2k,
+ kaTy + keTp)(knkg = kgt = kit = kak))(s) = 0.

(5) Based on (4), we know y(s) = (t”(s), v) = 0, so h{(s) = (t¥(s), v) = y'(s) = 0. Thus, (5) holds. Proof com-
pleted. O

In the following proposition, we find that the family of tangential height functions on a curve in £
is a versal deformation of an Ax-singularity, k = 2, 3.

Proposition 3.2. Lety : I — I be a unit speed curve with k; # 0,50 kg > 0, and (k.7 + Kk,7)(s) # 0. Thus, we have
(1 If hy, has an Ay-singularity at sy, then H is a versal deformation of hy,.
(2) If hy, has an As-singularity at sy, then H is a versal deformation of h,,,.
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Proof. The family of tangential height functions is given by
H(s, v) = (t(s), v) = voxg(s) + vixi(s) + vaxy(s) + vsx3(s),

where v = (vg, vy, V3, V3), £(S) = (X{(8), X{(5), X5(5), X5(5)), and v; = /1 - vZ = v} — vZ. In order not to lose gen-

erality, we assume that v; # 0. So we have

2
Z_Z(S"’)”O'(s)‘z_?’(f(s)’ a5 =X ) - o),
3 .
afsfv V=X - e, 5, v)=x{(s)—§xf(s>,
3
S EVEX© = IR S (6) =) - (), (=2.3)

Therefore, the 1-jet of a—vl_(s, V) at sg is given by
4 Vl 4 ” Vl ”
x{(So) - V_X1(50) + (X (s0) = o (S0))(s — So),
and the 2-jet of (s V) at sg is given by
" 1
X{(S0) — v_;X{(So) + (x{"(s0) - _X1 "(S0))(s — Sp) + E(Xi/”(so) —X{”(So))(s $0)%,

wherei =0, 2, 3.
(D) If h, has an A,-singularity at s = s,. Let us consider the following matrix:

Xg(so) - X1(So) X3 (S0) — Xl(SO) x3(80) — Xl(SO)

xg'(So) — _X1 "(S0) X3'(So) = —X1 "(S0) X3'(Sp) = V_le'(so)

We calculate the Gram-Schmidt matrix of B = v,B. We denote the lines of B by
F = (xg(s0)v1 = x{(So)vo, X3 (So)v1 = X{(S0)Vz2, X3(S0)V1 = X{(So)V3),
G = (Xg'(so)v1 = X" (S0)Vo, X3 (So)v1 = X{"(S0)V2, X5 (So)v1 = X{"(So)V3).

Since (v, v) =1, (t(s), t(s)) =1, {t(s), v) = 0, (t'(s), v) = 0, and (t'(s), t'(s)) = (k1) + Kgn1)(s), (Knty + kgn1)(s))
= k;(s) + k;(s), we have the following Euclidean inner product

F-F=v}+ (4P F-G=xx,G -G = (kXs) + KAV + 042

Therefore, the Gram-Schmidt matrix of B is given by

oo [Ty X
B= -
Xix vik(s) + ki(s)) + 06|
kg(s0) cosby
We assume that n,(sy) = (0,1, 0,0). In this case, we have x/(sp) = 0, X"(So) = kn(So) and v; = ————=—.
JKEs) + ki(s)

Thus, the determinant of Gz is

kg(s0) co

m( 2(s0) cos? B + K3(Sp))

()2 + vDI(kg(s0) + Ki(s)vi + 6 = O =

that is different from zero. Thus, the rank of the matrix B is equal to two and so the assertion (1) follows.
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(2) We now assume that h, has an As-singularity at s = s;. In this case, we show that the determinant
of the matrix

Vo Vy V3
Xg(So) — V_Xf(so) X3(So) — V_Xf(so) X3(So) — V_Xf(so)
1

v
Xg'(So) — —Xx"(So) X3'(So) — —x"(So) X35'(S0) — _3X1”(30)
x§"(So) - —Xf"(so) X3"(So) — —Xl'”(so) X3"(So) = —X'”(S )
is nonzero. Denote
X{(So)
a; = X" (So) (i=0,1,2,3).
X{"(So)

By a simple calculation, we have

Y v v v
detA = ——Odet(al, ax, az) + —1det(ao, as, az) — —Zdet(ao, a, az) + —gdet(ao, a, as).
%1 %1 %1 %1

On the other hand,

Y’ (So) A Y7 (So) Ay (So) = (det(ay, az, az), —det(ay, ay, az), det(ag, a1, az), —det(ag, a;, az)).

Vo V1 V2 V3

Therefore, detA = —<[ o *], Y AY' A y”’)(so)>. We calculate that

V1’ Vl’ Vl’ %1

Y (So) A Y7(S0) A y7(So) = —kg(knT + KgTIny + kn(knTo + KgTg)n + (Kg(ky = Ko@) + Kn(knT + Kg))na(So).

If h, has an As-singularity at s =s, thus, using v = ﬁ%z()(—kg(s)ny(s) + kn(s)ny(s)) + sinfny(s),
VK S n(S
Kk - k2t - koky - ki
and tanf = ~75— " —"=(s), we have
JKE+ K2 (e + KegT)
Vo i Vo V3
detA = - [—, = LAY AY7)(S0)
< vi'vi vy
k, cos 90 , Kncos 90

—_— nl + sinfgny, —ky (ko + KgTp)ny
JkE+ k2 1/k2
g n

+ kn(knt, + kng)nl + (kg(kr: - kgTI) + Kn(knty + ké))nz (so) =

JKg + ki

k, cosBy

(S0).

Therefore, if h, has an As-singularity at sy, then detA # 0 and H is a versal deformation of h,,. This completes
the proof. O

We now define a deformation H : I x S3 x R = R by H (s, v, u) = H(s, V) + u(s — sp)? = (t(s), v) + u(s — so)%
The germ at (s, vo, 0) represented by H is considered.

Proposition 3.3. If h,, has an As-singularity at sy, then H is a versal deformation of h,,,.

Proof. We have
H(s,v,u) = H(s, V) + u(s — Sp)* = voX{ + viX{ + voXy + v3xg + u(s — sp)%,

where v = (Vg, V1, Vg, V3), £(S) = (X§(S), X{(5), X3(8), X3(s)) and v; = /1 - v¢ - v# - vZ. Thus,
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fori= 0,2, 3. The 2-jet of (s v, 0) at sp is given by
7 Vi ’ ” Vi ” 1 ”r 17 2
X{ (So) = _Xl(SO) + (X"(S0) = —x"(50))(s = So) + _(Xi (50) = —X{"(50))(s = S0)*,

and the 2-jet of (s v, 0) at s is (s — $p)>. We assume that h, has an As-singularity at s = so. Then we can show
that

xg(So) - _Xl(so) X3(S0) — _X1(So) x3(S0) — Xl(So) 0
rank| Xg'(so) = —x"(S0)  X;'(So) - —Xl”(so) x3'(So) - —Xl”(so) 0

xg"(So) - _Xf”(so) X3"(So) — _X{”(So) X3"(So) — _X{"(S ) 1

0 0 1

x§(s0) - %x{(sw X§ (50) = 72 (50)

o

o

= rank y(s) - xl(so) X7 (80) = ~2x{'(s) 0| 3

o

V3
X§(50) = x{(0) X (50) - V—X{'(So)
1 1

The rank of the last matrix has the same value as the rank of
1 0 1

, Vo, " Vo
xg(So) - V_Xl(so) Xg'(So) — . (So0)
1 1

o

o

Va2 Va2
X3 (So) — V_Xf (S0) X7'(So) — V_Xf/(so)
1 1

o

V3 V3
x3(So) — V—lx{ (s0) x3'(S0) = V—lx{’(So)

Consider

l(sp) =

Vo Vy V3
1, xg(So) = V—X{(SO), X3 (So) - v_Xll (S0), X3(S0) — V—Xf (So) >
1 1 1

b(so) =

0, x¢'(S0) = —X{"(S0), X5’ (S0) = —X{"(S0), X5'(S0) — (30)]

and k(sp) = (1,0, 0, 0). It is enough to show that 4(sy), L(Sp), and L(sp) are linearly independent. Because,
if i(sp), L(So), (sp) are linearly dependent, then we have x;(sp) = ‘v,—‘l’xl’(so), X;(Sp) = :—jx{(so), and x3(sp) =

Exl’ (Sp)- That is, t(sp) and v are parallel, and so we have a contradiction because (t(sp), v) = 0. (I

4 Spherical surface

In this section, we give the definition of a spherical surface. In addition, we study the classification of singular
points on spherical surfaces.
Let y: I— X be a unit speed curve with k,(s) # 0 and (k.7 + k,7,) # 0, and a surface S, : I x J - §®
is given by
cosf

§)(8, 0) = ——=——=—="("kg(s)N)(5) + kn(s)ny(s)) + sinOny(s),
kg(s) + ki(s)

where J = [0, 277]. We call S, a spherical surface of p.
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Corollary 4.1. The spherical surface of y is the discriminant set Dy of the family of tangential height functions H.

The cuspidal beaks are defined to be a germ of surface diffeomorphic to CBK = {(x, X, X3)|x = v,
X, = —2ud + v2u, x; = 3u* - v2u?}. The cuspidal lips are defined to be a germ of surface diffeomorphic
to CLK = {(x, %, X3)|% = v, X = 2u® + v2u, x3 = 3u* + v2u?} (Figure 2).

By using Theorem 2.2 and Propositions 3.2 and 3.3, we can obtain the diffeomorphism type of the spherical
surface in the following theorem.

Theorem 4.2. Let y : I — ¥ be a unit speed curve with kg # 0 and (ky% + Kg7,)(s) # 0, and S, is the spherical
surface of y. We obtain the following:
() Sy is singular at (so, 8y) if and only if
kik, - kit — kik, — ki
tanf, = — gz gzl A 1(So)-
kg + ky (ki + kgTy)

(2) The germ of S, at (So, 8y) is diffeomorphic to a cuspidal edge if
kpke - kéa - kgkn - kit

k; + kr% (knp + kng)

tanf = (So) and x(sg) # 0.

(3) The germ of S, at (So, 8o) is diffeomorphic to a swallowtail if
kik, — k2t - kjkn — kit
tanf, = mE_ g en w 1(so),)((so) =0 and y'(sp) # 0.
1/k§ + k2 (kn, + KoTg)

(4) The germ of S, at (sy, ) is diffeomorphic to a cuspidal beaks if

kiky = k2t = Kiky = k2
JKE+ I (s + Ky

where Ai(So) = (k;@ + knT; + KT + KgTg)(So)-
(5) A cuspidal lip does not appear.

T
“(s0) A % 0,x(s0) =0 and  y'(so) # 0,

tanf =

Figure 2: Cuspidal beaks (left) and cuspidal lips (right).
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Proof. (1) By using the definition of the spherical surface, we have

5,(5,0) = —30 __(ky(6)n,(5) + ku(S)u(s)) + sinO(s).
kg(s) + ki(s)

Taking the partial derivative of s, we obtain

35, cosO(—kZk; + okuky — K2kt - kn) = sinfo(kZ + k2)| /K2 + k2 (k2 + k)

S, 0) = n
s JIE + I + I '

cos G(kék,{ = kgknkg = k,%kgrl - k;rl) - sinGTg(ké + k), /kéz, + k2 (k; + k)
+ m

VK + ki (kG + k)

cosO0(k,7; — kg7
+ ( ntg g 2) 1, (S)
VK + ki
By taking the partial derivative of 8, we obtain
sin0k,(s) sin 0k, (s)

oS, ~ ~
30 (s,0) = k;(s) K0 n,(s) k;(s) e o) n(s) + cosOny(s).

Therefore, when (so, y) is a singularity if and only if the vectors {%(so, 0o), %(so, 0p)} are linearly dependent.
That is, the corresponding coefficients are proportional. Through calculation, we obtain if and only if

kek - k2t - k2n - L
So)-
I+ IR gty + ko)

Thus, (1) holds.

(2) It follows from assertions (3) and (4) of Proposition 3.1 that h, has an A,-singularity at s = s
if and only if

tanf, =

k.k, - kit — kit — kK,
Fn_gl el W g(so) and y(sg) # 0.
1/k; + k,f(kgrg + k)

Therefore, by (1) of Proposition 3.2 and Theorem 2.2, we have assertions (2).
(3) It also follows from assertions (4) and (5) of Proposition 3.1 that h, has an As-singularity at s = s,
if and only if

tan6, =

keky — kim = kit — knkg
tanf, = — (S0),  x(s0) =0 and x'(sp) # 0.
K + k2 (kgTy + KnTy)

Therefore, by Proposition 3.2 and Theorem 2.2, we have assertions (3).
(4) By using Proposition 7.5 in [21] and Proposition 3.3, we can obtain that H is a Morse family
of hypersurfaces. We now calculate o = (82H/3s%)|Dy. Then, we have

cosf

0’H
—(5,0)=( t"(s), —o—
0s? (S ) (S) k§(5)+an(s)

(=kg(sIn,(s) + kn(s)ny(s)) + sinBny(s)

-cosf .
= m(kgkﬁ - kgz’l'l - k,%’l'l - knké)(s) + sinf(k,, + kng)(S).
g n

The Hessian matrix of

~cos0
0(s, 0) = e (kgky, ~ k25 ~ k2T~ kip)(s) + sin6(koty + KyTy)(s)
k(s) + k(s)
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is

02
0) < | 35250 0 Asn)|
A(S0) 0

Hess(a)(so,

So when X(sy) # 0, we have det Hess(a)(sp, 0) # 0. By Lemma 7.7 in [21], H is P<K-equivalent to t* + vZt2 +
vot + V3. The singular set of Dy is given by a(s, 8) = 0. Therefore, it consists of two curves that transversally
intersect at (sg, 0). So the normal form is t* - vZt% + vyt + v3, and the surface is diffeomorphic to the cuspidal
beaks. Thus, we obtain assertions (4) and (5). ]

5 Examples
In this section, we give two examples of spherical surfaces.

Example 5.1. We suppose £ = R3 = {x = (Xo, %, X2, X3) € R%|Xg = 0}. Fory : I - R3, we have n, = ey, t(s) = y'(s),
ny(s) = n(s) and ny(s) = b(s). Here, {t, n, b} is the ordinary Frenet frame. In this case, k, =7 =% =0,k; = k
and 7, = 7. The Frenet-Serret type formulae are the original Frenet-Serret formulae:

ey(s) = 0,

t'(s) = k(s)n(s),

n'(s) = —k(s)t(s) + t(s)b(s),
b'(s) = —t(s)n(s).

The spherical surface of y is given by
S)(s, 8) = —cosfey(s) + sinbb(s).

Let y : I = R3 be a curve defined by

3 , —SIn TS

y(s) = [0, cos[ﬁs 3 ] 5 ]

-04
-03
-0.2
-0.1

0.1
0.2
0.3
0.4

0 T |.|-[||l|l]'|'

-0.6 - 04 0 -04 -08

Figure 3: Projection of the image of the spherical surface on xxxs-space.
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we have
3 (3) V3 (V3) 6
t(s)=y'(s) = 0,—7 [Ts]’_TCOS[TSI’ T]
n(s) = [0, —cos[ﬁs , sin ﬁs] 0’,
3 3
b(s) = 0,—%911[? ,—ﬁ [\/_ y

Let sinf = u, cosf = /1 — u?. Thus, the spherical surface of y is given by

oS af 23]

Sy(s,u) = 3

We draw the projection of the image of the spherical surface to 3-space (Figure 3).

Example 5.2. We suppose £ =83 For y:I— S% we have n, = y(s), t(s) = y’(s), u(s) and ny(s). Here,
{t, ¥, iy, ny} is the orthonormal frame. In this case, kn(s) = -1, 5(s) = 1(s) = 0, ky(S) = ky(s) and 7g(s) = 7($).
y'(s) = t(s),
t'(s) = —y(s) + kn(s)m(s),
n{(s) = —kp($)t(s) + wm(s)ny(s),
ny(s) = =m(s)m(s).
Therefore, the spherical surface of y is given by

cosf

W( kn($)(s) = mu(s)) + sinOny(s).

S,(s,0) =

Let y : I — S% be a curve defined by

1 22 | 1 (242 | V2 1 (1
Y(s) = ny(s) = f cos fs , fsm fs , ﬁcos ﬁs '3 sin ﬁs ,
we have
t(s)=y’(s) = _2\/5 sin 2\/Es 2\/Es —ls'n 1 ] cos[ ]
A B 3 °) 73U 6
)=y (s) = |8 242 | 242 | _ 1 [L ]
s)=y"(s) = 3\/gcos. 3s, SJECOS\/ES’ 3\/_sm\/_
By the direct computation, we obtain |[y(s)|| = 1, [[t(s)|| = 1, and k,(s) = (t'(s), ny(s)) = —1. Thus, we obtain
t'(s) + ny(s) = |- > cos 2\/Es _0 sin 2\/Es > co [ L sin|— ]
y 33 NER N BV NG W 3J— J6
and kg(s) = ||t'(s) + ny(s)|| = We obtain the normal vector ny(s), which is given by
n(s)=—\/E 2\/—] \/— 1 2\/—] 1 [ ] sin s]
: T INE T N Rl I T OV Bl IV N B W
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Figure 4: Projection of the image of the
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Spherical surface

spherical surface on xpxx3-space (in green) and its critical value set (in red).
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Figure 5: Projection of the image of the spherical surface on x;x3x4-space (in green) and its critical value set (in red).

-0.3—

-0.2

-0.1

0.8 04 T

02

I'IIIIIII'IIIIIIIII
-08 -0.8-0.6-04-02 0 02 04 06 0.8

Figure 6: Projection of the image of the spherical surface on xixsx4-space (in green) and its critical value set (in red).
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0.8
0‘6—-
0.4—
0.2

02
-0.4-
-0.6
05

-03
-03 -02 -01 0 o1 o2 o303 01 O

Figure 7: Projection of the image of the spherical surface on xxx,-space (in green) and its critical value set (in red).

The other normal vector ny(s) is given by
ny(s) =t(s) A ny(s) A ny(s)
= —sm 22 1 2\/— Zﬁ ——sin Ls] &cos[is]
37 (V3 N N V6|

Let sinf = u, cos® = /1 — u. Thus, the spherical surface of y is given by

—S],

S,(u, ) = Cau, ), x(u, s), X3(u, 8), x4(U, 8)),

where
1 2+/2
x(u,s)= \/f —J1 - cos[—s] U sin \/—sy,
2 1
x(u, s) = \/f J1 -2 sin —s - gu s

1
x(u, §) = \/1 - u? cos - —usm —s
s [ o - £ G5
1
, =——\/1—2' L 22 —=s|-
x4(u, s) NeT) u® sin 3 u cos[\/gs]
The points (s, 6(s)) = (s, 0) are the cuspidal edge-type of singularities of S,, where s € I. We draw the projec-

tion of the image of the spherical surface S, (in green) and its critical value set Sy(s, 0) (in red) to 3-space
(Figures 4-7).
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