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Abstract: Let N be a sufficiently large integer. In this article, it is proved that, with at most +O N ε
1

12( ) exceptions,
all even positive integers up to N can be represented in the form + + + + +p p p p p p
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p p p p p, , , ,

1 2 3 4 5
, and p

6
are prime variables. This result constitutes a large improvement upon the previous result

of Liu [On a Waring-Goldbach problem involving squares and cubes, Math. Slovaca. 69 (2019), no. 6, 1249–1262].
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1 Introduction and main result

In 1938, Hua [1] proved that every sufficiently large integer N satisfying ≡N 5 mod 24( ) can be represented as
the sum of five squares of primes, while every sufficiently large integer N satisfying ≡N 1 mod 2( ) can be
represented as the sum of nine cubes of primes. Based on the significant results of Hua, it seems reasonable
to conjecture that every sufficiently large integer satisfying some necessary congruence conditions can be
written as the sum of four squares of primes or eight cubes of primes, i.e.

= + + +N p p p p ,
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and

= + + + + + + +N p p p p p p p p .
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On the other hand, Hooley [2] introduced divisor sum techniques into the investigation of Waring’s problem
of mixed powers. In particular, Hooley’s techniques provide an asymptotic formula for every sufficiently large
integer N as the sum of two squares and four cubes of positive integers. Moreover, motivated by Hooley’s result,
it is reasonable to conjecture that every sufficiently large even integer N can be represented as follows:

= + + + + +N p p p p p p ,
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3 (1.3)

where p p,…,
1 6

are primes. Meanwhile, we can regard equation (1.3) as the hybrid conjecture of equations (1.1)
and (1.2). But this expectation is probably far out of the reach of modern number theory techniques.

In 2016, Cai [3] gave an approximation to the conjecture (1.3) and proved that any sufficiently large even
integer N can be written in the form = + + + + +N x p p p p p2
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3, where p p,…,
2 6

are primes and x is an
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almost-prime 3� . Afterwards, Cai’s studies [3] in this direction were subsequently generalized by Zhang and Li
[4]. On the other hand, in 2019, Liu [5] considered the exceptional set of the conjecture (1.3) and showed that

≪ +E N N ε
1

4( ) where E N( ) denotes the number of positive even integers n up to N , which cannot be repre-
sented as + + + + +p p p p p p
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In this article, we shall continue to consider the exceptional set of the problem (1.3) and improve

the previous result.

Theorem 1.1. Let E N( ) denote the number of positive even integers n up to N , which cannot be represented as

= + + + + +n p p p p p p .
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3 (1.4)

Then, for any >ε 0, we have

≪ +E N N .ε
1

12( )

2 Preliminary and outline of the proof of Theorem 1.1

In order to better illustrate Lemmas 2.1 and 2.2, we first introduce some notations and definitions.
When ⊆ �� , we write � for the complement ⧹� � of � within �. When a and b are non-negative integers,
it is convenient to denote by a

b
�( ) the set ∩ a b,� ( ], and by a

b
�∣ ∣ the cardinality of ∩ a b,� ( ]. Next, when

⊆, �� � , we define

+ = + ∈ ∈c d c d: and .� � � �{ }

It is convenient, when k is a natural number, to describe a subset � of � as being a high-density subset of the
kth powers when (i) one has ⊆ ∈n n:k �� { }, and (ii) for each positive number ε, whenever N is a natural
number sufficiently large in terms of ε, then > ∕ −N

N k ε
0

1�∣ ∣ . In addition, when >θ 0, we shall refer to a set
⊆ �� as having complementary density growth exponent smaller than θ when there exists a positive number δ

with the property that, for all sufficiently large natural numbers N , one has < −N
N θ δ
0�∣ ∣ .

When q is a natural number and ∈ −q0, 1, …, 1a { }, we define = q,a a� � by

= + ∈mq m: .q, aa �� { }

In addition, we describe a set � as being a union of arithmetic progressions modulo q when, for some subset L
of −q0, 1, …, 1{ }, one has

= ⋃
∈

.q,

l L
l� �

In such circumstances, given a subset � of � and integers a and b, it is convenient to write

∧ = ∩
∈

min .a

b
q

a

b
,

l L
l� � � �⟨ ⟩ ∣ ∣

Let � be a union of arithmetic progressions modulo q, for some natural number q. When k is a natural
number, we describe a subset � of� as being a high-density subset of the kth powers relative to � when (i) one
has ⊆ ∈n n:k �� { }, and (ii) for each positive number ε, whenever N is a natural number sufficiently large in
terms of ε, then ∧ ≫ ∕ −N

N
q

k ε
0

1� �⟨ ⟩ . In addition, when >θ 0, we shall refer to a set ⊆ �� as having � -com-
plementary density growth exponent smaller than θ when there exists a positive number δ with the property
that, for all sufficiently large natural numbers N , one has ∩ < −N

N θ δ
0� �∣ ∣ .

Lemma 2.1. Let � , � , and 	 be unions of arithmetic progressions modulo q, for some natural number q, and
suppose that ⊆ +	 � � . Suppose also that 
 is a high-density subset of the squares relative to � , and that

⊆ �� has � -complementary density growth exponent smaller than 1. Then, whenever >ε 0 and N is a natural
number sufficiently large in terms of ε, one has

2  Min Zhang et al.



+ ∩ ≪ ∩− +N .N

N

q
ε

N

N

2

3 3
1

2� 
 	 � �∣ ∣ ∣ ∣

Proof. See Theorem 2.2 of Kawada and Wooley [6]. □

Lemma 2.2. Let � , � , and 	 be unions of arithmetic progressions modulo q, for some natural number q, and
suppose that ⊆ +	 � � . Suppose also that � is a high-density subset of the cubes relative to � , and that

⊆ �� has � -complementary density growth exponent smaller than θ, for some positive number θ. Then,
whenever >ε 0 and N is a natural number sufficiently large in terms of ε, without any condition on θ, one has

+ ∩ ≪ ∩ + ∩− + − +N N .N

N

q
ε

N

N ε
N

N

2

3 3 1 3 2
1

3� � 	 � � � �∣ ∣ ∣ ∣ (∣ ∣ )

Proof. See Theorem 4.1 (a) of Kawada and Wooley [6]. □

In order to prove Theorem 1.1, we need the following proposition, whose proof will be given in Section 3.

Proposition 2.3. Let E N1( ) denote the number of positive integers n up to N, which satisfy ≡n 0 mod 2( )

and cannot be represented as + + +p p p p
1

2

2

3

3

3

4

3. Then, for any >ε 0, we have

≪ − +E N N .ε
1

1
1

12( )

The remaining part of this section is devoted to establishing Theorem 1.1 by using Lemmas 2.1 and 2.2
and Proposition 2.3.

Proof of Theorem 1.1. Let

= + + + =

= + + + + =

= = ∈ ≡
= = ∈ ≡
= ∈ ≡ ≠ + + +

= ∈ ≡ ≠ + + + +

= ∈ ≡ ≠ + + + + +

p p p p p j

p p p p p p j

p p n n

n n

n n n p p p p p

n n n p p p p p p

n n n p p p p p p p

: ’s are primes, 1, 2, 3, 4 ,

: ’s are primes, 1, 2, 3, 4, 5 ,

: is a prime , : 0 mod 2 ,

: 1 mod 2 ,

: 0 mod 2 , , ’s are primes ,

: 1 mod 2 , , ’s are primes ,

: 0 mod 2 , , ’s are primes .

j

j

j
j

j

j

j
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E

E

E

�
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� �

	 �

{ }

{ }

{ } { ( )}

{ ( )}

{ ( ) }

{ ( ) }

{ ( ) }

Thus, we have =E N
N

1 1 0E( ) ∣ ∣ and =E N
N

0E( ) ∣ ∣ . In addition, we write =E N
N

2 2 0E( ) ∣ ∣ . Then, � is an arithmetic
progression modulo 2, and so are � and 	 . In addition, there hold ⊆ +	 � � and ⊆ +� � 	 . Moreover,
it follows from the prime number theorem in arithmetic progression that

∧ ≫ ∧ ≫− −N N N Nlog and log .
N N

2 0
1

3 0
1

1

2

1

3� � � �⟨ ⟩ ( ) ⟨ ⟩ ( )

Therefore, 2� is a high-density subset of the squares relative to � , while 3� is a high-density subset
of the cubes relative to � . By Proposition 2.3, it is easy to see that

∩ = = ≪ − +E N N ,
N N ε

1 0 1 0 1
1

1

12E� �∣ ∣ ∣ ∣ ( )

and thus 1� has � -complementary density growth exponent smaller than 1. From Lemma 2.1, we know that

= + ∩ ≪ ∩ ≪ ⋅ ≪− + − + − +N N E N N3 .N

N

N

N ε
N

N ε ε
2 2

3
1 2 2

3

1
3

1

1

2

1

2

1

2

1

12E � � 	 � �∣ ∣ ∣ ∣ ∣ ∣ ( )

Let the integers Nj for ⩾j 0 be determined by the iterative formula

= ⎡
⎢

⎤
⎥ = ⎡

⎢
⎤
⎥ ⩾+N N N N j

1

2
,

2

3
for 0,j j0 1

(2.1)

where ⌈ ⌉N denotes the least integer not smaller than N . Moreover, we define J to be the least positive integer
with the property that ⩽N 10j , then ≪J Nlog . Therefore, there holds
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∑⩽ + ≪
=

− +E N N10 .

j

J

N

N
ε

2

1

2 2

3

j

j 1

2

1

12E( ) ∣ ∣ (2.2)

By equation (2.2), we know that

∩ = = ≪ − +E N N ,
N N ε

2 0 2 0 2

1

2

1

12E� 	∣ ∣ ∣ ∣ ( )

and thus 2� has 	 -complementary density growth exponent smaller than 1

2
. From Lemma 2.2, we obtain

= + ∩ ≪ ∩ + ∩

≪ ⋅ +

≪ ≪

− + − +

− + − +

− + +

N N

N E N N E N

N N

3 3

.

N

N

N

N ε
N

N ε
N

N

ε ε

ε ε

2

3
2 3 2

3

2
3 1

2
3 2

2
1

2
2

1

3

1

3

1

6

1

12

1

12

E � � � � 	 � 	∣ ∣ ∣ ∣ ∣ ∣ (∣ ∣ )

( ) ( ( ))

Therefore, with the same notation of equation (2.1), we deduce that

∑⩽ + ≪
=

+E N N10 ,

j

J

N

N
ε

1

2

3

j

j 1

12E( ) ∣ ∣

which completes the proof of Theorem 1.1. □

3 Outline of the proof of Proposition 2.3

In this section, we shall give an outline of the proof of Proposition 2.3. Let N be a sufficiently large positive
integer. For =k 2, 3, we define

∑=
< ⩽

f α p e p αlog ,
k

X p X

k

2k k

( ) ( ) ( )

where = ∕X N 16k
k

1

( ) . Let

∑=
= + + +

< ⩽
< ⩽
=

n p p p plog log log log .

n p p p p

X p X

X p X

i

2

2

2,3,4

1 2 3 4

i

1

2

2

3

3

3

4

3

2 1 2

3 3

R( ) ( )( )( )( )

Then, for any >Q 0, it follows from the orthogonality that

∫ ∫= − = −

+

n f α f α e nα α f α f α e nα αd d .

Q

Q

0

1

2 3

3

1

1
1

2 3

3R( ) ( ) ( ) ( ) ( ) ( ) ( )

In order to apply the circle method, we set

= =− +P N Q N, .ε ε2
5

36

31

36 (3.1)

By Dirichlet’s lemma on rational approximation (e.g. see Lemma 2.1 of Vaughan [7]), each ∈ ∕ + ∕α Q Q1 , 1 1[ ]

can be written in the form

= + ⩽α
a

q
λ λ

qQ
,

1
,∣ ∣

for some integers a q, with ⩽ ⩽ ⩽a q Q1 , and =a q, 1( ) . Then, we define the major arcs M and minor arcs m

as follows:

= ⋃ ⋃ = ⎡
⎣⎢

+ ⎤
⎦⎥⩽ ⩽ ⩽ ⩽

=

q a
Q Q

, ,
1

, 1
1

,
q P a q

a q

1 1

, 1

M M m M( )

( )

(3.2)
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where

= ⎡
⎣⎢

− + ⎤
⎦⎥

q a
a

q qQ

a

q qQ
,

1
,

1
.M( )

Then, one has

∫ ∫=
⎧
⎨
⎩

+
⎫
⎬
⎭

−n f α f α e nα αd .
2 3

3R

M m

( ) ( ) ( ) ( )

In order to prove Proposition 2.3, we need the following two propositions, whose proofs will be given
in Sections 4 and 6, respectively.

Proposition 3.1. Let the major arcsM be defined as in equation (3.2) with P and Q defined in equation (3.1). Then,
for ∈ ∕n N N2,( ] and any >A 0, there holds

∫ − = + ⎛
⎝

⎞
⎠

−f α f α e nα α n n O N Ld
1

54
,A

2 3

3
1

2S J

M

( ) ( ) ( ) ( ) ( )

where nS( ) is the singular series defined in equation (4.1), which is absolutely convergent and satisfies

≪ ≪− ∗
n n d nlog log c S( ) ( ) ( ) (3.3)

for any integer n satisfying ≡n 0 mod 2( ) and some fixed constant >∗c 0, while nJ( ) is defined by equation
(4.9) and satisfies

≍n N .
1

2J( )

For the properties (3.3) of singular series, we shall give the proof in Section 5.

Proposition 3.2. Let the minor arcs m be defined as in equation (3.2) with P and Q defined in equation (3.1). Then,
we have

∫ ≪ − +f α f α α Nd .ε

2

2

3

6 2
1

12

m

∣ ( ) ( )∣

The remaining part of this section is devoted to establishing Proposition 2.3 by using Propositions 3.1
and 3.2.

Proof of Proposition 2.3. Let NU( ) denote the set of integers ∈ ∕n N N2,( ] such that

∫ − ≫ −f α f α e nα α N Ld .A

2 3

3
1

2

m

( ) ( ) ( )

Then, we have

∫ ∫∑ ∑≪ − ≪ −−

∈ < ⩽

NL N f α f α e nα α f α f α e nα αd d .A

n N N
n N

2

2 3

3

2

2

2 3

3

2

U
U m m

∣ ( )∣ ( ) ( ) ( ) ( ) ( ) ( )
( )

(3.4)

By Bessel’s inequality, we have

∫ ∫∑ − ⩽
< ⩽

f α f α e nα α f α f α αd d .
N

n N
2

2 3

3

2

2

2

3

6

m m

( ) ( ) ( ) ∣ ( ) ( )∣ (3.5)
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Combining equations (3.4) and (3.5) and Proposition 3.2, we have

≪ − +N N .ε1
1

12U∣ ( )∣

Therefore, with at most − ∕ +O N ε1 1 12( ) exceptions, all the integers ∈ ∕n N N2,( ] satisfy

∫ − ≪ −f α f α e nα α N Ld ,A

2 3

3
1

2

m

( ) ( ) ( )

fromwhich, using Proposition 3.1, we deduce that, with at most − ∕ +O N ε1 1 12( ) exceptions, all the positive integers
∈ ∕n N N2,( ] satisfying ≡n 0 mod 2( ) can be represented in the form + + +p p p p

1

2

2

3

3

3

4

3, where p p p, ,
1 2 3

,
and p

4
are prime numbers. By a splitting argument, we obtain

≪ − +E N N .ε
1

1
1

12( )

This completes the proof of Proposition 2.3. □

4 Proof of Proposition 3.1

In this section, we shall concentrate on proving Proposition 3.1. We first introduce some notations.
For a Dirichlet character χ qmod and ∈k 2, 3{ }, we define

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠

=
=

C χ a χ h e
ah

q
C q a C χ a, , , , ,k

h

q k

k k

1

0( ) ( ) ( ) ( )

where χ0 is the principal character modulo q. Let χ χ χ, ,
2 3

1

3

2( ) ( ), and χ
3

3( ) be Dirichlet characters modulo q. Define

∑ ⎜ ⎟= ⎛
⎝
− ⎞

⎠=
=

B n q χ χ χ χ C χ a C χ a C χ a C χ a e
an

q
, , , , , , , , , ,

a

a q

q

2 3

1

3

2

3

3

1

, 1

2 2 3 3

1
3 3

2
3 3

3( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )

( ) ( ) ( )

=B n q B n q χ χ χ χ, , , , , , ,0 0 0 0( ) ( )

and write

∑= =
=

∞

A n q
B n q

φ q
n A n q,

,
, , .

q

4

1

S( )
( )

( )
( ) ( ) (4.1)

Lemma 4.1. For =a q, 1( ) and any Dirichlet character χ qmod , there holds

⩽ ∕C χ a q d q, 2k
β1 2

k∣ ( )∣ ( )

with = ∕β klog log2
k

( ) .

Proof. See Problem 14 of Chapter VI of Vinogradov [8]. □

Lemma 4.2. The singular series nS( ) satisfies equation (3.3).

The proof of Lemma 4.2 is provided in Section 5.

Lemma 4.3. Let f x( ) be a real differentiable function in the interval a b,[ ]. If ′f x( ) is monotonic and satisfies
′ ⩽ <f x θ 1∣ ( )∣ . Then, we have

∫∑ = +
< ⩽

e e x Od 1 .

a n b

πif n

a

b

πif x2 2 ( )( ) ( )

6  Min Zhang et al.



Proof. See Lemma 4.8 of Titchmarsh [9]. □

Lemma 4.4. Let χ rmod
2 2 and χ rmod

i i

3 3

( ) ( ) with =i 1, 2, 3 be primitive characters, =r r r r r, , ,0 2 3

1

3

2

3

3
[ ]

( ) ( ) ( ) , and χ0

be the principal character modulo q. Then, there holds

∑ ≪
⩽

− +
φ q

B n q χ χ χ χ χ χ χ χ r x
1

, , , , , log .
q x

r q

ε

4 2

0

3

1 0

3

2 0

3

3 0
0

1 65

0

( )
∣ ( )∣

∣

( ) ( ) ( )

(4.2)

Proof. By Lemma 4.1, we have

∑≪ ≪
=

=

B n q χ χ χ χ χ χ χ χ

C χ χ a C χ χ a C χ χ a C χ χ a q φ q d q

, , , , ,

, , , , .

a

a q

q

2

0

3

1 0

3

2 0

3

3 0

1

, 1

2 2

0
3 3

1 0
3 3

2 0
3 3

3 0 2 6

∣ ( )∣

∣ ( ) ( ) ( ) ( )∣ ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

Therefore, the left-hand side of equation (4.2) is

∑ ∑ ∑≪ = ≪ ≪
⩽ ⩽

− +

⩽

− +q φ q d q

φ q

r t d r t

φ r t
r x

d t

t
r xlog log .

q x

r q

t
x

r

ε

t x

ε

2 6

4

0

2 2 6
0

3
0

0

1

6

0

1 65

0

0

( ) ( )

( )

( )

( )
( )

( )

∣

This completes the proof of Lemma 4.4. □

Write

∑=
< ⩽

V λ e m λ ,k

X m X

k

2k k

( ) ( )

∑ ∑= −
< ⩽ < ⩽

W χ λ p χ p e p λ δ e m λ, log ,k

X p X

k
χ

X m X

k

2 2k k k k

( ) ( ) ( ) ( ) ( ) (4.3)

where =δ 1χ or 0 according to whether χ is principal or not. Then, by the orthogonality of Dirichlet characters,
for =a q, 1( ) , we have

∑⎜ ⎟
⎛
⎝

+ ⎞
⎠

= +f
a

q
λ

C q a

φ q
V λ

φ q
C χ a W χ λ

, 1
, , .

k

k

k

χ q

k k

mod

( )

( )
( )

( )
( ) ( )

For =j 1, 2,…, 8, we define the sets jS as follows:

=
⎧
⎨
⎩

= = = =
= = = =
j j j j

j j j j

2, 3, 3, 3 , if 1; 3, 3, 3 , if 3; 3, 3 , if 5; 3 , if 7;

2, 3, 3 , if 2; 2, 3 , if 4; 2 , if 6; Ø, if 8.
jS

{ } { } { } { }

{ } { } { }

In addition, we write = ⧹2, 3, 3, 3j jS S{ } . Then, we have

∫ − ≕ + + + + + + +f α f α e nα α I I I I I I I Id 3 3 3 3 ,
2 3

3
1 2 3 4 5 6 7 8

M

( ) ( ) ( ) (4.4)

where

∫∑ ∑ ∏ ∏ ∏ ∑⎜ ⎟=
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
− ⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟ −

⩽ =
=

∈ − ∈ ∈
I

φ q
C q a e

an

q
V λ C χ a W χ λ e nλ λ

1
, , , d .j

q P a

a q

q

k

k

qQ

qQ

k

k

k χ q

k k4
1

, 1

1

1

modj j jS S S( )
( ) ( ) ( ) ( ) ( )

( )

In the following content of this section, we shall prove that I1 produces the main term, while the others
contribute to the error term.

For =k 2, 3, applying Lemma 4.3 to V λk( ), we have
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∫ ∫ ∑= + = + = +−

< ⩽

−V λ e u λ u O
k

v e vλ v O
k

m e mλ Od 1
1

d 1
1

1 .k

X

X

k

X

X

X m X

2 2

1

2

1

k

k

k

k

k

k

k

k
k

k
k

k

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

(4.5)

Putting equation (4.5) into I1, we see that

∫

∫

∑ ∑ ∑

∑ ∑ ∑

=
⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟ −

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⩽ − < ⩽

−

< ⩽

−

⩽ − < ⩽

−

< ⩽

−

I
B n q

φ q
m e mλ m e mλ e nλ λ

O
B n q

φ q
m e mλ m e mλ λ

1

54

,
d

,
d .

q P

qQ

qQ

X m X X m X

q P

qQ

qQ

X m X X m X

1 4

1

1

2 2

2

3

3

4

1

1

2 2

2

3

2

2
2

2
2

1

2

3
3

3
3

2
2

2
2

1

2

3
3

3
3

( )

( )
( ) ( ) ( )

∣ ( )∣

( )
( ) ( )

( ) ( )

( ) ( )

(4.6)

By using the elementary estimate

∑ ⎜ ⎟≪ ⎛
⎝

⎞
⎠< ⩽

− −m e mλ N N
λ

min ,
1

,

X m X2

1 1

k
k

k
k

k k

1 1

( )
∣ ∣

( )

(4.7)

and Lemma 4.4 with =r 10 , the O-term in equation (4.6) can be estimated as follows:

∫ ∫∑≪
⎛

⎝

⎜
⎜

+ ⋅
⎞

⎠

⎟
⎟

≪ ≪
⩽

∞
− −B n q

φ q
N λ N

λ
λ N L N L

,
d

1
d .

q P

N

N

A

4

0

1

1

3

65
7

6

11

6

1

6

1

2

∣ ( )∣

( )

If the interval of the integral in the main term of equation (4.6) is extended to − ∕ ∕1 2, 1 2[ ], then from equation
(3.1), we can see that the resulting error is

∫≪ ⋅ ≪ ≪ ≪− − − −L N
λ

λ
N q Q L N PQ L N

d

qQ

ϖ65

1

1

2

4

3 3 65 3 65
5

2

5

2

5

2

1

2( )

for some >ϖ 0. Therefore, by Lemma 4.2, equation (4.6) becomes

= + ⎛
⎝

⎞
⎠

−I n n O N L
1

54
,A

1

1

2S J( ) ( ) (4.8)

where

∑≔ ≍
+ + + =

< ⩽
< ⩽

=

− −n m m m m N .
m m m m n

X m X

X m X

i

2

2

2,3,4

1

1

2
2 3 4

i

1 2 3 4

2
2

1 2
2

3
3

3
3

2

3

1

2J( ) ( )

( )

( )

(4.9)

In order to estimate the contribution of Ij for =j 2, 3,…, 8, we shall need the following three preliminary
lemmas, i.e. Lemmas 4.5–4.7, whose proofs are exactly the same as Lemmas 3.5–3.7 in Zhang and Li [10], so we omit
the details herein. In view of this, for ∈k 2, 3{ }, we recall the definition of W χ λ,k( ) in equation (4.3) and write

∑ ∑=
⩽

− + ∗

⩽
J g g r W χ λ, max , ,
k

r P

ε

χ r λ
rQ

k
1

mod
1

( ) [ ] ∣ ( )∣
∣ ∣

and

∫∑ ∑=

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟⩽

− + ∗

−

K g g r W χ λ λ, , d .k

r P

ε

χ r

rQ

rQ

k
1

mod 1

1

2

1

2

( ) [ ] ∣ ( )∣

Here and below, ∗Σ indicates that the summation is taken over all primitive characters.
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Lemma 4.5. Let P and Q be defined as in equation (3.1). Then, we have

≪ − + −K g g N L .ε c
3

1
1

6( )

Lemma 4.6. Let P and Q be defined as in equation (3.1). Then, we have

≪ − +J g g N L .ε c

3

1
1

3( )

Lemma 4.7. Let P and Q be defined as in equation (3.1). Then, for any >A 0, we have

≪ −J N L1 .A

2

1

2( )

Now, we concentrate on estimating the terms Ij for =j 2, 3,…, 8. We begin with the term I8, which
is the most complicated one. Reducing the Dirichlet characters in I8 into primitive characters, we have

∫

∫

∫

∑ ∑ ∑

∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑

⎜ ⎟= ⎛
⎝
− ⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

×
⎛

⎝
⎜

⎞

⎠
⎟ −

= ⋅

× −

⩽

×

×

⩽ =
= −

⩽

−

⩽ ⩽ ⩽ ⩽

∗ ∗ ∗ ∗

⩽

−

I
φ q

e
an

q
C χ a W χ λ

C χ a W χ λ e nλ λ

φ q
B n q χ χ χ χ

W χ λ W χ λ W χ λ W χ λ e nλ λ

B n q χ χ χ χ χ χ χ χ

φ q

W χ χ λ W χ χ λ W χ χ λ W χ χ λ λ

1
, ,

, , d

1
, , , , ,

, , , , d

, , , , ,

, , , , d ,

q P a

a q

q

qQ

qQ

χ q

χ q

q P χ q χ q χ q χ q

qQ

qQ

r P r P r P r P χ r χ r χ r χ r

q P

r q

qQ

qQ

8 4
1

, 1

1

1

mod

2 2 2 2

mod

3 3 3 3

3

mod mod mod mod

4 2 3

1

3

2

3

3

1

1

2 2 3 3

1
3 3

2
3 3

3

mod mod mod mod

2

0

3

1 0

3

2 0

3

3 0

4

1

1

2 2

0
3 3

1 0
3 3

2 0
3 3

3 0

2

3

2 3

1

3

2

3

3

2 3

1

3

2

3

3

2 2
3

1
3

1

3

2
3

2

3

3
3

3

0

∣ ∣
( )

( ) ( )

( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( )

∣ ( )∣

( )

∣ ( ) ( ) ( ) ( )∣

( )

( ) ( ) ( )

( ) ( ) ( )

∣

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

where χ0 is the principal character modulo q and =r r r r r, , ,0 2 3

1

3

2

3

3
[ ]

( ) ( ) ( ) . For ⩽q P and < ⩽X p X2k k with
∈k 2, 3{ }, we have =q p, 1( ) . From this and the definition of W χ λ,k( ), we obtain =W χ χ λ W χ λ, ,2 2

0
2 2

( ) ( ) and
=W χ χ λ W χ λ, ,

i i
3 3

0
3 3

( ) ( )( ) ( ) for primitive characters χ
2
and χ

i

3

( ) with =i 1, 2, 3. Therefore, by Lemma 4.4, we obtain

∫

∫

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

⩽

×

×

≪ ⋅

×

⩽ ⩽ ⩽ ⩽

∗ ∗ ∗ ∗

−

⩽

⩽ ⩽ ⩽ ⩽

− + ∗ ∗ ∗ ∗

−

I

W χ λ W χ λ W χ λ W χ λ λ

B n q χ χ χ χ χ χ χ χ

φ q

L r

W χ λ W χ λ W χ λ W χ λ λ

, , , , d

, , , , ,

, , , , d .

r P r P r P r P χ r χ r χ r χ r

r Q

r Q

q P

r q

r P r P r P r P

ε

χ r χ r χ r χ r

r Q

r Q

8

mod mod mod mod

1

1

2 2 3 3

1
3 3

2
3 3

3

2

0

3

1 0

3

2 0

3

3 0

4

65
0

1

mod mod mod mod

1

1

2 2 3 3

1
3 3

2
3 3

3

2 3

1

3

2

3

3

2 2
3

1
3

1

3

2
3

2

3

3
3

3

0

0

0

2 3

1

3

2

3

3

2 2
3

1
3

1

3

2
3

2

3

3
3

3

0

0

∣ ∣

∣ ( ) ( ) ( ) ( )∣

∣ ( )∣

( )

∣ ( ) ( ) ( ) ( )∣

( ) ( ) ( )

∣

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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In the last integral, we pick out W χ λ,2 2
∣ ( )∣ and W χ λ,3 3

1∣ ( )∣( ) and then use Cauchy’s inequality to derive that

∫

∫

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

≪
⎛

⎝
⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

×

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

×

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⩽

∗

⩽ ⩽

∗

⩽

⩽

∗

−

⩽

− + ∗

−

I L W χ λ W χ λ

W χ λ λ

r W χ λ λ

max , max ,

, d

, d .

r P χ r λ
r Q r P χ r λ

r Q

r P χ r

r Q

r Q

r P

ε

χ r

r Q

r Q

8
65

mod
1

2 2

mod
1

3 3

1

mod 1

1

3 3

2 2

0

1

mod 1

1

3 3

3 2

2 2 2
2 3

1

3

1
3

1

3

1

3

2

3

2
3

2

3

2

3

2

1

2

3

3

3

3
3

3

3

3

3

3

1

2

∣ ∣ ∣ ( )∣ ∣ ( )∣

∣ ( )∣

∣ ( )∣

∣ ∣ ∣ ∣

( )

( )

( )

( ) ( ) ( )
( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

( )

( )

(4.10)

Now we introduce the iterative procedure to bound the sums over r r r, ,3

3

3

2

3

1( ) ( ) ( ), and r2, consecutively
and respectively. We first estimate the above sum over r3

3( ) in equation (4.10) via Lemma 4.5. Since

= =r r r r r r r r r, , , , , , ,0 2 3

1

3

2

3

3

2 3

1

3

2

3

3
[ ] [[ ] ]

( ) ( ) ( ) ( ) ( ) ( )

the sum over r3

3( ) is

∫∑ ∑=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ≪

⩽

− + ∗

−

− + −

r r r r W χ λ λ

K r r r r r r N L

, , , , d

, , , , .

r P

ε

χ r

r Q

r Q

ε c

2 3

1

3

2

3

3 1

mod 1

1

3 3

3 2

3 2 3

1

3

2

2 3

1

3

2 1

3

3

3

3
3

3

3

3

3

3

1

2

1

6

[[ ] ] ∣ ( )∣

([ ]) [ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

(4.11)

By Lemma 4.5 again, the contribution of the quantity on the right-hand side of equation (4.11) to the sum over
r3

2( ) in equation (4.10) is

∫∑ ∑≪ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ⋅ ≪

−

⩽

− + ∗

−

− − + −

N L r r r W χ λ λ

N L K r r r r N L

, , , d

, , .

c

r P

ε

χ r

r Q

r Q

c ε c

2 3

1

3

2 1

mod 1

1

3 3

2 2

3 2 3

1

2 3

1 1

1

6

3

2

3

2
3

2

3

2

3

2

1

2

1

6

1

3

[[ ] ] ∣ ( )∣

([ ]) [ ]

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

(4.12)

By Lemma 4.6, the contribution of the quantity on the right-hand side of equation (4.12) to the sum over r3

1( )

in equation (4.10) is

∑ ∑≪ ⋅

= ⋅ ≪

−

⩽

− + ∗

⩽

− − +

N L r r W χ λ

N L J r r L

, max ,

.

c

r P

ε

χ r λ

r Q

c ε c

2 3

1 1

mod
1

3 3

1

3 2 2

1

1

3

3

1

3

1
3

1

3

1

1

3

[ ] ∣ ( )∣

( )

( )

∣ ∣

( )

( ) ( ) ( )
( ) (4.13)

Finally, from Lemma 4.7, inserting the bound on the right-hand side of equation (4.13) to the sum over r2

in equation (4.10), we obtain

∑ ∑≪ ⋅

= ⋅ ≪

⩽

− + ∗

⩽

−

I L r W χ λ

L J N L

1, max ,

1 .

c

r P

ε

χ r λ
r Q

c A

8 2
1

mod
1

2 2

2

2 2 2
2

1

2

∣ ∣ [ ] ∣ ( )∣

( )

∣ ∣ (4.14)

For the estimation of the terms I I I, ,…,2 3 7, by noting equations (4.5) and (4.7), we obtain
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∫ ∫

∫ ∫

⎜ ⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

≪

⎛

⎝

⎜
⎜

⎛
⎝

⎞
⎠

+

⎞

⎠

⎟
⎟

≪

⎛

⎝

⎜
⎜

+

⎞

⎠

⎟
⎟

+ ≪

− −

−

−
∕

−

V λ λ N N
λ

λ
Q

N N λ
λ

λ Q
N

d min ,
1

d
1

d
d 1

.

Q

Q

k

Q

Q

k

N

N

Q

1

1

2

1

1

2
2

2

1

0

1

2

1

1

2 1 2
k k

1

2

1

2

1

1

2

1 1

2

∣ ( )∣
∣ ∣

Using this estimate and the upper bound ofV λk( ), which derives from equations (4.5) and (4.7), that ≪V λ Nk
k

1

( ) ,
we can argue similarly to the treatment of I8 and obtain

∑ ≪
=

−I N L .

j

j
A

2

7
1

2 (4.15)

Combining equations (4.4), (4.8), (4.14), and (4.15), we can derive the conclusion of Proposition 3.1.

5 The singular series

In this section, we shall investigate the properties of the singular series that appear in Proposition 3.1.

Lemma 5.1. Let p be a prime and p kα‖ . For =a p, 1( ) , if ⩾ γ pℓ ( ), we have =C p a, 0k( )ℓ , where

=
⎧
⎨
⎩

+ ≠ = =
+ = >γ p

α if p or p α

α if p α

2, 2 2, 0;

3, 2, 0.
( )

Proof. See Lemma 8.3 of Hua [11]. □

For ⩾k 1, we define

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠=

S q a e
am

q
, .k

m

q k

1

( )

Lemma 5.2. Suppose that =p a, 1( ) . Then,

∑=
∈

S p a χ a τ χ, ,k

χ kA

( ) ( ) ( )

where kA denotes the set of non-principal characters χ modulo p for which χk is principal, and τ χ( ) denotes
the Gauss sum

∑ ⎜ ⎟
⎛
⎝

⎞
⎠=

χ m e
m

p
.

m

p

1

( )

In addition, there hold = ∕τ χ p1 2∣ ( )∣ and = − −k p, 1 1kA∣ ∣ ( ) .

Proof. See Lemma 4.3 of Vaughan [7]. □

Lemma 5.3. For =p n, 1( ) , we have

∑ ⎜ ⎟
⎛
⎝
− ⎞

⎠
⩽

=

−
−S p a S p a

p
e

an

p
p

, ,
8 .

a

p

1

1

2 3

3

4

3

2

( ) ( )
(5.1)

On the Waring-Goldbach problem for two squares and four cubes  11



Proof. We denote by Σ the left-hand side of equation (5.1). By Lemma 5.2, we have

∑ ∑ ∑ ⎜ ⎟=
⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
− ⎞

⎠=

−

∈ ∈p
χ a τ χ χ a τ χ e

an

p
Σ

1
.

a

p

χ χ

4

1

1

2 2 3 3

3

2 2 3 3A A

( ) ( ) ( ) ( )

If = 0kA∣ ∣ for some ∈k 2, 3{ }, then =Σ 0. If this is not the case, then

∑ ∑ ∑ ∑

∑ ⎜ ⎟

=

× ⎛
⎝
− ⎞

⎠

∈ ∈ ∈ ∈

=

−

p
τ χ τ χ τ χ τ χ

χ a χ a χ a χ a e
an

p

Σ
1

.

χ χ χ χ

a

p

4 2 3

1

3

2

3

3

1

1

2 3

1

3

2

3

3

2 2 3

1
3 3

2
3 3

3
3A A A A

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

From Lemma 5.2, the quadruple outer sums have not more than eight terms. In each of these terms, we have

=τ χ τ χ τ χ τ χ p .
2 3

1

3

2

3

3 2∣ ( ) ( ) ( ) ( )∣( ) ( ) ( )

Since in any one of these terms χ a χ a χ a χ a
2 3

1

3

2

3

3( ) ( ) ( ) ( )( ) ( ) ( ) is a Dirichlet character χ pmod( ), the inner sum is

∑ ∑⎜ ⎟ ⎜ ⎟
⎛
⎝
− ⎞

⎠
= − − ⎛

⎝
− ⎞

⎠
= −

=

−

=

−

χ a e
an

p
χ n χ an e

an

p
χ n τ χ .

a

p

a

p

1

1

1

1

( ) ( ) ( ) ( ) ( )

From the fact that = −τ χ 10( ) for principal character χ pmod0 , we have

− ⩽χ n τ χ p .
1

2∣ ( ) ( )∣

By the above arguments, we obtain

⩽ ⋅ ⋅ ⋅ = −
p

p p pΣ
1

8 8 .
4

2
1

2

3

2∣ ∣

This completes the proof of Lemma 5.3. □

Lemma 5.4. Let p n,L( ) denote the number of solutions to the following congruence:

+ + + ≡ ⩽ ⩽ −x x x x n p x x x x pmod , 1 , , , 1.1

2

2

3

3

3

4

3
1 2 3 4( )

Then, we have >p n, 0L( ) for ≡n 0 mod 2( ).

Proof. We have

∑ ⎜ ⎟⋅ = ⎛
⎝
− ⎞

⎠
= − +

=
p p n C p a C p a e

an

p
p E, , , 1 ,

a

p

p

1

2 3

3 4L( ) ( ) ( ) ( )

where

∑ ⎜ ⎟= ⎛
⎝
− ⎞

⎠=

−

E C p a C p a e
an

p
, , .p

a

p

1

1

2 3

3( ) ( )

By Lemma 5.2, we obtain

⩽ − + +E p p p1 1 2 1 .p
3∣ ∣ ( )( )( )

It is easy to check that < −E p 1p
4∣ ∣ ( ) for ⩾p 17. Therefore, we obtain >p n, 0L( ) for ⩾p 17. For =p 2, 3, 5, 7, 11, 13,

we can check >p n, 0L( ) directly provided that ≡n 0 mod 2( ). This completes the proof of Lemma 5.4. □

Lemma 5.5. A n q,( ) is multiplicative in q.
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Proof. By the definition of A n q,( ) in equation (4.1), we only need to show that B n q,( ) is multiplicative in q.
Suppose that =q q q

1 2
with =q q, 1

1 2
( ) . Then, we have

∑

∑ ∑

⎜ ⎟

⎜ ⎟ ⎜ ⎟

=
⎛
⎝
−

⎞
⎠

= + +
⎛
⎝
−

⎞
⎠

⎛
⎝
−

⎞
⎠

=
=

=
=

=
=

B n q q C q q a C q q a e
an

q q

C q q a q a q C q q a q a q e
a n

q
e

a n

q

, , ,

, , .

a

a q q

q q

a

a q

q

a

a q

q

1 2

1

, 1

2 1 2 3

3

1 2

1 2

1

, 1

1

, 1

2 1 2 1 2 2 1 3

3

1 2 1 2 2 1

1

1

2

2

1 2

1 2

1

1 1

1

2

2 2

2

( ) ( ) ( )

( ) ( )

( )

( ) ( )

(5.2)

For =q q, 1
1 2

( ) and ∈k 2, 3{ }, there holds

∑

∑ ∑

∑ ∑

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

+ =
⎛
⎝

+ ⎞
⎠

=
⎛
⎝

+ + ⎞
⎠

=
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=

=
=

=
=

=
=

=
=

=
=

C q q a q a q e
a q a q m

q q

e
a q a q m q m q

q q

e
a m q

q
e

a m q

q

C q a C q a

,

, , .

k

m

m q q

q q k

m

m q

q

m

m q

q k

m

m q

q k

m

m q

q k

k k

1 2 1 2 2 1

1

, 1

1 2 2 1

1 2

1

, 1

1

, 1

1 2 2 1 1 2 2 1

1 2

1

, 1

1 1 2

1 1

, 1

2 2 1

2

1 1 2 2

1 2

1 2

1

1 1

1

2

2 2

2

1

1 1

1

2

2 2

2

( )
( )

( )( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

(5.3)

Putting equation (5.3) into equation (5.2), we deduce that

∑ ∑⎜ ⎟ ⎜ ⎟=
⎛
⎝
−

⎞
⎠

⎛
⎝
−

⎞
⎠

=

=
=

=
=

B n q q C q a C q a e
a n

q
C q a C q a e

a n

q

B n q B n q

, , , , ,

, , .

a

a q

q

a

a q

q

1 2

1

, 1

2 1 1 3

3

1 1

1

1 1

, 1

2 2 2 3

3

2 2

2

2

1 2

1

1 1

1

2

2 2

2

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

This completes the proof of Lemma 5.5. □

Lemma 5.6. Let A n q,( ) be defined as in equation (4.1). Then,
(i) we have

∑ ≪
>

− +A n q Z d n, ,

q Z

ε
1

2∣ ( )∣ ( )

and thus the singular series nS( ) is absolutely convergent and satisfies ≪n d nS( ) ( );
(ii) there exists an absolute positive constant >∗c 0 such that

≫ − ∗
n nlog log cS( ) ( )

for any integer n satisfying ≡n 0 mod 2( ).

Proof. From Lemma 5.5, we know that B n q,( ) is multiplicative in q. Therefore, there holds

∏ ∏ ∑ ⎜ ⎟= = ⎛
⎝
− ⎞

⎠=
=

B n q B n p C p a C p a e
an

p
, , , , .

p q

t

p q a

a p

p

t t

t
1

, 1

2 3

3

t t

t

( ) ( ) ( ) ( )
‖ ‖

( )

(5.4)

From equation (5.4) and Lemma 5.1, we deduce that = ∏B n q B n p, ,p q( ) ( )‖ or 0 according to whether q

is square-free or not. Thus, we have
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∑ ∑=
=

∞

=
-

∞

A n q A n q, , .

q q

q

1 1

square free

( ) ( ) (5.5)

Write

≔ −p a C p a C p a S p a S p a, , , , , .2 3

3
2 3

3V( ) ( ) ( ) ( ) ( )

Then,

∑ ∑⎜ ⎟ ⎜ ⎟=
−

⎛
⎝
− ⎞

⎠
+

−
⎛
⎝
− ⎞

⎠=

−

=

−

A n p
p

S p a S p a e
an

p p
p a e

an

p
,

1

1
, ,

1

1
, .

a

p

a

p

4

1

1

2 3

3

4

1

1

V( )
( )

( ) ( )
( )

( ) (5.6)

Applying Lemma 4.1 and noting that = +S p a C p a, , 1k k( ) ( ) , we obtain ≪S p a p,k

1

2( ) , and thus ≪p a p,
3

2V( ) .
Therefore, the second term in equation (5.6) is ⩽ −c p1

3

2 . On the other hand, from Lemma 5.3, we can see that the
first term in equation (5.6) is⩽ ⋅ =− −p p2 8 1284

3

2

3

2 . Let = +c c 1282 1 . Then, we have proved that, for ∤p n, there holds

⩽ −A n p c p, .2

3

2∣ ( )∣ (5.7)

Moreover, if we use Lemma 4.1 directly, it follows that

∑ ∑⎜ ⎟= ⎛
⎝
− ⎞

⎠
⩽ ⩽ − ⋅ ⋅ ⋅ = −

=

−

=

−

B n p C p a C p a e
an

p
C p a C p a p p p p, , , , , 1 2 54 864 1 ,

a

p

a

p

1

1

2 3

3

1

1

2 3
3 4 2 2∣ ( )∣ ( ) ( ) ∣ ( )∣∣ ( )∣ ( ) ( )

and therefore,

= ⩽
−

⩽
⋅

=A n p
B n p

φ p

p

p

p

p p
,

, 864

1

2 864 6912
.

4

2

3

3 2

3
∣ ( )∣

∣ ( )∣

( ) ( )
(5.8)

Let =c cmax , 69123 2( ). Then, for square-free q, we have

)(∏ ∏ ∏ ∏

∏ ∏

=

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⩽

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟ ≪

∤ ∤

− −

− − +

A n q A n p A n p c p c p

c p p q n q

, , ,

, .

p q

p n

p q

p n

p q

p n

p q

p n

ω q

p q p n q

ε

3 3
1

3

,

3

2

3

2

1

2

3

2

1

2

∣ ( )∣ ∣ ( )∣ ∣ ( )∣ ( )

( )

∣ ∣

∣

∣ ∣

∣

( )

∣ ∣( )

Hence, by equation (5.5), we obtain

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

≪ = =

≪ ⎛
⎝

⎞
⎠ = ≪

> >

− +

>

− + − +

>

− +

− +
− +

− + − + − +

A n q q n q dq d d q

d
Z

d
Z d Z d n

, ,

.

q Z q Z

ε

d n q
Z

d

ε

d n

ε

q
Z

d

ε

d n

ε

ε

ε

d n

ε ε

1

1

3

2

1

2

3

2

1

2

3

2

1

2
1

2

1

2

1

2

∣ ( )∣ ( ) ( )

( )

∣ ∣

∣ ∣

This proves (i) of Lemma 5.6.
To prove (ii) of Lemma 5.6, by Lemma 5.5, we first note that

∏ ∑ ∏

∏ ∏ ∏

⎜ ⎟=
⎛
⎝

+
⎞
⎠

= +

=
⎛

⎝
⎜ +

⎞

⎠
⎟

⎛

⎝

⎜
⎜ +

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

+

⎞

⎠

⎟
⎟

=

∞

⩽ >
∤

>

n A n p A n p

A n p A n p A n p

1 , 1 ,

1 , 1 , 1 , .

p t

t

p

p c p c

p n

p c

p n

1

3
3 3

S( ) ( ) ( ( ))

( ( )) ( ( )) ( ( ))

∣

(5.9)
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From equation (5.7), we have

∏ ∏ ⎜ ⎟+ ⩾ ⎛
⎝

− ⎞
⎠

⩾ >
>
∤

>
∕A n p

c

p
c1 , 1 0.

p c

p n

p c

3

3 2 4

3
3

( ( )) (5.10)

By equation (5.8), we know that there exists >c 05 such that

∏ ∏ ∏⎜ ⎟ ⎜ ⎟+ ⩾ ⎛
⎝

− ⎞
⎠

⩾ ⎛
⎝

− ⎞
⎠

≫
> >

−A n p
c

p

c

p
n1 , 1 1 log log .

p c

p n

p c

p n

p n

c3 3

3 3

5( ( )) ( )

∣ ∣

∣
(5.11)

On the other hand, it is easy to see that

+ =
⋅

A n p
p p n

φ p
1 ,

,
.

4

L
( )

( )

( )

By Lemma 5.4, we know that >p n, 0L( ) for all p with ≡n 0 mod 2( ), and thus + >A n p1 , 0( ) . Therefore,
there holds

∏ + ⩾ >
⩽

A n p c1 , 0.

p c

6

3

( ( )) (5.12)

Combining the estimates (5.9)–(5.12) and taking = >∗c c 05 , we derive that

≫ − ∗
n nlog log .cS( ) ( )

This completes the proof of Lemma 5.6. □

6 Proof of Proposition 3.2

In this section, we first present some lemmas that will be used to prove Proposition 3.2.

Lemma 6.1. Suppose that ∈α � and that there exist integers ∈a � and ∈q � satisfying

⩽ ⩽ = ⩽ −q N a q q β N1 , , 1, ,
3

4

3

4( ) ∣ ∣

where = − ∕β α a q. Then, for any >ε 0, we have

≪ +
+

− + +
f α X

X

q X β1

.
ε

ε

2 2

1
1

8 2

1

2

2
( )

( ∣ ∣)

Proof. See Theorem 3 of Kumchev [12]. □

Lemma 6.2. Suppose that α is a real number, and that − ∕ ⩽ −α a q q 2∣ ∣ with =a q, 1( ) . Let = − ∕β α a q. Then,
we have

≪
⎛

⎝
⎜ + + +

+

⎞

⎠
⎟∕ ∕

f α d q X X q X β X
X

q X β

log 1

1

,
k

δ
k

c
k k

k

k

k

k

k

1 2 4 5
k( ) ( )( ) ( ∣ ∣)

( ∣ ∣)

where = +δk

k1

2

log

log2
and c is an absolute constant.

Proof. See Theorem 1 of Ren [13]. □

Lemma 6.3. Suppose that α is a real number, and that there exist ∈a � and ∈q � with

= ⩽ ⩽ ⩽ −a q q Q and q β Q, 1, 1 ,1( ) ∣ ∣
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where = − ∕β α a q. If ⩽ ⩽∕ ∕W Q W1 2 5 2, then we have

∑ ≪ +
+< ⩽

− +
− +

∕e p α W
q W

W β1
.

W p W

ε

ε

2

3 1

1

3 1 2

1

12

1

6

( )
( ∣ ∣)

Proof. See Lemma 8.5 of Zhao [14]. □

Lemma 6.4. Suppose that α is a real number, and that there exist integers ∈a � and ∈q � satisfying

= ⩽ ⩽ ⩽ −a q q Q and q β Q, 1, 1 ,1( ) ∣ ∣

where = − ∕β α a q. If ⩽ ⩽∕ ∕
X Q X3

1 2

3

5 2, then we have

≪ +
+

− + +
f α X

X

q X β1

.
ε

ε

3 3

1
1

12 3

1

3

3
( )

( ∣ ∣)

Proof. For any fixedQ satisfying ⩽ ⩽∕ ∕
X Q X3

1 2

3

5 2, by Dirichlet’s lemma on rational approximation (for instance,
see Lemma 2.1 of Vaughan [7]), there exist integers ∈a � and ∈q � such that

= + ⩽α
a

q
β β

qQ
,

1
∣ ∣

with ⩽ ⩽q Q1 and =a q, 1( ) . Next, we shall discuss the upper bound of f α
3
( ) according to the size of q and β∣ ∣.

Case 1 If ⩽ ∕
q X3

1 2 and ⩽ − − ∕
β q X1

3

5 2∣ ∣ , we have

+ ⩽
+

∕
X q X β

X

q X β

1

1

.3

1 2

3

3 3

3

3
( ∣ ∣)

( ∣ ∣)

Then, by Lemma 6.2, we obtain

≪ +
+

− + +
f α X

X

q X β1

,
ε

ε

3 3

1
1

5 3

1

3

3
( )

( ∣ ∣)

which is acceptable.
Case 2 If > ∕

q X3

1 2, it follows from Lemma 6.3 that

≪ + ≪
− + − + − +

f α X q X X .
ε

ε
ε

3 3

1
1

12
3

1

3

1
1

12
1

6( )

Case 3 If ⩽ ∕
q X3

1 2 and ⩽ ⩽− − ∕ − −q X β q Q1
3

5 2 1 1∣ ∣ , we have ⩾ ⩾∕ −X β X q 13

3

3

1 2 1∣ ∣ , which combined with Lemma 6.3
yields that

≪ +
+

≪ +

≪ + ≪ + ≪

− + − + − + − +

∕ −

− + + − + + − +

f α X
q X

X β

X
q X

X q

X q X X X X X

1

.

ε
ε

ε
ε

ε ε ε ε ε

3 3

1
1

12 3

1

3

3
3

1
1

12 3

1

3

1 2 1

3

1
1

12
3

3

4
3

1
1

12
2

1

2
3

3

4
3

1
1

12

1

6

1

6

1

3

1

3

( )
∣ ∣

( )

Combining the above three cases, we derive the desired conclusion of Lemma 6.4. □

Lemma 6.5. Let f α
k

( ) be defined as above. Then, we have

∫ ≪ +f α f α α Nd .ε

0

1

2

2

3

4
4

3∣ ( ) ( )∣

Proof. Trivially, the conclusion can be deduced by counting the number of solutions to the underlying
Diophantine equation

− = + − −x x y y y y1

2

2

2

1

3

2

3

3

3

4

3
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with < ⩽X x x X, 22 1 2 2 and < ⩽X y X2
i3 3 for =i 1, 2, 3, 4. If ≠x x1 2, the contribution is bounded by +

X
ε

3

4 . If =x x1 2,
the contribution is bounded by

∫≪ ⋅X f α αd .2

0

1

3

4∣ ( )∣

By Lemma 2.5 of Vaughan [7], we have

∫ ≪ +
f α α Xd ,

ε

0

1

3

4
3

2∣ ( )∣

and thus the contribution with =x x1 2 is ≪ ⋅ ≪+ +X X N
ε ε

2 3

2
7

6 . Combining the above two cases, we deduce that

∫ ≪ + ⋅ ≪+ + +f α f α α X X X Nd .
ε ε ε

0

1

2

2

3

4

3

4
2 3

2
4

3∣ ( ) ( )∣

This completes the proof of Lemma 6.5. □

Define the multiplicative function w q3( ) by

=
⎧
⎨
⎩

⩾ =
⩾ ⩽ ⩽

+
− −

− −
w p

p u v

p u v

3 , if 0, 1;

, if 0, 2 3.

u v

u

u
3

3

1

1

2

( )

Lemma 6.6. For ∈γ � , we define

∫∑ ∑≔
∑ +
+ − ∕⩽ =

= − ⩽

< ⩽
γ

w q d q e p α γ

X α a q
αΓ

1
d

q X a

a q

q

α
a

q
X

c
X p X

1

, 1

3

2

2
3 2

3

3

3
3

3 3

( )
( ) ( ) ( ( ))

∣ ∣
( )

∣ ∣

One has uniformly for ∈γ � that

≪ − +γ X NΓ .ε
3

2 1( )

Proof. See Lemma 2.2 of Zhao [14]. □

For ⊆ ∩X X, 23 3A �( ] , we define

∑= =
∈

g α g α n e n αlog .

n

3

A
A

( ) ( ) ( ) ( ) (6.1)

Lemma 6.7. Let M be the union of the intervals q a,M( ) for ⩽ ⩽ ⩽ ∕
a q X1 3

3 4 and =a q, 1( ) , where

= − ⩽ − ∕
q a α qα a X, : .3

9 4M( ) { ∣ ∣ }

Suppose that G α( ) and h α( ) are integrable functions of period one. Let =g α g αA( ) ( ) be given in equation (6.1),
and let ⊆ 0, 1m [ ) be a measurable set. Then, we have

∫ ∫≪
⎛

⎝
⎜

⎞

⎠
⎟ +∕ +g α G α h α α N G α α Nd d ,ε

0

1

4 2 1 2
1

3

1

4

7

24J Jm m

m m


( ) ( ) ( ) ∣ ( )∣ ( ) ( )

where

∫ ∫= =
+

+ − ∕∈
G α h α α

w q h α β

X α a q
αd , sup

1
d .

β

0

0,1

3

2 2

3

3 2
J

M

m

m


( ) ∣ ( ) ( )∣
( )∣ ( )∣

( ∣ ∣)[ )
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Proof. See Lemma 3.1 of Zhao [14]. □

For the proof of Proposition 3.2, we define a general Hardy-Littlewood dissection employed in our applica-
tion of the circle method. When X is a positive number with ⩽X N , we take XN( ) to be the union
of the intervals

= − ⩽ −q a X α qα a XN, , : ,1N( ) { ∣ ∣ }

with ⩽ ⩽ ⩽a q X1 and =a q, 1( ) . In addition, when ⩽ ∕X N 2, we put = ⧹X X X2R N N( ) ( ) ( ). Finally, we take

= ∩ ⎛
⎝

⎞
⎠ = ⧹ ⎛

⎝
⎞
⎠N N, .1 2

1

8

1

8m m N m m N

For ∈α 2m , by Dirichlet’s lemma on rational approximation (e.g. see Lemma 2.1 of Vaughan [7]), there exist
∈a � and ∈q � satisfying

⩽ ⩽ − ⩽ =−q N qα a N a q1 , , , 1.
3

4

3

4∣ ∣ ( )

Since ∈α 2m , we know that either >q N
1

8 or − >N qα a N
1

8∣ ∣ . Therefore, by Lemmas 6.1 and 6.4, it is easy
to obtain

≪ + ≪
∈

− + +

∕
+f α X

X

N

Nsup ,

α

ε
ε

ε

2 2

1
1

8 2

1

1 8
2

7

16

m

∣ ( )∣ (6.2)

and

≪ + ≪
∈

− + +

∕
+f α X

X

N

Nsup .

α

ε
ε

ε

3 3

1
1

12 3

1

1 8
2

11

36

m

∣ ( )∣ (6.3)

Define

∫≔ ⩾t f α f α α td , 1.
t

2

2

3

2m

�( ) ∣ ( ) ( )∣

Taking

= = − =g α f α h α f α G α f α f α, ,
3 3 2

2

3

4( ) ( ) ( ) ( ) ( ) ∣ ( )∣ ∣ ( )∣

in Lemma 6.7, we obtain

∫≪
⎛

⎝
⎜

⎞

⎠
⎟ + ⋅+N f α f α α N6 d 5 5 ,ε

0

1

4

2

4

3

8
1

3

2

1

4

1

2

7

24

m

� 
 � �( ) ∣ ( ) ( )∣ ( ( )) ( ) (6.4)

where

∫∑ ∑=
+

+ − ∕∈ ⩽ =
=

∕

w q h α β

X α a q
αsup

1
d

β q X a

a q

q

q a

0

0,1 1

, 1
,

3

2 2

3

3 2

3

3 4

M



( )∣ ( )∣

( ∣ ∣)[ )

( )
( )

with

= − ⩽ − ∕
q a α qα a X, : .3

9 4M( ) { ∣ ∣ }

By Lemma 6.6, we obtain

≪ ≪ − +γ NΓ .ε
0

1

3
 ( ) (6.5)

From equations (6.2) and (6.3), we have
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⎞
⎠ ⋅ ⎛

⎝
⎞
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f α f α α f α f α
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6 6 .

α α
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2
2 2
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m m m

�

� �

∣ ( ) ( )∣ ( ∣ ( )∣ )( ∣ ( )∣ ) ( )

( ) ( )

(6.6)

Putting equations (6.5) and equation (6.6) into (6.4), we derive that

≪ + ⋅+ +N N6 6 5 5 .ε ε
179

288

1

4

1

2

7

24� � � �( ) ( ( )) ( ( )) ( ) (6.7)

It follows from Cauchy’s inequality and Lemma 6.5 that

∫ ∫≪
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
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2
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2

2
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Inserting equation (6.8) into equation (6.7), we have

≪ + ≪+ + +N N N6 6 6 6 ,ε ε ε
275

288

1

2
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24

1

2

23

24

1

2� � � �( ) ( ( )) ( ( )) ( ( ))

which implies

≪ =+ − +N N6 .ε ε2
23

12

1

12�( ) (6.9)

We define the function →Ξ : 0, 1 0, 1[ ] [ ] by putting =αΞ 0( ) for ∈ ⧹ ⎛
⎝

⎞
⎠α N0, 1

1

8N[ ] , and when ∈α

⎛
⎝

⎞
⎠ ∩ ⎛

⎝
⎞
⎠N q a N, ,

1

8

1

8N N , by writing

= + − ∕ −α q qN α a qΞ .1( ) ( ∣ ∣)

Define

= ∩ ⎛
⎝

⎞
⎠ = ⧹ ⎛

⎝
⎞
⎠N N, .3 1 4 1

1

18

1

18m m N m m N

By noting the fact that ⊆ ⎛
⎝

⎞
⎠⧹

⎛
⎝

⎞
⎠N N4

1

8

1

18m N N , hence for ∈α 4m , it follows from Lemmas 6.1 and 6.4 that
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4
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which yield the estimate
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(6.10)

By Lemma 2 of Brüdern [15], we obtain

∫ ≪
⎛
⎝

⎞
⎠

− +α f α α NΞ d ,

N

ε

3

2

1

8

1

3

N

( )∣ ( )∣

from which, using equation (6.10), we conclude that

∫ ≪ − +f α f α α Nd .ε

2

2

3

6 2

4

1

9

m

∣ ( ) ( )∣ (6.11)

For ∈α 3m , by Lemmas 6.1 and 6.4, we obtain
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≪ ≪+ +f α N α f α N αΞ and Ξ .ε ε
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Hence, for ∈α 3m , there holds

≪ +f α f α N αΞ ,ε

2

2

3

2 2
5

3∣ ( ) ( )∣ ( )

which combined with the trivial estimate ≪ +f α N ε

3

1

3( ) yields
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This leaves the set ∩ ⎛
⎝

⎞
⎠N

1

18m N for treatment, and this set is covered by the union of sets = ⧹Y Y Y2R N N( ) ( ) ( )

asY runs over the sequence − N2 j
1

18 with ≪ ⩽ ∕P Y N 2
1

18 . Note that ≪ −α YΞ 1( ) for ∉α YN( ). Moreover, Lemma 2
of Brü dern [15] supplies the following upper bound:

∫ ≪ +− + − +α f α α YN NΞ d ,

Y

ε ε

2

3

2
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3

1

3

N
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which implies that

∫ ≪ + ≪ + ≪− + − + − − + − + − − +α f α α N N Y N N P NΞ d .
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3

2 1 1
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3
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By a splitting argument, from equations (6.12) and (6.13), we derive that

∫ ∫≪ ×
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+

≪ ⩽ ∕

+ − + − +

f α f α α N α f α α

N N N
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.

ε
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3
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1

18
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3
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5
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m R
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( ) (6.14)

Combining equations (6.9), (6.11), and (6.14), we obtain the conclusion of Proposition 3.2.
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