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Abstract: One of the symbolic parameters to measure the fault tolerance of a network is its connectivity. The
H-structure connectivity and H-substructure connectivity extend the classical connectivity and are more prac-
tical. For a graph G and its connected subgraph H, the H-structure connectivity (G; H) (resp. H-substructure
connectivity k$(G; H)) of G is the cardinality of a minimum subgraph set such that every element of the set is
isomorphic to H (resp. every element of the set is isomorphic to a connected subgraph of H) in G, whose vertices
removal disconnects G. In this article, we investigate the H-structure connectivity and H-substructure connec-
tivity of the n-dimensional burnt pancake network BB, for each H € {K}, K1 1, ...,Kin-1, Ps, ..., P7, Cg}.
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networks
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1 Introduction

An interconnection network is often represented as a graph, in which a vertex corresponds to a processor, and
an edge corresponds to a communication link. One fundamental consideration in the design of networks is
fault tolerance, which can be measured by the connectivity of graphs. In general, if the connectivity is larger,
then its fault tolerance is higher. For a connected graph G, its connectivity k(G) is defined as the minimum
cardinality of a vertex subset whose removal makes the remaining graph disconnected. In recent years,
the conditional connectivity [1] and the restricted connectivity [2,3] were introduced in succession for more
accurate assessment of the fault tolerance of an interconnection network.

However, the connectivity parameters mentioned above are still disadvantageous because they just take
into account the influence of a private vertex failure on the networks rather than the influence of a vertex or
the vertices around it. In reality, one failing vertex is bound to have some adverse effects on the surrounding
vertices. Furthermore, stimulated by the current situation that networks and subnetworks of large scale are
increasingly made into chips, people think that it is becoming more and more feasible to consider the fault
situation of a structure. Lin et al. [4] came up with the structure connectivity and substructure connectivity,
whose proposition perfectly accommodates this disadvantageous realistic environment. Instead of focusing on
the effects of a single vertex failure, they started to pay attention to the influence caused by some structure
failures.
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Table 1: The H-(sub)structure connectivity of BB,

H K Ki,r Py Ps Pg P, Cs
k(BB H) n n n n n-1 r%q /
k(BB H) n n n n n-1 rgq r%q

Due to its advantages, there have been a number of results about the structure connectivity and sub-
structure connectivity on some well-known networks, such as hypercube Q, [4,5], folded hypercube FQ, [6],
balanced hypercube BH,, [7], k-ary n-cube network Qux [8,9], twisted hypercube H, [10], crossed cube CQ, [11],
bubble-sort star graph BS, [12], star graph S, [13], (n, k)-star graph S, x [14], alternating group graph AG,
[15,16], wheel network CW, [17], circulant graph Cir(n, 2) [18], and divide-and-swap cube DSC, [19].

This article determines the H-structure connectivity and H-substructure connectivity of the n-dimensional
burnt pancake network BB, where H € {Kj, K, P}, ...,P7,Cs} and 1<r <n - 1. For detailed results, see
Table 1.

The remaining of the article is organized as follows: Section 2 presents the basic notations and definitions
and introduces burnt pancake networks and their relevant structural properties; Section 3-5 dedicate
the H-structure connectivity and H-substructure connectivity of BB, such that H are K, (1<r<n-1),
P, (4 < ¢ <7), and Cg, respectively; Section 6 concludes the article.

2 Preliminaries

We simply describe some terminologies and notations of graph theory, give the definitions of the structure connec-
tivity and substructure connectivity, and provide the topological structure and properties of BB, in this section.

2.1 Terminologies and notations

For notation and terminology not mentioned here, the reader can refer to the study by Bondy and Murty [20].
Given two graphs G and H, if V(H) C V(G) and E(H) < E(G), then H is a subgraph of G, denoted by H C G; if
they have identical structure, then H is isomorphic to G, denoted by H = G; if H is isomorphic to a connected
subgraph of G, denoted by H < G. For S C V(G), G[S] is the induced subgraph by S; N5(S) = UvesNG(v)\S and
Ng[S] = N(S) U S, where Ng(v) denotes the neighbors of v in G (the subscript G can be omitted without
ambiguity); G - S is the graph, which is obtained by removing all vertices of S and the edges incident with
vertices of S in G. Note that K , is a star with r pendant vertices and P, is a path with ¢ vertices. For any two
subgraphs G; and G, in G, E(Gy, G») is the set of edges joining one vertex in G; to another vertex in G,.

Here are the definitions of the H-structure connectivity and H-substructure connectivity of G, where G
and H are two connected graphs and V(H) = Ugex V(H).

Definition 1. [4] Let H C G and ‘H = {H,, Hy, ...,H;} be a set of connected subgraph of G such that every H; = H.
If G - V(H) is disconnected, then # is an H-structure cut. The H-structure connectivity of G is defined as follows:

k(G; H) = min{|H| : H is an H -structure cut}.

Definition 2. [4] Let H € G and H = {Hy, H,, ...,H;} be a set of connected subgraph of G such that every H; < H.
If G - V(H) is disconnected, then # is an H-substructure cut. The H-substructure connectivity of G is defined
as follows:
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k%(G; H) = min{|H| : H is an H -substructure cut}.

As a matter of fact, the structure connectivity and substructure connectivity are the natural general-
izations of the classical connectivity with k(G; K) = k°(G; K;) = k(G) in this sense. It is obvious to obtain
the following results from the definitions above.

Observation 2.1. k5(G; H) < k(G; H) and k°(G; H) < k%(G; H") for H' < H.

2.2 Burnt pancake networks

Burnt pancake networks originate from the Burnt Pancake Problem discussed in [21-24]. Incidentally, one of
the authors of [22] is Microsoft co-founder Bill Gates. In the Burnt Pancake Problem, one is tasked with sorting
a stack of burnt pancakes in the proper order and orientation. Similarly to pancake networks, burnt pancake
networks are also Cayley graphs [25,26].

Given a positive integer n, let[n] and [+n] be the set {1, 2, ...,n} and {-n, —(n - 1), ...,—1} U [n], respectively.
To simplify notation, it is usual to use { instead of —i, and we also replace {j with ij. A signed permutation on
[+n] is an n-permutation XX, --- X, of [+n] such that after taking the absolute value of each element x; can make
up a permutation of [n], i.e., |x||%| -*|x;| forms a permutation of [n]. For example, all of the signed permutations
on [+2] are {12, 12,12, 12, 21, 21, 21, 21}.

Definition 3. [27] Let BB, be an n-dimensional burnt pancake network, whose vertex set and edge set are defined
as follows:
» V(BB,) = {all the signed permutations of [+n]}.

e E(BR) = {(u, ud) : u = XX~ X; = Xp, U = XXy XoXXis1 Xz @and i € [n]}.

Moreover, u' is the unique i-neighbor of u for i € [n], u' is an in-neighbor of u ifi € [n - 1] and u! is an out-
neighbor of u if i = n. We label the edge (u, u®) (for short uu!) by i, and the edge uu! is called an i-edge.

123 123 321 321

1 1
o—
BP,
32N 321
13
_ 31
12 T2 2 E ‘ 3T
X
21 31 N / 132
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/ < ’ 21
12 12
BP; 2 31 o 213

Figure 1: Burnt pancake networks BP;, BP;, and BP;.



4 —— Huifen Ge et al. DE GRUYTER

The n-dimensional burnt pancake networks for n = 1, 2, and 3 are shown in Figure 1. It is obvious that
|[V(BBY)| = 2" x n!and |[E(BB,)| = n x 21 x n!, We denote a cycle or path by the edges it traverses. For example,
an (a,b,c,d, e, f, g, h)-cycle traverses an a-edge, followed by a b-edge, and successively until the last edge
traversed is an h-edge. In fact, BP; is a (1,2, 1, 2,1, 2, 1, 2)-cycle.

Lemma 2.2. Let BB, be an n-dimensional burnt pancake network, i,j € [tn], and i # j. Then, the following

results hold:

(D [27, Theorem 3] BB, is n-regular and k(BB,) = A(BR,) = n.

(2) [28, Lemma 2] BB, can be decomposed into 2n vertex-disjoint subgraphs BP., which are induced by all
of those signed permutations whose last position is i, where i € [n]. Clearly, BP}, = BB,-1, and every edge
(if exists) between BP', and BP/ is labeled by n.

(3) [27, Lemma 1] For any two distinct subgraphs BP, and BP), the number of edges between them are

(M-I x2w2 ifi=],

E(BP., BP)| =
[E(BPy, BPy)l 0, otherwise.

Lemma 2.3. Let n > 2 be an integer, i,j € [tn], and i # j.
(1) [29, Theorem 10] The girth (the length of a shortest cycle) of BB, equals to 8 for n > 2.
(2) [25, Theorem 4.1] An eight-cycle in BB, is one of the following forms:

o (k,j,i,j,k,k—-j+ii,k-j+i)cycleforl<i<j<k-1land3<k<n

o (k,j,k,i,k,j, k,i)cyclefor2<i,j<k-2i+j<k,and4 <k <n;

o (k,i,k,1,k,i,k,D-cyclefor2<i<k-1and3<k<n;

o (k,1,k,1,k, 1, k,1)-cycle for2 < k < n.

Proposition 2.4. Let i,j € [+n],i # j, and u € V(BPY).

(1) Let U = Ngpi[u]. Then, the induced subgraph by U in BB, is isomorphic to Kin-1. Furthermore, if the out-
neighbors of vertices in U are denoted by U™, then they lie in different copies.

(2) Each subgraph that is isomorphic to one of Py, Ps, Pg, and Cg in BPY, is incident with at most two edges between
BP!, and BP), in BR, for all j # i.

Proof. (1) Let u = xpx, - X, be a vertex of BP} and U = Ngpi[u]. Then, the induced subgraph by U in BB,
is isomorphic to K; ,-1 because of

U={uul,u? .. u"1
=00X X, XXt Xny XoX o Xy s Xpo1 o XXX} @

UM = {XXn 1 X, XXn1 " XX, XpXn1 " XaXiXo, .o, XnXiXo ™ Xn-1}.

These vertices of U™ belong to BPY, BPY, BPY,..., BPX1, respectively. This implies that a subgraph isomorphic
to Ki,-1 in BPY, is incident with at most one edge between BP, and BP), in BB,.

(2) Let F be a subgraph in BP},. If F is isomorphic to one of P,, Ps, and P, there are two subgraphs F; and F,
such that F; < Ky, F; < K2, and V(Fy) U V(F,) = V(F). By equation (1), every F, for i € {1, 2} is incident with at
most one edge between BP, and BP). Therefore, F is incident with at most two edges between BP} and BPJ.
Suppose that F = Gg. If F is incident with three edges between BP} and BP/, then there exists a subgraph
isomorphic to Ky ; in F, and it is incident with two edges between BP, and BPJ, a contradiction. O

Lemma 2.5. [26, Theorems 3.5, 3.7 and 3.9]1 k(BB,) = n, ki(BB,) = 2n - 2, and k;(BR,) = 3n - 4 for n > 4, where
Kp(H), the h-extra connectivity of H, is defined the minimum number of vertices whose deletion yields
the resulting graph disconnected and each remaining component has more than h vertices.
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3 k(BB,; Ky,) and k*(BB,; K )

In light of the definition of structure connectivity, substructure connectivity, and k(BB,) = n, the following
result is immediate.

Theorem 3.1. k(BB; Ky) = k5(BB;; K;) = n.

Next, we determine K ,-structure connectivity and K; -substructure connectivity of BB, for1<r<n-1
by establishing the upper and lower bounds, respectively.

Lemma 3.2. k(BB; K;;) <nfornz2and1<r<n-1

Proof. Letu € V(BB,) and U; be a set of r vertices in N (ui)\{u} fori=1,2,..., n.Using H; to represent the induced

subgraph by U; U {t/} in BB,, we have H; = K. Let H = {Hj, H, ...,H,}. Then, BB, — V(%) is disconnected, and u

becomes an isolated vertex. Therefore, k(BB,, K ) < |H| = n. ]
For convenience, we define some notations throughout the article.

(1) H = {H, Hy, ...,H;} is a set of connected subgraphs of BB;

(2) H'=H N BP, = {H, N BP, H, N BP, ...,H, N BPi} fori € [+n];

(3) BPY, BP%,..., BP% are 2n vertex-disjoint sub-burnt pancake networks of BB, such that |H @| > | %|2---2|H %|;

4 I={i:HNBP%+@}and I, = {i : H N BP% = @};

(5) BP} = BR[Uie/V(BPf)] and BPY = BR[Uie,V(BPY)];

6) |EG, )| = |E(BP, BPY)|.

Lemma 3.3. k5(BB;; Kyp-1) 2 n forn = 2.

Proof. Let H and H % be defined as above. We will show that BB, - V() is connected if|#| < n - 1 and every
element of A is isomorphic to a subgraph of K ,-1 by induction on n. For n = 2, as BP, = G, it is clear that
BP, — V(K1) and BP, — V() are still connected. For 2 < ¢ < n - 1, suppose that the statement holds for BP,.

Since |H| < n -1 and every element of H distributes in at most two sub-burnt pancake networks,
we have [H{ < n - 1, T4 HY| < 2n - 2, |H %1| = [H %] = 0, and [H %7 < 1.

Case 1|H %2 = 1.

In this case, |[H 4| = |H %| =---=|H %3] = 1 and every element of H distributes in exactly two distinct sub-
burnt pancake networks. It implies that every H; of / contains exactly one n-edge. Notice that [ %| <1,
itis easy to see that BP% — V(% %) is connected for k € [2n] by the induction hypothesis for n = 3. Without loss
of generality, let H % < Kj -, H % < K, and V(H;) = V(H %) U V(H %) for j=2i-1andi € [n - 1].

On the one hand, let G; = BP,,[V(BP?J U BPﬁj”)] - V(H;) fori € [n - 1]. Then, G; is connected because every
H; contains just one edge between BP) and BPy/"' and |E(j,j+ D] = (n-2)! x2""2>1forn 2 3. On the other
hand, since every H; is incident with at most one edge between G; and BP#+1 (resp. BP%»), there is at least one
edge connecting G; and BPg! (resp. BP3). Therefore, BB, — V(%) is connected.

Case 2 |H %2 = 0.

In this case, {2n - 2,2n - 1, 2n} C Iy, |Io| = 3, and BP{I0 is connected. We consider the following cases.

Case 21 |[H®% <n-2.

By the induction hypothesis, BPy — V(% %) is connected for j € [2n].

In light of Lemma 2.2(3) and Proposition 2.4(1), |E(i, ip)| = (n - 2)! x 2""2 for ; # @, and every element
of H% U H % is incident with at most one edge between BP% and BP* for i € [2n - 3], ip € Iy. Clearly,
(n-2)! x 272> n -2 for n > 3, and thus, there is at least one edge connecting BP% and BPY. Therefore,
BB, — V() is connected.

Case 2.2|H% =n-1land|HY%Y <n-2for2<j<2n.

By the pigeonhole principle, we have |H %| <1 and |H %1 = 0.
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Case 2.2.1 |H ™| = 1.

It is clear that BB, — V(BP%) — V() is connected by Case 2.1. Since |H%| =1, |H% = |H%| ==
|H %] =1 and every element H; of  distributes in exactly two distinct sub-burnt pancakes BPy and BPj:
fori=2,3,..,n.

Let D be a connected component of BPy — V(H @), and so Ngpa(D) € V(H @).

Suppose that |[V(D)| = 1. Let D = {w}, as [Ngp,(w)| = n and [Ngp,(w) N V(H)| <1 for H; € H, then w" &
V(H). Now, we set |[V(D)| 2 2. Letuv € E(D) such that Ngpa(v) N V(H %) # @. Then, v* & V(H). Otherwise,
there exists an i € {2, 3, ...,n} such that H% < K ,-, and H % is incident with two n-edges between BP
and BP%, contradicts Proposition 2.4(1). Therefore, BB, - V() is connected.

Case 2.2.2 |H%| = 0.

In light of the discussion of Case 2.1, BB, — V(BP%) — V() is connected. It suffices to show that
an arbitrary vertex u of BP% — V(7 %) can connect to BB, - V(BP%) - V(H).

To the contrary, suppose that there exists a vertexu = xx; -+ X,-1a; in BP% — V(% %), which cannot connect to
BB, - V(BPy) = V(H). If ¥ € {@y, ~Wne1, oo, Gon}, then U E{@X 1 Xln, TXn1 " Xalns1, s BXn1 XKoo},
and these vertices belong to BPr, BP%+1, ... BP%, respectively. Thus, uu" is a path connecting u and BE, -
V(BP%) - V(H), a contradiction. It implies that x; & {@, “@n+1, ..., Gan}, and there exists at least a pair of g
and a; such that a; = @; for n < i,j < 2n. Without loss of generality, let a, = "@p+1 = 2. It means that x # 2
and x # 2, but 2 or 2 must occur at the vertex u, assuming x, = 2.

If vt ¢ V(H), then uu" is a path connecting u and BB, - V(BP&) - V(H); if u' € V(H) and
wh)? & V(H), then uu'(uH)*((u)®)" is a path connecting u and BB, - V(BP%) - V(H); if u> € V(H), then
uu?(u?)" is a path connecting u and BB, - V(BP%) — V(H); if there exists an integeri € {3, 4, ...,n — 1} such that
ul ¢ V(H) and (1)1 & V(H), then uu'(u)~'((u)")" is a path connecting u and BB, - V(BP%) - V(H)
(Figure 2). All of these cases get contradictions. Summing up above, we know that u" € V(#H), at least one
of u! and (u')? is contained in V(H), u* € V(H), and at least one of u!, (u))"! is contained in V(H)
fori=3,4,.,n-1.

Choose v; € {u!, W) N V(H) and v; € {t!, @) 3 N V(H) for i=3,4,..,n-1 and denote v, = u"
and v, = u Let U = {vy, Vo, V3, ...,V}. Then, U C V(H).

If we can show that every element of 4 contains at most one vertex in U, then |H| = |U| = n, which
contradicts |#| < n - 1. If not, assume that there are two distinct vertices v;, v; € U, which lie in an element of
H . By the definition of v; v;, there exist a v-u path R; and a v;-u path R; whose lengths are at most 2.
Furthermore, since u ¢ V(H) and v;, v; lie in an element of H, there is a v-y; path R whose length is at
most 2. Consequently, R;R;R forms a cycle whose length is at most 6, which contradicts the girth of BE,.

Hence, any vertex u of BP% — V(7 %) connects to BB, - V(BP%) - V(H), i.e., BB, - V(H) is connected.

Case 23 |H% = |H% =n-1and|H% =0for3<j<2n.

Assume that u = xx, - X, is a vertex in BP% — V(H %); if u® € BP% U BP% U---U BP%, then the result
is true. Next, let u" € BP%, and it is obvious that (u})", W2)%,...,(u™H" & BP%, If one of ul, u?,..., u"! is not
in V(H), then it is true. Assume thatu, u?,..., u™ ! belong to V(). If u" € V(H), then || = n, a contradiction.

BP

GTHETHCL

BP? BP? BP;!

BP, — V(BPM) — V(H)

Figure 2: Illustration of Case 2.2.2 of Lemma 3.3.
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Assume that u® & V(H), similarly, if ()", (WHH,...,(u)" )" ¢ BP% and one of them is not in V(H),
then it is true. Now, (u™)!, (WV)?,...,w")" ! € V(H) and |H| = 2n - 2, a contradiction.

Therefore, any vertex u of BP% — V(% “) connects to BB, — V(BP%) — V(H), i.e., BB, - V(H) is con-
nected. O

Combining Lemmas 3.2 and 3.3, we can obtain the following result.

Theorem 3.4. k(BB; K ;) = k’(BB; Ki,) =nfornz22and1<r<n-1

4 k(BB,; P;) and k*(BB,; P)

In this section, we investigate the P,-structure connectivity and P,-substructure connectivity of BB, for4 < ¢ < 7.

Lemma 4.1. k(BB;; Py) < n and k(BB;; Ps) < n forn = 3.

i=12..,n and j=(i+1) modn. Clearly, H;=P, (resp. F =Ps). Let ‘H ={H, H,, ...,.H;} (resp. ¥ =
{Fy, By, ...,E}). Then, BB, - V(H) (resp. BB, - V(¥)) is disconnected and u is an isolated vertex. Therefore,
K(BB; By) < |H| = n (resp. k(BB; Ps) < |F] = n). [

Lemma 4.2. k5(BP3;Ps) = 3.

Proof. Let H = {Hy, ...,H;} and H; < P; fori € [t]. Itis easy to check that BP; - V() is connected when t = 0 or
1. Suppose that t = 2. If H;, H, < P3, then BP; — V(H) is connected by Theorem 3.4. Suppose that at least one of
H; and H, is isomorphic to P; or Ps. Since there are at most four n-edges in #H, we have the following cases.

Suppose that % contains no n-edges. When H; U H, C BPY', clearly, BP; — V() is connected. When
H, C BP3' and H, C BP%, BP§ - V(H,) is connected and |V(BP§' - V(Hy))| = 3, and there is at least one
n-edge connecting BP3' - V(H;) and BP§°. Similarly, BP§> - V(H,) can connect to BP§°, where I = {3, 4, 5, 6}.
Therefore, BP; — V() is connected.

First, assume that /4 contains one n-edge. When | %| = 2 and |H | = 1, clearly, BP; - V(BP§!) - V(H) is
connected and BP§' - V(%) contains at most two components D; and D,. It is easy to check that
Ngp,(Dj) N V(BP; - V(BPS') - V(H)) # @ for j =1,2. Therefore, BP; - V(%) is connected. When |H %| =
|H %| = |H %| = 1, BP§ — V(H %) is connected and |V(BP§ - V(H %)) = 3 for i = 1,2,3, and there is at least
one n-edge connecting BP§' — V(7 %) and BPY for I = {4, 5, 6}. Therefore, BP; — V() is connected.

Second, assume that # contains two n-edges. Then, H; and H,, respectively, contain one n-edge, or H; has
exactly two n-edges. When |H 4| = |H %| = |H%| = |H 4| = 1, every BP% — V(% %) is connected for 1 < i < 4,
and there is at least one n-edge connecting BP§ - V( %) and US.sBP5.. When |H %| = 2, and |H %| = |H %| = 1,
BP; - V(BP3') - V() is connected and every component D of BP% - V(BP%) satisfies that Ngp,(D) N
V(BP; - V(BP3!) - V(H)) # @. When |H 4| = |H %| = 2, BP; - V(BP5') - V(BP%) is connected and every com-
ponent D; of BP% - V(BP%) satisfies that Ngp,(D) N V(BP; - V(BP5') - V(BP3})) # & for i = 1, 2. Summing up
above, BP; — V() is connected.

Third, assume that 7 contains three n-edges. Then, H; contains exactly two n-edges and H; contains one
n-edge. It easy to check that BP; - V() is connected from the above discussion.

Fourth, assume that  contains four n-edges. Both H; and H; contain two n-edges. When
|H @| =---=|H % = 1, every H % < Ki; or K; and BP% — V(7 %) is connected for i = 1,..., 6. Without loss of gen-
erality, let H; C BPs[UL,V(BPS)] = G, and H, C BPs[UL,V(BP5)] = G, and we have that G, - V(H,) is con-
nected since there are two n-edges between any pair of BP§ and Bng for a; # @; and that every element
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of H % U H % is incident with exactly one edge between BP§ and BP? fori,j € {1, 2, 3}. Similarly, G; - V(H,) is
connected. Since the number of deleted n-edges between G; and G, are at most 4 and |E(Gy, Gy)| = 12,
there exist edges connecting G; - V(H;) and G, - V(H;). Hence, BP; = V() is connected. Similarly, when
[HY = |[H®% = |[H®SB =20r|HY = |H% =2,|HS| = |H% =1or|H%Y =2,|H% =--=|H%| =1, we also can
obtain that BP; — V() is connected. O

Lemma 4.3. k5(BB;; Ps) 2 n forn = 3.

Proof. Let H = {H;, H,, ...,H;} be a set of subgraph of Ps in BB, such thatt < n - 1, and we show that BB, - V(H)
is connected by induction on n. By Lemma 4.2, this statement holds for BP;. Now, assume that the statement
holds for BB, 3< ¢ <n-1).

Since every element of H lies in at most three different copies of BP% for i € [2n] and contains at most two
n-edges, we have |[H'% < n -1 and Z,-zfllﬂ“q <3n-3.

Case1|H*H <n-2.

By the inductive hypothesis, each BP% — V(# %) is connected for i € [2n]. In light of Lemma 2.2(3) and
Proposition 2.4(2), when a; # @, we know that [E(i,j)| = (n - 2)! x 2""2 and the number of deleted n-edges
between BP% and BPy/ is at most 4(n - 2). Since (n - 2)! x 22> 4(n - 2) for n > 5, there exists at least one
edge connecting BP% — V(7 %) and BPx - V(H%). Forn = 4, (n - 2)! x 202 = 8. Let J = {j : [/{%| = 2}. Then,
2<|J] £3and H% U HY% is incident with at most four n-edges for i, j € J. Thus, there exists at least one edge
connecting BP§' — V(H %) and BPY - V(H %). Therefore, BB, - V() is connected.

Case 2|H% =n-1

By the pigeonhole principle, [H % <n - 1,|H%| <n - 2,|H %] <1, and |H %| = 0.

By the inductive hypothesis, each BP% - V(% %) is connected for [ %| < n - 2. By Lemma 2.2(3) and
Proposition 2.4(2), |E(i, 2n)| = (n - 2)! x 2"°2 and every element of H % U H % is incident with at most two
n-edges between BP% and BP% for |H %| < n - 2 and a; # @, Since (n — 2)! x 22 > 2(n - 2) for n = 4, there
is at least one edge connecting BP% — V(# %) and BP%.

Let J={j: |H% = n - 1}. Then, every element of # is intersecting with BPy.

Case 2.1 There exists j € J such that a; = “a,.

Clearly, BB, - V(BP/) - V() is connected. By symmetry, assume that a; = "@;,. Next, we will show that an
arbitrary vertex u of BP% — V(7 @) can connect to BB, - V(BP)) - V(#). Note that BP%: C BB, - V(BP)) - V(H).

On the contrary, assume that u is a vertex that belongs to BP% — V(7 %) and disconnects BB, - V(BP}) -
V(H). Without loss of generality, let u = X, ... X,-11. Then, ay, = 1. If there exists an integeri € {1,2, ...,n - 1}
such that u, (@), (WYY, (@MDY & V(H), then ur @) (W))(((w)™M)" is a path connecting u and BP%»,;
if ut, WY, (WHH" & V(H), then uuWH)((wHH)" is a path connecting u and BP% (see the left of Figure 3).
All of these cases get contradictions.

(2) a1 # azn

Figure 3: Illustration of Case 2 of Lemma 4.3.
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Summing up above, at least one of t/, (u))", (1)™?, and ((('))!)" is contained in V(H) fori = 1,2,..,n - 1
and at least one of ", (u™)!, and ((u™)})" is contained in V(). Choose v; € {u, (1), ()M, (W)HMHH"} N V(H)
fori=1,2,.,n-1 and v, € {u", W, (WHH"} N V(H). Let U = {vy, vy, ...,V,}. Then, U C V(H). If we can
show that every element of /4 contains at most one vertex in U, then |H| = |U| = n, which contra-
dicts [H| <n - 1.

If not, assume that there are two distinct vertices v;, v; € U, which lie in an element of 7 . By the definition
of v; and vj, there exist a v;-u path R; and a v;-u path R; whose lengths are at most 3. Recall thatu € V(#H) and
V(BP%) € V(H). Since v; and v; lie in an element of 7, there is a v;-; path R whose length is at most 4.
Consequently, R;R;R forms a cycle C whose length is at most 10. When C is a Cs, we can check that either
the edge of RiR; does not match with a Cz of BB, (Figure 4 shows four kinds of Cy containing n-edges)
or RN V(BPY) = @, a contradiction. When C is a Cy or Cy, R is an element of 4 but R N V(BPY) = &,
also a contradiction.

Therefore, any vertex u of BP% - V(7 %) connects to BB, - V(BPJ) - V(H).

Case 2.2 a; * “ay, for every j € J.

On the one hand, BP,% - V(% @) can connect to any BP% - V(#H %) for|H %| < n - 2 whenn 2 5 because
of (n — 2)! x 22 > 4(n - 2). On the other hand, there existi & J and | % < n - 3 such that BP% — V(7 %)
can connect to BP,* — V( @) when n = 4. Hence, BB, - V(BP]) - V() is connected.

It suffices to show that an arbitrary vertex w of BP% — V(9{%) can connect to BB, — V(BP{) - V(H)
for a; # @;,. Recall that BP%" C BB, - V(BP)) - V(H).

On the contrary, assume that w € BP% - V( @) and w disconnects to BB, - V(BP/) - V(). Without loss
of generality, leta; = 1 and w = X%, ... X,-11. Then, az, # 1. Let ay, = 2. If x; = 2, then ww" is an edge connecting
w and BP%, a contradiction. It means that x; # 2, assuming x = 2.

Ifw! & V(H), then ww!(w')" is a path connecting w and BP%»; if there exists an integeri € {2, 3, ...,n - 1}
such that wi, (W), (W)L (wh)H1-Hn ¢ V(H), then wwi(w) (W)= I(((wH)")™1-H)7 s a path con-
necting w and BP; if w”, (w™)!, (whH™, (WwHHMH! & V(H), then ww"(w™) (W) ((w)H(((wHHHH"
is a path connecting w and BPi (see the right of Figure 3). All of these cases get contradictions. Thus,
w! € V(H), at least onme of wi (W), (W)™ 1-L (W)H)™*1-H)" belongs to V(H) for i=2,3,..,n-1,
and at least one of w", (W)L, (WHH?, (WHH™M! belongs to V(H).

Let v; = w', and choose v; € {w!, (W), (W)L (W)Y 1-Dmy N V(H) fori = 2,3,...,n -1 and v, €
w, (WL, (WY, (WHHD N V(H). Let W = {vy, vy, ...,v}. Then, W C V(H). We will show that every
element of 4 contains at most one vertex in W.

If not, assume that there are two distinct vertices v;, v; € U(i > j), which lie in an element of %{. By the
definition of v; and vj, there is a vi-w path Q; whose length is at most 4 and a v-w path ¢; whose length is at most

3. Recall thatw & V(H) and V(BPj) € V(). Since v; and vj lie in an element of H, there is a v-v; path Q
whose length is at most 4. Consequently, Q,0,Q forms a cycle C whose length is at most 11. When C is a G,
we can check that either the edge of Q,Q; does not match with a Gy of BR, or @ N V(BP) = &, a contradiction.

When C is a Cy, Cy, or Cyy, Q is an element of 4 but Q N V(BP%) = @, also a contradiction.
Thus, every element of ¥ contains at most one vertex in U. Hence, |H| = |U| = n, a contradiction.
Therefore, any vertex w of BP% - V(%) connects to BB, - V(BP)) - V(H).

I<i<j<sn-1 2<4,j<n—2 2<i<n-1
and n >3 i+j<nandn>41 and n >3

Figure 4: Four kinds Cg with n-edge in BB,.
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By symmetry, any vertex of BPy - V(# %) for j € J can connect to BB, - V(BPJ) - V(). Therefore,
BB, - V(H) is connected. O

Theorem 4.4. k(BB,;; P5) = k5(BB;; P5) = k5(BB,; Py) = k(BB; Py) = n forn = 3.

Proof. By Observation 2.1 and Lemmas 4.1 and 4.3, x(BB; Ps) =n = k5(BB; Ps) < kS(BB; Py) <
k(BB; B) = n. O

Lemma 4.5. k(BB;; Ps) <n-1forn 2 3.

Proof. For any vertex u € V(BBR,), let C; be (i,1,i,1,i,1,i,1)-cycle containing u and H; = G; - {u, u'} for
i€4{2,3,..,n}. Denote H = {H,, Hs, ...,H,}. It is easy to see that H; = Ps, N({u, u'}) = UL,{u', (u')’} € V(H)
andu, u! € V(H).Hence, BB, - V() is disconnected, uu! is an isolated edge, and k(BB,, Pg) < |H| =n-1. O

Lemma 4.6. kS(BB; Ps) 2 n -1 forn = 3.

Proof. Let H = {Hy, ...,H;} and H; < Ps for i € [t]. For n = 3, it suffices to show that BP; — V() is connected
with |H| < 1. It is clear that BP; — V() is connected if || = 0. Assume that || = 1 and H = {H,}, either H;
is isomorphic to a connected subgraph of Ps or there are H;; and H;; such that H;; and Hj are isomorphic
to a connected subgraph of Ps and V(Hy 1) U V(Hi ) = V(H;). By Theorem 4.4, k(BPs;Ps) = 3, then BP3 — V(H)
is connected.

For n > 4, let H be a minimum Pg-substructure cut set of BB,. It suffices to show that || 2 n - 1.

Case 1 There exists an isolated vertex u in BB, — V(H).

Since |[N(u)| = n and [N(u) N Hy <1, we have |H| =2 n. Hence, |H| > n - 1.

Case 2 There is no isolated vertex in BB, — V(H).

Let D be a minimum connected component of BB, — V(H). Then, |V(D)| = 2.

By Lemma 2.5, if n > 4 and |V(D)| = 2, then [N(D)| = 2n - 2. Since |[N(D) N Hy| < 2, we have |H| 2 n - 1.

By Lemma 2.5, if n > 4 and |V(D)| = 3, then [N(D)| = 3n - 4, and N(D) contains at least 3n - 4 mutually
nonadjacent vertices. However, there are at most 3n - 6 mutually nonadjacent vertices in V(H) if[H]| < n - 2.
Therefore, |H| 2 n - 1. O

Applying Observation 2.1 and Lemmas 4.5 and 4.6, the following results are obtained immediately.
Theorem 4.7. k(BB,; Ps) = k°(BB; Ps) =n -1 forn = 3.
Lemma 4.8. k(BB; P;) < [g]for nz3.

Proof. For anyu € V(BBR),letCGybe (k- 2,k -1, k, k- 1,k - 2,k - 1, k, k — 1)-cycle starting atu fork = 2i + 1
and i = {1,2, ..|"; "}

If n is odd, let G, be (n, 1, n, 2, n, 1, n)-path starting at u.
Ifniseven,letC, be (n -1,1,n - 1,n,2,1, 2, n)-cycle starting at u.

Let Hy= G- {u}fork=2i +1andi={1,2, [%]} Denote ‘H = {Hy, H,, ...,HH}. It is not hard to see that

2
Hy=P,, Nw) = {ul, % ...,.u} C V(H),andu & V(). Hence, BB, - V(H) is disconnected, u is an isolated
vertex, and k(BB,, P;) < |H| = [%] O
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Figure 5: A Cg-structure cut in BP,.

5 k(BPB,; Cg) and k5(BP,; Cs)
We study the Cg-substructure connectivity and Cg-structure connectivity of BB, as follows.
Lemma 5.1. k5(BB,; Cg) I'%'I forn =z 3.

Proof. It suffices to show that BB, — V() is connected for H = {H,, ...,Hy, Hy.1, ...,H;} with t < F%] -1
and every H; < Cg. Suppose that every Hy(s +1<i<t) is just isomorphic to a subgraph of P,, then
every Hi(l1<i<s) can be divided into two subgraphs of P, set V(H;) = V(Hi1) U V(H;3). Let H’ =
{H11, Hy 3, ...,Hs1, Hs 5, Hgsq, ..., Hp}. Then, V(H) = V(H’). Moreover, every element of H” is isomorphic to a
subgraph of P, and |[H'|=2s+ (t-§)=t+s<2t < Z(F%'I - 1) < n -1 But k5(BB; Py) = n by Theorem 4.4,
hence, BB, - V() is connected. O

By Observation 2.1 and Lemmas 4.8 and 5.1, we obtain [%] < kS(BB,; Gg) < k5(BB,; P7) < k(BB,; P;) < [%]

Then, the following theorem is obvious.
Theorem 5.2. kS(BB,; Cs) = kS(BB,; P;) = k(BB; P;) = [g] forn=>3.
Lemma 5.3. k(BB; Cg) < n forn = 3.

Proof. For u € V(BR), let H; be (1,2, 1, 2,1, 2,1, 2)-cycle going through u! for i = 3,..., n. In particular, let H; be
the (2,3, 1, 3,2, 3,1, 3)-cycle going through u' and H, be the (1, 3,1, 3,1, 3, 1, 3)-cycle going through u?. Denote
H = {H,, H,, ...,H;}. Clearly, H =G, Nu) = {ul,u? ..,.u"} CV(H), and u ¢ V(H). Hence, BB, - V(H)
is disconnected, u is an isolated vertex, and x(BB,, Cg) < || = n. (Figure 5 shows a Cg-structure cut in BP,,
where u = 1243.) O

Combining Observation 2.1, Theorem 5.2, and Lemma 5.3, we have the following result.

Theorem 5.4. H < k(BB; Cg) < n forn = 3.
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6 Conclusion

In this article, we investigate the H-structure and H-substructure connectivity of the n-dimensional burnt
pancake network BB, when H is isomorphic to Kj; (1<t<n-1),P, (4 <¢ <7), and Cg. More details,

(@) for H=K(1<t<n-1),kBR; K,) = k(BR; K1) = n;

@2 for H=P(4<¢<7), kSBB;P)=k(BB;P)=n when ¢=4,5 «5BB,; Ps)=«k(BB; Ps)=n-1

and k°(BR,; P7) = k(BR; Py) = [%]

() for H = Cg, kS(BB; Gg) = [%l and [g] < k(BR; Gg) < n.

This work provides constructive ideas for other networks in the process of showing the structure and sub-
structure connectivity. In addition, the exact value of xk(BB,; Cs) remains open, and we have the following
conjecture.

Conjecture 6.1. k(BB; Cg) = n forn = 3.
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