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Abstract: One of the symbolic parameters to measure the fault tolerance of a network is its connectivity. The
H -structure connectivity and H -substructure connectivity extend the classical connectivity and are more prac-
tical. For a graph G and its connected subgraph H , the H -structure connectivity ( )κ G H; (resp. H -substructure
connectivity ( )κ G H;

s ) of G is the cardinality of a minimum subgraph set such that every element of the set is
isomorphic to H (resp. every element of the set is isomorphic to a connected subgraph of H ) inG, whose vertices
removal disconnects G. In this article, we investigate the H -structure connectivity and H -substructure connec-
tivity of the n-dimensional burnt pancake network BPn for each { }∈ −H K K K P P C, , …, , , …, ,n1 1,1 1, 1 4 7 8 .

Keywords: interconnection networks, H-structure connectivity, H-substructure connectivity, burnt pancake
networks

MSC 2020: 05C05, 05C25, 05C38, 05C40

1 Introduction

An interconnection network is often represented as a graph, in which a vertex corresponds to a processor, and
an edge corresponds to a communication link. One fundamental consideration in the design of networks is
fault tolerance, which can be measured by the connectivity of graphs. In general, if the connectivity is larger,
then its fault tolerance is higher. For a connected graph G, its connectivity ( )κ G is defined as the minimum
cardinality of a vertex subset whose removal makes the remaining graph disconnected. In recent years,
the conditional connectivity [1] and the restricted connectivity [2,3] were introduced in succession for more
accurate assessment of the fault tolerance of an interconnection network.

However, the connectivity parameters mentioned above are still disadvantageous because they just take
into account the influence of a private vertex failure on the networks rather than the influence of a vertex or
the vertices around it. In reality, one failing vertex is bound to have some adverse effects on the surrounding
vertices. Furthermore, stimulated by the current situation that networks and subnetworks of large scale are
increasingly made into chips, people think that it is becoming more and more feasible to consider the fault
situation of a structure. Lin et al. [4] came up with the structure connectivity and substructure connectivity,
whose proposition perfectly accommodates this disadvantageous realistic environment. Instead of focusing on
the effects of a single vertex failure, they started to pay attention to the influence caused by some structure
failures.
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Due to its advantages, there have been a number of results about the structure connectivity and sub-
structure connectivity on some well-known networks, such as hypercube Q

n
[4,5], folded hypercube FQ

n
[6],

balanced hypercube BHn [7], k -ary n-cube network Q
n k,

[8,9], twisted hypercube Hn [10], crossed cube CQ
n
[11],

bubble-sort star graph BSn [12], star graph Sn [13], ( )n k, -star graph Sn k, [14], alternating group graph AGn

[15,16], wheel network CWn [17], circulant graph ( )n ΩCir , [18], and divide-and-swap cube DSCn [19].
This article determines the H -structure connectivity and H -substructure connectivity of the n-dimensional

burnt pancake network BPn, where { }∈H K K P P C, , , …, ,r1 1, 4 7 8 and ≤ ≤ −r n1 1. For detailed results, see
Table 1.

The remaining of the article is organized as follows: Section 2 presents the basic notations and definitions
and introduces burnt pancake networks and their relevant structural properties; Section 3–5 dedicate
the H -structure connectivity and H -substructure connectivity of BPn such that H are K r1, ( )≤ ≤ −r n1 1 ,

ℓP ( ℓ )≤ ≤4 7 , and C8, respectively; Section 6 concludes the article.

2 Preliminaries

We simply describe some terminologies and notations of graph theory, give the definitions of the structure connec-
tivity and substructure connectivity, and provide the topological structure and properties of BPn in this section.

2.1 Terminologies and notations

For notation and terminology not mentioned here, the reader can refer to the study by Bondy and Murty [20].
Given two graphs G and H , if ( ) ( )⊆V H V G and ( ) ( )⊆E H E G , then H is a subgraph of G, denoted by ⊆H G; if
they have identical structure, then H is isomorphic to G, denoted by ≅H G; if H is isomorphic to a connected
subgraph of G, denoted by ≼H G. For ( )⊆S V G , [ ]G S is the induced subgraph by S ; ( ) ( )= ⋃ ⧹∈N S N v SG v S G and

[ ] ( )= ∪N S N S SG G , where ( )N vG denotes the neighbors of v in G (the subscript G can be omitted without
ambiguity); −G S is the graph, which is obtained by removing all vertices of S and the edges incident with
vertices of S in G. Note that K r1, is a star with r pendant vertices and ℓP is a path with ℓ vertices. For any two
subgraphs G1 and G2 in G, ( )E G G,1 2 is the set of edges joining one vertex in G1 to another vertex in G2.

Here are the definitions of the H -structure connectivity and H -substructure connectivity of G, where G

and H are two connected graphs and � �( ) ( )= ∪ ∈V V HH .

Definition 1. [4] Let ⊆H G and � { }= H H H, , …, t1 2 be a set of connected subgraph of G such that every ≅H Hi .
If �( )−G V is disconnected, then � is anH-structure cut. TheH-structure connectivity ofG is defined as follows:

� �( ) {∣ ∣ }= -κ G H H; min : is an structure cut .

Definition 2. [4] Let ⊆H G and � { }= H H H, , …, t1 2 be a set of connected subgraph ofG such that every ≼H Hi .
If �( )−G V is disconnected, then � is an H-substructure cut. The H-substructure connectivity of G is defined
as follows:

Table 1: The H -(sub)structure connectivity of BPn

H K1 K r1, P4 P5 P6 P7 C8

( )κ HBP ;n
n n n n n ‒ 1 ⌈ ⌉n

2

∕

( )κ HBP ;
s

n
n n n n n ‒ 1 ⌈ ⌉n

2
⌈ ⌉n

2
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� �( ) {∣ ∣ }= -κ G H H; min : is an substructure cut .
s

As a matter of fact, the structure connectivity and substructure connectivity are the natural general-
izations of the classical connectivity with ( ) ( ) ( )= =κ G K κ G K κ G; ;

s
1 1 in this sense. It is obvious to obtain

the following results from the definitions above.

Observation 2.1. ( ) ( )≤κ G H κ G H; ;
s and ( ) ( )≤ ′κ G H κ G H; ;

s s for ′ ≼H H .

2.2 Burnt pancake networks

Burnt pancake networks originate from the Burnt Pancake Problem discussed in [21–24]. Incidentally, one of
the authors of [22] is Microsoft co-founder Bill Gates. In the Burnt Pancake Problem, one is tasked with sorting
a stack of burnt pancakes in the proper order and orientation. Similarly to pancake networks, burnt pancake
networks are also Cayley graphs [25,26].

Given a positive integer n, let [ ]n and [ ]±n be the set { }n1, 2, …, and { ( ) } [ ]− − − − ∪n n n, 1 , …, 1 , respectively.
To simplify notation, it is usual to use i instead of −i, and we also replace i j with ij . A signed permutation on
[ ]±n is an n-permutation ⋯x x xn1 2 of [ ]±n such that after taking the absolute value of each element xi can make
up a permutation of [ ]n , i.e., ∣ ∣∣ ∣ ∣ ∣⋯x x xn1 2 forms a permutation of [ ]n . For example, all of the signed permutations
on [ ]±2 are { }12, 12, 12, 12, 21, 21, 21, 21 .

Definition 3. [27] Let BPn be an n-dimensional burnt pancake network, whose vertex set and edge set are defined
as follows:
• ( ) { [ ]}= ±V nBP all the signed permutations ofn .
• ( ) {( ) [ ]}= = ⋯ ⋯ = ⋯ ⋯ ∈− +E u u u x x x x u x x x x x x i nBP , : , andn

i
i n

i
i i i n1 2 1 2 1 1 .

Moreover, ui is the unique i-neighbor of u for [ ]∈i n , ui is an in-neighbor of u if [ ]∈ −i n 1 and ui is an out-
neighbor of u if =i n. We label the edge ( )u u,

i (for short uui) by i, and the edge uui is called an i-edge.

Figure 1: Burnt pancake networks BP , BP1 2, and BP3.
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The n-dimensional burnt pancake networks for =n 1, 2, and 3 are shown in Figure 1. It is obvious that
∣ ( )∣ = ×V nBP 2 !n

n and ∣ ( )∣ = × ×−E n nBP 2 !n
n 1 . We denote a cycle or path by the edges it traverses. For example,

an ( )a b c d e f g h, , , , , , , -cycle traverses an a-edge, followed by a b-edge, and successively until the last edge
traversed is an h-edge. In fact, BP2 is a ( )1, 2, 1, 2, 1, 2, 1, 2 -cycle.

Lemma 2.2. Let BPn be an n-dimensional burnt pancake network, [ ]∈ ±i j n, , and ≠i j . Then, the following
results hold:
(1) [27, Theorem 3] BPn is n-regular and ( ) ( )= =κ λ nBP BPn n .
(2) [28, Lemma 2] BPn can be decomposed into n2 vertex-disjoint subgraphs BPn

i , which are induced by all
of those signed permutations whose last position is i, where [ ]∈ ±i n . Clearly, ≅ −BP BPn

i
n 1, and every edge

(if exists) between BPn

i and BPn

j is labeled by n.
(3) [27, Lemma 1] For any two distinct subgraphs BPn

i and BPn

j , the number of edges between them are

∣ ( )∣
( )

=
⎧
⎨
⎩

− × ≠−
E

n if i j

otherwise
BP , BP

2 ! 2 , ,

0, .
n

i

n

j

n 2

Lemma 2.3. Let ≥n 2 be an integer, [ ]∈ ±i j n, , and ≠i j.
(1) [29, Theorem 10] The girth (the length of a shortest cycle) of BPn equals to 8 for ≥n 2.
(2) [25, Theorem 4.1] An eight-cycle in BPn is one of the following forms:

• ( )− + − +k j i j k k j i i k j i, , , , , , , -cycle for ≤ < ≤ −i j k1 1 and ≤ ≤k n3 ;
• ( )k j k i k j k i, , , , , , , -cycle for ≤ ≤ − + ≤i j k i j k2 , 2, , and ≤ ≤k n4 ;
• ( )k i k k i k, , , 1, , , , 1 -cycle for ≤ ≤ −i k2 1 and ≤ ≤k n3 ;
• ( )k k k k, 1, , 1, , 1, , 1 -cycle for ≤ ≤k n2 .

Proposition 2.4. Let [ ]∈ ±i j n, , ≠i j, and ( )∈u V BPn

i .
(1) Let [ ]=U N u

BPn

i . Then, the induced subgraph by U in BPn is isomorphic to −K n1, 1. Furthermore, if the out-
neighbors of vertices in U are denoted by U n, then they lie in different copies.

(2) Each subgraph that is isomorphic to one of P P P, ,4 5 6, andC8 inBPn

i is incident with at most two edges between
BPn

i and BPn

j in BPn for all ≠j i.

Proof. (1) Let = ⋯u x x xn1 2 be a vertex of BPn

i and [ ]=U N u
BPn

i . Then, the induced subgraph by U in BPn

is isomorphic to −K n1, 1 because of

{ }

{ }

{ }

=
= ⋯ ⋯ ⋯ ⋯
= ⋯ ⋯ ⋯ ⋯

−

−

− − − −

U u u u u

x x x x x x x x x x x x x

U x x x x x x x x x x x x x x x x

, , , …,

, , , …, .

, , , …, .

n

n n n n n

n
n n n n n n n n

1 2 1

1 2 1 2 2 1 1 2 1

1 1 1 2 1 1 3 1 2 1 2 1

(1)

These vertices of U n belong to −BP , BP , BP ,…, BPn

x

n

x

n

x

n

xn1 1 2 1, respectively. This implies that a subgraph isomorphic
to −K n1, 1 in BPn

i is incident with at most one edge between BPn

i and BPn

j in BPn.
(2) Let F be a subgraph in BPn

i . If F is isomorphic to one of P P,4 5, and P6, there are two subgraphs F1 and F2

such that ≼F K1 1,2, ≼F K2 1,2, and ( ) ( ) ( )∪ =V F V F V F1 2 . By equation (1), every Fi for { }∈i 1, 2 is incident with at
most one edge between BPn

i and BPn

j . Therefore, F is incident with at most two edges between BPn

i and BPn

j .
Suppose that ≅F C8. If F is incident with three edges between BPn

i and BPn

j , then there exists a subgraph
isomorphic to K1,2 in F , and it is incident with two edges between BPn

i and BPn

j , a contradiction. □

Lemma 2.5. [26, Theorems 3.5, 3.7 and 3.9] ( ) =κ nBPn0 , ( ) = −κ nBP 2 2n1 , and ( ) = −κ nBP 3 4n2 for ≥n 4, where
( )κ Hh , the h-extra connectivity of H, is defined the minimum number of vertices whose deletion yields

the resulting graph disconnected and each remaining component has more than h vertices.

4  Huifen Ge et al.



3 (( ))κ KBP ;n r1, and (( ))κ KBP ;s
n r1,

In light of the definition of structure connectivity, substructure connectivity, and ( ) =κ nBPn , the following
result is immediate.

Theorem 3.1. ( ) ( )= =κ K κ K nBP ; BP ;n
s

n1 1 .

Next, we determine K r1, -structure connectivity and K r1, -substructure connectivity of BPn for ≤ ≤ −r n1 1

by establishing the upper and lower bounds, respectively.

Lemma 3.2. ( ) ≤κ K nBP ;n r1, for ≥n 2 and ≤ ≤ −r n1 1.

Proof. Let ( )∈u V BPn andUi be a set of r vertices in ( ) { }⧹N u ui for =i n1, 2,…, . Using Hi to represent the induced
subgraph by { }∪U ui

i in BPn, we have ≅H Ki r1, . Let � { }= H H H, , …, n1 2 . Then, �( )− VBPn is disconnected, andu

becomes an isolated vertex. Therefore, �( ) ∣ ∣≤ =κ K nBP ,n r1, . □

For convenience, we define some notations throughout the article.
(1) � { }= H H H, , …, t1 2 is a set of connected subgraphs of BPn;
(2) � � { }= ∩ = ∩ ∩ ∩H H HBP BP , BP , …, BP

i
n

i

n

i

n

i
t n

i
1 2 for [ ]∈ ±i n ;

(3) BP , BP ,…, BPn

a

n

a

n

a n1 2 2 are n2 vertex-disjoint sub-burnt pancake networks of BPn such that � � �∣ ∣ ∣ ∣ ∣ ∣≥ ≥⋯≥a a a n1 2 2 ;
(4) �{ }= ∩ ≠ ∅I i : BPn

ai and �{ }= ∩ = ∅I i : BPn

a
0

i ;
(5) [ ( )]= ⋃ ∈ VBP BP BPn

I
n i I n

ai and [ ( )]= ⋃ ∈ VBP BP BPn

I
n i I n

ai0

0
;

(6) ∣ ( )∣ ∣ ∣( )=E i j E, BP , BPn

a
n

a
i

j .

Lemma 3.3. ( ) ≥−κ K nBP ;
s

n n1, 1 for ≥n 2.

Proof. Let � and � ai be defined as above. We will show that �( )− VBPn is connected if �∣ ∣ ≤ −n 1 and every
element of � is isomorphic to a subgraph of −K n1, 1 by induction on n. For =n 2, as ≅ CBP2 8, it is clear that

( )− V KBP2 1,1 and ( )− V KBP2 1 are still connected. For ℓ≤ ≤ −n2 1, suppose that the statement holds for ℓBP .
Since �∣ ∣ ≤ −n 1 and every element of � distributes in at most two sub-burnt pancake networks,

we have �∣ ∣ ≤ −n 1
i , �∣ ∣∑ ≤ −= n2 2j

n a
1

2
j , � �∣ ∣ ∣ ∣= =− 0

a an n2 1 2 , and �∣ ∣ ≤− 1
a n2 2 .

Case 1 �∣ ∣ =− 1
a n2 2 .

In this case, � � �∣ ∣ ∣ ∣ ∣ ∣= = ⋯= =− 1
a a a n1 2 2 3 and every element of � distributes in exactly two distinct sub-

burnt pancake networks. It implies that every Hi of � contains exactly one n-edge. Notice that �∣ ∣ ≤ 1
ak ,

it is easy to see that �( )− VBPn

a ak k is connected for [ ]∈k n2 by the induction hypothesis for ≥n 3. Without loss
of generality, let � ≼ −Ka

n1, 2
j , � ≼+ Ka

1
j 1 , and � �( ) ( ) ( )= ∪ +V H V Vi

a aj j 1 for = −j i2 1 and [ ]∈ −i n 1 .

On the one hand, let ( )[ ( )]= ∪ −+
G V V HBP BP BPi n n

a

n

a

i

j j 1 for [ ]∈ −i n 1 . Then, Gi is connected because every
Hi contains just one edge between BPn

aj and +
BPn

aj 1 and ∣ ( )∣ ( )+ = − × >−E j j n, 1 2 ! 2 1
n 2 for ≥n 3. On the other

hand, since every Hi is incident with at most one edge between Gi and −BPn

a n2 1 (resp. BPn

a n2 ), there is at least one
edge connecting Gi and −BPn

a n2 1 (resp. BPn

a n2 ). Therefore, �( )− VBPn is connected.
Case 2 �∣ ∣ =− 0

a n2 2 .
In this case, { }− − ⊆n n n I2 2, 2 1, 2 0, ∣ ∣ ≥I 30 , and BPn

I0 is connected. We consider the following cases.
Case 2.1 �∣ ∣ ≤ −n 2

a1 .
By the induction hypothesis, �( )− VBPn

a
aj

j is connected for [ ]∈j n2 .
In light of Lemma 2.2(3) and Proposition 2.4(1), ∣ ( )∣ ( )= − × −E i i n, 2 ! 2

n
0

2 for ≠a ai i0
, and every element

of � �∪a ai i0 is incident with at most one edge between BPn

ai and BPn

ai0 for [ ]∈ −i n2 3 , ∈i I0 0. Clearly,
( )− × > −−n n2 ! 2 2

n 2 for ≥n 3, and thus, there is at least one edge connecting BPn

ai and BPn

I0. Therefore,
�( )− VBPn is connected.

Case 2.2 �∣ ∣ = −n 1
a1 and �∣ ∣ ≤ −n 2

aj for ≤ ≤j n2 2 .
By the pigeonhole principle, we have �∣ ∣ ≤ 1

an and �∣ ∣ =+ 0
an 1 .

The structure fault tolerance of burnt pancake networks  5



Case 2.2.1 �∣ ∣ = 1
an .

It is clear that �( )( )− −V VBP BPn n

a1 is connected by Case 2.1. Since �∣ ∣ = 1
an , � �∣ ∣ ∣ ∣= = ⋯=a a2 3

�∣ ∣ =− 1
an 1 and every element Hi of � distributes in exactly two distinct sub-burnt pancakes BPn

a1 and BPn

ai

for =i n2, 3,…, .
Let D be a connected component of �( )− VBPn

a a1 1 , and so �( ) ( )⊆N D V a
BPn

a1 1 .
Suppose that ∣ ( )∣ =V D 1. Let { }=D w , as ∣ ( )∣ =N w nBPn

and ∣ ( ) ( )∣∩ ≤N w V H 1iBPn
for �∈Hi , then ∉wn

�( )V . Now, we set ∣ ( )∣ ≥V D 2. Let ( )∈uv E D such that �( ) ( )∩ ≠ ∅N v V a
BPn

a1 1 . Then, �( )∉v Vn . Otherwise,
there exists an { }∈i n2, 3, …, such that � ≼ −Ka

n1, 2
i and � ai is incident with two n-edges between BPn

a1

and BPn

ai, contradicts Proposition 2.4(1). Therefore, �( )− VBPn is connected.
Case 2.2.2 �∣ ∣ = 0

an .
In light of the discussion of Case 2.1, �( )( )− −V VBP BPn n

a1 is connected. It suffices to show that
an arbitrary vertex u of �( )− VBPn

a a1 1 can connect to �( )( )− −V VBP BPn n

a1 .
To the contrary, suppose that there exists a vertex = ⋯ −u x x x an1 2 1 1 in �( )− VBPn

a a1 1 , which cannot connect to
�( )( )− −V VBP BPn n

a1 . If { }∈ +x a a a, , …,n n n1 1 2 , then ∈un { }⋯ ⋯ ⋯− − + −a x x a a x x a a x x a, , …,n n n n n n1 1 2 1 1 2 1 1 1 2 2 ,
and these vertices belong to +BP , BP ,…, BPn

a

n

a

n

an n n1 2 , respectively. Thus, uun is a path connecting u and −BPn

�( )( ) −V VBPn

a1 , a contradiction. It implies that { }∉ +x a a a, , …,n n n1 1 2 , and there exists at least a pair of ai

and aj such that =a ai j for ≤ ≤n i j n, 2 . Without loss of generality, let = =+a a 2n n 1 . It means that ≠x 21

and ≠x 21 , but 2 or 2 must occur at the vertex u, assuming =x 22 .
If �( )∉u Vn , then uun is a path connecting u and �( )( )− −V VBP BPn n

a1 ; if �( )∉u V1 and
�( ) ( )∉u V1 2 , then ( ) (( ) )uu u u n1 1 2 1 2 is a path connecting u and �( )( )− −V VBP BPn n

a1 ; if �( )∉u V2 , then
( )uu u n2 2 is a path connectingu and �( )( )− −V VBP BPn n

a1 ; if there exists an integer { }∈ −i n3, 4, …, 1 such that
�( )∉u Vi and �( ) ( )∉−u Vi i 1 , then ( ) (( ) )− −uu u ui i i i i n1 1 is a path connecting u and �( )( )− −V VBP BPn n

a1

(Figure 2). All of these cases get contradictions. Summing up above, we know that �( )∈u Vn , at least one
of u1 and ( )u1 2 is contained in �( )V , �( )∈u V2 , and at least one of ui, ( ) −ui i 1 is contained in �( )V

for = −i n3, 4,…, 1.
Choose �{ ( ) } ( )∈ ∩v u u V,1

1 1 2 and �{ ( ) } ( )∈ ∩−v u u V,i
i i i 1 for = −i n3, 4,…, 1 and denote =v un

n

and =v u2
2. Let { }=U v v v v, , , …, n1 2 3 . Then, �( )⊆U V .

If we can show that every element of � contains at most one vertex in U , then �∣ ∣ ∣ ∣≥ =U n, which
contradicts �∣ ∣ ≤ −n 1. If not, assume that there are two distinct vertices ∈v v U,i j , which lie in an element of
� . By the definition of v v,i j, there exist a vi-u path Ri and a vj-u path Rj whose lengths are at most 2.
Furthermore, since �( )∉u V and v v,i j lie in an element of � , there is a vi-vj path R whose length is at
most 2. Consequently, R R Ri j forms a cycle whose length is at most 6, which contradicts the girth of BPn.

Hence, any vertex u of �( )− VBPn

a a1 1 connects to �( )( )− −V VBP BPn n

a1 , i.e., �( )− VBPn is connected.
Case 2.3 � �∣ ∣ ∣ ∣= = −n 1

a a1 2 and �∣ ∣ = 0
aj for ≤ ≤j n3 2 .

Assume that = ⋯u x x xn1 2 is a vertex in �( )− VBPn

a a1 1 ; if ∈ ∪ ∪ ⋯ ∪u BP BP BPn a a a n3 4 2 , then the result
is true. Next, let ∈u BPn a2, and it is obvious that ( ) ( ) ( ) ∉−u u u BP, ,…,

n n n n a1 2 1 2. If one of −u u u, ,…,
n1 2 1 is not

in �( )V , then it is true. Assume that −u u u, ,…,
n1 2 1 belong to �( )V . If �( )∈u Vn , then �∣ ∣ ≥ n, a contradiction.

Figure 2: Illustration of Case 2.2.2 of Lemma 3.3.

6  Huifen Ge et al.



Assume that �( )∉u Vn , similarly, if (( ) ) (( ) ) (( ) ) ∉−u u u BP, ,…,
n n n n n n n a1 2 1 1 and one of them is not in �( )V ,

then it is true. Now, �( ) ( ) ( ) ( )∈−u u u V, ,…,
n n n n1 2 1 and �∣ ∣ = −n2 2, a contradiction.

Therefore, any vertex u of �( )− VBPn

a a1 1 connects to �( )( )− −V VBP BPn n

a1 , i.e., �( )− VBPn is con-
nected. □

Combining Lemmas 3.2 and 3.3, we can obtain the following result.

Theorem 3.4. ( ) ( )= =κ K κ K nBP ; BP ;n r
s

n r1, 1, for ≥n 2 and ≤ ≤ −r n1 1.

4 (( ))κ PBP ;n and (( ))κ PBP ;s
n

In this section, we investigate the ℓP -structure connectivity and ℓP -substructure connectivity of BPn for ℓ≤ ≤4 7.

Lemma 4.1. ( ) ≤κ P nBP ;n 4 and ( ) ≤κ P nBP ;n 5 for ≥n 3.

Proof. Let ( )∈u V BPn and Hi (resp. Fi) be the ( )i j i j, , , -path (resp. ( )i j i j i, , , , -path) that starts at u, where
=i n1, 2,…, and ( )≡ +j i n1 mod . Clearly, ≅H Pi 4 (resp. ≅F Pi 5). Let � { }= H H H, , …, n1 2 (resp. � =

{ }F F F, , …, n1 2 ). Then, �( )− VBPn (resp. �( )− VBPn ) is disconnected and u is an isolated vertex. Therefore,
�( ) ∣ ∣≤ =κ P nBP ;n 4 (resp. �( ) ∣ ∣≤ =κ P nBP ;n 5 ). □

Lemma 4.2. ( ) ≥κ PBP ; 3
s

3 5 .

Proof. Let � { }= H H, …, t1 and ≼H Pi 5 for [ ]∈i t . It is easy to check that �( )− VBP3 is connected when =t 0 or
1. Suppose that =t 2. If ≼H H P,1 2 3, then �( )− VBP3 is connected by Theorem 3.4. Suppose that at least one of
H1 and H2 is isomorphic to P4 or P5. Since there are at most four n-edges in � , we have the following cases.

Suppose that � contains no n-edges. When ∪ ⊆H H BP
a

1 2 3
1, clearly, �( )− VBP3 is connected. When

⊆H BP
a

1 3
1 and ⊆H BP

a

2 3
2, ( )− V HBP

a

3 1
1 is connected and ∣ ( ) ∣( )− ≥V V HBP 3

a

3 1
1 , and there is at least one

n-edge connecting ( )− V HBP
a

3 1
1 and BP

I

3
0. Similarly, ( )− V HBP

a

3 2
2 can connect to BP

I

3
0, where { }=I 3, 4, 5, 60 .

Therefore, �( )− VBP3 is connected.
First, assume that � contains one n-edge. When �∣ ∣ = 2

a1 and �∣ ∣ = 1
a2 , clearly, �( )( )− −V VBP BP

a

3 3
1 is

connected and �( )− VBP
a a
3

1
1 contains at most two components D1 and D2. It is easy to check that

�( ) ( )( ( ) )∩ − − ≠ ∅N D V V VBP BPj

a

BP 3 33

1 for =j 1, 2. Therefore, �( )− VBP3 is connected. When �∣ ∣ =a1

� �∣ ∣ ∣ ∣= = 1
a a2 3 , �( )− VBP

a a
3

i
i is connected and �∣ ∣( ( ))− ≥V VBP 3

a a
3

i
i for =i 1, 2, 3, and there is at least

one n-edge connecting �( )− VBP
a a
3

i
i and BP

I

3
0 for { }=I 4, 5, 60 . Therefore, �( )− VBP3 is connected.

Second, assume that � contains two n-edges. Then, H1 and H2, respectively, contain one n-edge, or H1 has
exactly two n-edges. When � � � �∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣= = = = 1

a a a a1 2 3 4 , every �( )− VBPn

a ai i is connected for ≤ ≤i1 4,
and there is at least one n-edge connecting �( )− VBP

a a
3

i
i and ⋃ = BPi

a

5

6

3
i. When �∣ ∣ = 2

a1 , and � �∣ ∣ ∣ ∣= = 1
a a2 3 ,

�( )( )− −V VBP BP
a

3 3
1 is connected and every component D of ( )− VBP BPn

a

n

a1 1 satisfies that ( ) ∩N DBP3

�( )( ( ) )− − ≠ ∅V V VBP BP
a

3 3
1 . When � �∣ ∣ ∣ ∣= = 2

a a1 2 , ( ) ( )− −V VBP BP BP
a a

3 3 3
1 2 is connected and every com-

ponent Di of ( )− VBP BPn

a

n

ai i satisfies that ( ) ( ( ) ( ))∩ − − ≠ ∅N D V V VBP BP BP
a a

BP 3 3 33

1 2 for =i 1, 2. Summing up
above, �( )− VBP3 is connected.

Third, assume that � contains three n-edges. Then, H1 contains exactly two n-edges and H2 contains one
n-edge. It easy to check that �( )− VBP3 is connected from the above discussion.

Fourth, assume that � contains four n-edges. Both H1 and H2 contain two n-edges. When
� �∣ ∣ ∣ ∣= ⋯= = 1

a a1 6 , every � ≼ Ka
1,1

i or K1 and �( )− VBPn

a ai i is connected for =i 1,…, 6. Without loss of gen-
erality, let [ ( )]⊆ ⋃ ==H V GBP BPi

a

1 3 1

3

3 1
i and [ ( )]⊆ ⋃ ==H V GBP BPi

a

2 3 4

6

3 2
i , and we have that ( )−G V H1 1 is con-

nected since there are two n-edges between any pair of BP
a

3
i and BP

a

3

j for ≠a ai j and that every element
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of � �∪a ai j is incident with exactly one edge between BP
a

3
i and BP

a

3

j for { }∈i j, 1, 2, 3 . Similarly, ( )−G V H2 2 is
connected. Since the number of deleted n-edges between G1 and G2 are at most 4 and ∣ ( )∣ ≥E G G, 121 2 ,
there exist edges connecting ( )−G V H1 1 and ( )−G V H2 2 . Hence, �( )− VBP3 is connected. Similarly, when
� � �∣ ∣ ∣ ∣ ∣ ∣= = = 2

a a a1 2 3 or � �∣ ∣ ∣ ∣= = 2
a a1 2 , � �∣ ∣ ∣ ∣= = 1

a a3 4 or �∣ ∣ = 2
a1 , � �∣ ∣ ∣ ∣= ⋯= = 1

a a2 5 , we also can
obtain that �( )− VBP3 is connected. □

Lemma 4.3. ( ) ≥κ P nBP ;
s

n 5 for ≥n 3.

Proof. Let � { }= H H H, , …, t1 2 be a set of subgraph of P5 in BPn such that ≤ −t n 1, and we show that �( )− VBPn

is connected by induction on n. By Lemma 4.2, this statement holds for BP3. Now, assume that the statement
holds for ℓBP ( ℓ≤ ≤ −n3 1).

Since every element of � lies in at most three different copies of BPn

ai for [ ]∈i n2 and contains at most two
n-edges, we have �∣ ∣ ≤ −n 1

ai and �∣ ∣∑ ≤ −= n3 3i

n a
1

2
i .

Case 1 �∣ ∣ ≤ −n 2
a1 .

By the inductive hypothesis, each �( )− VBPn

a ai i is connected for [ ]∈i n2 . In light of Lemma 2.2(3) and
Proposition 2.4(2), when ≠a ai j, we know that ∣ ( )∣ ( )= − × −E i j n, 2 ! 2

n 2 and the number of deleted n-edges

between BPn

ai and BPn

aj is at most ( )−n4 2 . Since ( ) ( )− × > −−n n2 ! 2 4 2
n 2 for ≥n 5, there exists at least one

edge connecting �( )− VBPn

a ai i and �( )− VBPn

a
aj

j . For =n 4, ( )− × =−n 2 ! 2 8
n 2 . Let �∣ ∣{ }= =J j : 2

aj . Then,
∣ ∣≤ ≤J2 3 and � �∪a ai j is incident with at most four n-edges for ∈i j J, . Thus, there exists at least one edge

connecting �( )− VBP
a a
4

i
i and �( )− VBP

a
a

4

j
j . Therefore, �( )− VBPn is connected.

Case 2 �∣ ∣ = −n 1
a1 .

By the pigeonhole principle, �∣ ∣ ≤ −n 1
a2 , �∣ ∣ ≤ −n 2

a3 , �∣ ∣ ≤− 1
a n2 1 , and �∣ ∣ = 0

a n2 .
By the inductive hypothesis, each �( )− VBPn

a ai i is connected for �∣ ∣ ≤ −n 2
ai . By Lemma 2.2(3) and

Proposition 2.4(2), ∣ ( )∣ ( )= − × −E i n n, 2 2 ! 2
n 2 and every element of � �∪a ai n2 is incident with at most two

n-edges between BPn

ai and BPn

a n2 for �∣ ∣ ≤ −n 2
ai and ≠a ai n2 . Since ( ) ( )− × > −−n n2 ! 2 2 2

n 2 for ≥n 4, there
is at least one edge connecting �( )− VBPn

a ai i and BPn

a n2 .

Let �∣ ∣{ }= = −J j n: 1
aj . Then, every element of � is intersecting with BPn

aj.
Case 2.1 There exists ∈j J such that =a aj n2 .
Clearly, �( ) ( )− −V VBP BPn n

J is connected. By symmetry, assume that =a a n1 2 . Next, we will show that an
arbitrary vertexu of �( )− VBPn

a a1 1 can connect to �( ) ( )− −V VBP BPn n

J . Note that �( ) ( )⊆ − −V VBP BP BPn

a
n n

Jn2 .
On the contrary, assume that u is a vertex that belongs to �( )− VBPn

a a1 1 and disconnects ( )− −VBP BPn n

J

�( )V . Without loss of generality, let = −u x x x… 1n1 2 1 . Then, =a 1n2 . If there exists an integer { }∈ −i n1, 2, …, 1

such that ui, ( )ui n, (( ) )ui n 1, �((( ) ) ) ( )∉u Vi n n1 , then ( ) (( ) ) ((( ) ) )uu u u ui i n i n i n n1 1 is a path connecting u and BPn

a n2 ;
if un, ( )un 1, �(( ) ) ( )∉u Vn n1 , then ( ) (( ) )uu u un n n n1 1 is a path connecting u and BPn

a n2 (see the left of Figure 3).
All of these cases get contradictions.

Figure 3: Illustration of Case 2 of Lemma 4.3.
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Summing up above, at least one of ( )u u,
i i n, (( ) )ui n 1, and ((( ) ) )ui n n1 is contained in �( )V for = −i n1, 2,…, 1

and at least one of ( )u u,
n n 1, and (( ) )un n1 is contained in �( )V . Choose �{ ( ) (( ) ) ((( ) ) ) } ( )∈ ∩v u u u u V, , ,i

i i n i n i n n1 1

for = −i n1, 2,…, 1 and �{ ( ) (( ) ) } ( )∈ ∩v u u u V, ,n
n n n n1 1 . Let { }=U v v v, , …, n1 2 . Then, �( )⊆U V . If we can

show that every element of � contains at most one vertex in U , then �∣ ∣ ∣ ∣≥ =U n, which contra-
dicts �∣ ∣ ≤ −n 1.

If not, assume that there are two distinct vertices ∈v v U,i j , which lie in an element of � . By the definition
of vi and vj, there exist a vi-u path Ri and a vj-u path Rj whose lengths are at most 3. Recall that �( )∉u V and

�( )( ) ⊈V VBPn

a n2 . Since vi and vj lie in an element of � , there is a vi-vj path R whose length is at most 4.
Consequently, R R Ri j forms a cycle C whose length is at most 10. When C is a C8, we can check that either
the edge of R Ri j does not match with a C8 of BPn (Figure 4 shows four kinds of C8 containing n-edges)
or ( )∩ = ∅R V BPn

a1 , a contradiction. When C is a C9 or C10, R is an element of � but ( )∩ = ∅R V BPn

a1 ,
also a contradiction.

Therefore, any vertex u of �( )− VBPn

a a1 1 connects to �( ) ( )− −V VBP BPn n

J .
Case 2.2 ≠a aj n2 for every ∈j J .
On the one hand, �( )− VBPn

a an n2 2 can connect to any �( )− VBPn

a ai i for �∣ ∣ ≤ −n 2
ai when ≥n 5 because

of ( ) ( )− × > −−n n2 ! 2 4 2
n 2 . On the other hand, there exist ∉i J and �∣ ∣ ≤ −n 3

ai such that �( )− VBPn

a ai i

can connect to �( )− VBPn

a an n2 2 when =n 4. Hence, �( ) ( )− −V VBP BPn n

J is connected.
It suffices to show that an arbitrary vertex w of �( )− VBPn

a a1 1 can connect to �( ) ( )− −V VBP BPn n

J

for ≠a a n1 2 . Recall that �( ) ( )⊆ − −V VBP BP BPn

a
n n

Jn2 .
On the contrary, assume that �( )∈ −w VBPn

a a1 1 and w disconnects to �( ) ( )− −V VBP BPn n

J . Without loss
of generality, let =a 11 and = −w x x x… 1n1 2 1 . Then, ≠a 1n2 . Let =a 2n2 . If =x 21 , then wwn is an edge connecting
w and BPn

a n2 , a contradiction. It means that ≠x 21 , assuming =x 21 .
If �( )∉w V1 , then ( )ww w n1 1 is a path connectingw andBPn

a n2 ; if there exists an integer { }∈ −i n2, 3, …, 1

such that ( )w w,
i i n, �(( ) ) ((( ) ) ) ( )∉+ − + −w w V,

i n n i i n n i n1 1 , then ( ) (( ) ) ((( ) ) )+ − + −ww w w wi i n i n n i i n n i n1 1 is a path con-
necting w and BPn

a n2 ; if ( )w w,
n n 1, �(( ) ) ((( ) ) ) ( )∉w w V,

n n n n1 1 1 , then ( ) (( ) ) ((( ) ) ) (((( ) ) ) )ww w w w wn n n n n n n n n1 1 1 1 1 1

is a path connecting w and BPn

a n2 (see the right of Figure 3). All of these cases get contradictions. Thus,
�( )∈w V1 , at least one of ( ) (( ) ) ((( ) ) )+ − + −w w w w, , ,

i i n i n n i i n n i n1 1 belongs to �( )V for = −i n2, 3,…, 1,
and at least one of ( ) (( ) ) ((( ) ) )w w w w, , ,

n n n n n n1 1 1 1 belongs to �( )V .
Let =v w1

1, and choose �{ ( ) (( ) ) ((( ) ) ) } ( )∈ ∩+ − + −v w w w w V, , ,i
i i n i n n i i n n i n1 1 for = −i n2, 3,…, 1 and ∈vn

�{ ( ) (( ) ) ((( ) ) ) } ( )∩w w w w V, , ,
n n n n n n1 1 1 1 . Let { }=W v v v, , …, n1 2 . Then, �( )⊆W V . We will show that every

element of � contains at most one vertex in W .
If not, assume that there are two distinct vertices ∈v v U,i j ( )>i j , which lie in an element of � . By the

definition of vi and vj, there is a vi-w pathQ
i
whose length is at most 4 and a vj-w pathQ

j
whose length is at most

3. Recall that �( )∉w V and �( )( ) ⊈V VBPn

a n2 . Since vi and vj lie in an element of � , there is a vi-vj path Q

whose length is at most 4. Consequently, Q Q Q
i j

forms a cycle C whose length is at most 11. When C is a C8,

we can check that either the edge of Q Q
i j

does not match with a C8 of BPn or ( )∩ = ∅Q V BPn

a1 , a contradiction.

When C is a C C,9 10, or C11, Q is an element of � but ( )∩ = ∅Q V BPn

a1 , also a contradiction.
Thus, every element of � contains at most one vertex in U . Hence, �∣ ∣ ∣ ∣≥ =U n, a contradiction.

Therefore, any vertex w of �( )− VBPn

a a1 1 connects to �( ) ( )− −V VBP BPn n

J .

Figure 4: Four kinds C8 with n-edge in BPn.
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By symmetry, any vertex of �( )− VBPn

a
aj

j for ∈j J can connect to �( ) ( )− −V VBP BPn n

J . Therefore,
�( )− VBPn is connected. □

Theorem 4.4. ( ) ( ) ( ) ( )= = = =κ P κ P κ P κ P nBP ; BP ; BP ; BP ;n
s

n
s

n n5 5 4 4 for ≥n 3.

Proof. By Observation 2.1 and Lemmas 4.1 and 4.3, ( ) ( ) ( )= = ≤ ≤κ P n κ P κ PBP ; BP ; BP ;n
s

n
s

n5 5 4

( ) =κ P nBP ;n 4 . □

Lemma 4.5. ( ) ≤ −κ P nBP ; 1n 6 for ≥n 3.

Proof. For any vertex ( )∈u V BPn , let Ci be ( )i i i i, 1, , 1, , 1, , 1 -cycle containing u and { }= −H C u u,i i
1 for

{ }∈i n2, 3, …, . Denote � { }= H H H, , …, n2 3 . It is easy to see that ≅H Pi 6, �({ }) { ( ) } ( )= ⋃ ⊆=N u u u u V, ,i

n i i1
2

1

and �( )∉u u V,
1 . Hence, �( )− VBPn is disconnected,uu1 is an isolated edge, and �( ) ∣ ∣≤ = −κ P nBP , 1n 6 . □

Lemma 4.6. ( ) ≥ −κ P nBP ; 1
s

n 6 for ≥n 3.

Proof. Let � { }= H H, …, t1 and ≼H Pi 6 for [ ]∈i t . For =n 3, it suffices to show that �( )− VBP3 is connected
with �∣ ∣ ≤ 1. It is clear that �( )− VBP3 is connected if �∣ ∣ = 0. Assume that �∣ ∣ = 1 and � { }= H1 , either H1

is isomorphic to a connected subgraph of P5 or there are H1,1 and H1,2 such that H1,1 and H1,2 are isomorphic
to a connected subgraph of P5 and ( ) ( ) ( )∪ =V H V H V H1,1 1,2 1 . By Theorem 4.4, ( ) =κ PBP ; 3

s
3 5 , then �( )− VBP3

is connected.
For ≥n 4, let � be a minimum P6-substructure cut set of BPn. It suffices to show that �∣ ∣ ≥ −n 1.
Case 1 There exists an isolated vertex u in �( )− VBPn .
Since ∣ ( )∣ =N u n and ∣ ( ) ∣∩ ≤N u H 1i , we have �∣ ∣ ≥ n. Hence, �∣ ∣ > −n 1.
Case 2 There is no isolated vertex in �( )− VBPn .
Let D be a minimum connected component of �( )− VBPn . Then, ∣ ( )∣ ≥V D 2.
By Lemma 2.5, if ≥n 4 and ∣ ( )∣ =V D 2, then ∣ ( )∣ = −N D n2 2. Since ∣ ( ) ∣∩ ≤N D H 2i , we have �∣ ∣ ≥ −n 1.
By Lemma 2.5, if ≥n 4 and ∣ ( )∣ ≥V D 3, then ∣ ( )∣ ≥ −N D n3 4, and ( )N D contains at least −n3 4 mutually

nonadjacent vertices. However, there are at most −n3 6 mutually nonadjacent vertices in �( )V if �∣ ∣ ≤ −n 2.
Therefore, �∣ ∣ ≥ −n 1. □

Applying Observation 2.1 and Lemmas 4.5 and 4.6, the following results are obtained immediately.

Theorem 4.7. ( ) ( )= = −κ P κ P nBP ; BP ; 1n
s

n6 6 for ≥n 3.

Lemma 4.8. ( ) ≤ ⎡⎢ ⎤⎥κ PBP ;n

n

7 2
for ≥n 3.

Proof. For any ( )∈u V BPn , let Ck be ( )− − − − − −k k k k k k k k2, 1, , 1, 2, 1, , 1 -cycle starting at u for = +k i2 1

and { }= ⎢⎣ ⎥⎦
−

i 1, 2, …,
n 1

2
.

If n is odd, let Cn be ( )n n n n, 1, , 2, , 1, -path starting at u.
If n is even, let Cn be ( )− −n n n n1, 1, 1, , 2, 1, 2, -cycle starting at u.

Let { }= −H C uk k for = +k i2 1 and { }= ⎡⎢ ⎤⎥i 1, 2, …,
n

2
. Denote � { }= ⎡⎢ ⎤⎥

H H H, , …,1 2 n

2

. It is not hard to see that

≅H Pk 7, �( ) { } ( )= ⊆N u u u u V, , …,
n1 2 , and �( )∉u V . Hence, �( )− VBPn is disconnected, u is an isolated

vertex, and �( ) ∣ ∣≤ = ⎡⎢ ⎤⎥κ PBP ,n

n

7 2
. □
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5 (( ))κ CBP ;n 8 and (( ))κ CBP ;s
n 8

We study the C8-substructure connectivity and C8-structure connectivity of BPn as follows.

Lemma 5.1. ( ) ≥ ⌈ ⌉κ CBP ;
s

n

n

8 2
for ≥n 3.

Proof. It suffices to show that �( )− VBPn is connected for � { }= +H H H H, …, , , …,s s t1 1 with ≤ ⌈ ⌉ −t 1
n

2

and every ≼H Ci 8. Suppose that every Hi( )+ ≤ ≤s i t1 is just isomorphic to a subgraph of P4, then
every Hi( )≤ ≤i s1 can be divided into two subgraphs of P4, set ( ) ( ) ( )= ∪V H V H V Hi i i,1 ,2 . Let � ′ =
{ }+H H H H H H, , …, , , , …,s s s t1,1 1,2 ,1 ,2 1 . Then, � �( ) ( )= ′V V . Moreover, every element of � ′ is isomorphic to a
subgraph of P4 and �∣ ∣ ( ) ( )′ = + − = + ≤ ≤ ⌈ ⌉ − ≤ −s t s t s t n2 2 2 1 1

n

2
. But ( ) =κ P nBP ;

s
n 4 by Theorem 4.4,

hence, �( )− VBPn is connected. □

By Observation 2.1 and Lemmas 4.8 and 5.1, we obtain ( ) ( ) ( )⎡⎢ ⎤⎥ ≤ ≤ ≤ ≤ ⎡⎢ ⎤⎥κ C κ P κ PBP ; BP ; BP ;
n

s
n

s
n n

n

2 8 7 7 2
.

Then, the following theorem is obvious.

Theorem 5.2. ( ) ( ) ( )= = = ⎡⎢ ⎤⎥κ C κ P κ PBP ; BP ; BP ;
s

n
s

n n

n

8 7 7 2
for ≥n 3.

Lemma 5.3. ( ) ≤κ C nBP ;n 8 for ≥n 3.

Proof. For ( )∈u V BPn , let Hi be ( )1, 2, 1, 2, 1, 2, 1, 2 -cycle going through ui for =i n3,…, . In particular, let H1 be
the ( )2, 3, 1, 3, 2, 3, 1, 3 -cycle going through u1 and H2 be the ( )1, 3, 1, 3, 1, 3, 1, 3 -cycle going through u2. Denote
� { }= H H H, , …, n1 2 . Clearly, ≅H Ci 8, �( ) { } ( )= ⊆N u u u u V, , …,

n1 2 , and �( )∉u V . Hence, �( )− VBPn

is disconnected, u is an isolated vertex, and �( ) ∣ ∣≤ =κ C nBP ,n 8 . (Figure 5 shows a C8-structure cut in BP4,
where =u 1243.) □

Combining Observation 2.1, Theorem 5.2, and Lemma 5.3, we have the following result.

Theorem 5.4. ( )⎡⎢ ⎤⎥ ≤ ≤κ C nBP ;
n

n2 8 for ≥n 3.

Figure 5: A C8-structure cut in BP4.
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6 Conclusion

In this article, we investigate the H -structure and H -substructure connectivity of the n-dimensional burnt
pancake network BPn when H is isomorphic to K t1, ( )≤ ≤ −t n1 1 , ℓP ( ℓ )≤ ≤4 7 , and C8. More details,
(1) for =H K t1, ( )≤ ≤ −t n1 1 , ( ) ( )= =κ K κ K nBP ; BP ;

s
n t n t1, 1, ;

(2) for ℓ=H P ( ℓ )≤ ≤4 7 , ( ) ( )ℓ ℓ= =κ P κ P nBP ; BP ;
s

n n when ℓ = 4, 5, ( ) ( )= = −κ P κ P nBP ; BP ; 1
s

n n6 6

and ( ) ( )= = ⎡⎢ ⎤⎥κ P κ PBP ; BP ;
s

n n

n

7 7 2
;

(3) for =H C8, ( ) = ⎡⎢ ⎤⎥κ CBP ;
s

n

n

8 2
and ( )⎡⎢ ⎤⎥ ≤ ≤κ C nBP ;

n

n2 8 .

This work provides constructive ideas for other networks in the process of showing the structure and sub-
structure connectivity. In addition, the exact value of ( )κ CBP ;n 8 remains open, and we have the following
conjecture.

Conjecture 6.1. ( ) =κ C nBP ;n 8 for ≥n 3.
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