Research Article

Shiping Zhong*, Zehui Zhao, and Xinjie Wan

Solitons for the coupled matrix nonlinear Schrödinger-type equations and the related Schrödinger flow

https://doi.org/10.1515/math-2022-0600 received July 27, 2022; accepted June 6, 2023

Abstract: In this article, the coupled matrix nonlinear Schrödinger (NLS) type equations are gauge equivalent to the equation of Schrödinger flow from \mathbb{R}^1 to complex Grassmannian manifold $\widetilde{G}_{n,k} = \operatorname{GL}(n,\mathbb{C})/\operatorname{GL}(k,\mathbb{C}) \times \operatorname{GL}(n-k,\mathbb{C})$, which generalizes the correspondence between Schrödinger flow to the complex 2-sphere $\mathbb{C}\mathbb{S}^2(1) \hookrightarrow \mathbb{C}^3$ and the coupled Landau-Lifshitz (CLL) equation. This gives a geometric interpretation of the matrix generalization of the coupled NLS equation (i.e., CLL equation) via Schrödinger flow to the complex Grassmannian manifold $\widetilde{G}_{n,k}$. Finally, we explicit soliton solutions of the Schrödinger flow to the complex Grassmannian manifold $\widetilde{G}_{2,1}$.

Keywords: coupled matrix nonlinear Schrödinger-type equations, complex Grassmannian manifold, Schrödinger flow, gauge equivalence, soliton solutions

MSC 2020: 53C35, 53A04, 37K10, 35Q55, 35C08

1 Introduction

In this article, the matrix generalization of the second Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy (i.e., the coupled matrix nonlinear Schrödinger [NLS] type equations) (e.g., see [1–3]):

$$\begin{cases} \varepsilon \Psi_{1t} - \Psi_{1xx} + 2\Psi_1 \Psi_2 \Psi_1 = 0, \\ \varepsilon \Psi_{2t} + \Psi_{2xx} - 2\Psi_2 \Psi_1 \Psi_2 = 0, \end{cases}$$
 (1)

where $\Psi_1 = \Psi_1(x, t)$, $\Psi_2 = \Psi_2(x, t)$ are $k \times (n - k)$ and $(n - k) \times k$ complex matrix-valued functions and $\varepsilon^2 = \pm 1$. Note that the matrix form of the coupled matrix NLS equations (1) is

$$u_t = \frac{1}{\varepsilon^2} [\sigma_3, u_{xx}] - \frac{1}{2\varepsilon^2} [u, [u, [\sigma_3, u]]], \tag{2}$$

where

$$u = u(x, t) = \begin{bmatrix} 0 & \Psi_1 \\ \Psi_2 & 0 \end{bmatrix} : \mathbb{R}^2 \to \mathbf{m} \text{ (see Secton 2), } \sigma_3 = \frac{\varepsilon}{2} \begin{bmatrix} I_k & 0 \\ 0 & -I_{n-k} \end{bmatrix},$$

Zehui Zhao: School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, P. R. China, e-mail: zhaozehui@gnnu.edu.cn

Xinjie Wan: School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, P. R. China, e-mail: xinjiewan2023@163.com

^{*} Corresponding author: Shiping Zhong, School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, P. R. China, e-mail: zhongshiping@gnnu.edu.cn

which is called the $\widetilde{G}_{n,k}$ -NLS equation (see Section 2), where $[\cdot,\cdot]$ denotes Lie bracket. These symmetry reductions and special orders of Ψ_1 and Ψ_2 lead to several relevant cases (e.g., see [1–16] for more details on this fact) in the following:

Matrix Case 1 (Matrix-Nonlocal-types): The matrix nonlocal NLS equation (e.g., see [2]):

$$\sqrt{-1}Q_{t}(x,t) - Q_{xx}(x,t) + 2\zeta^{2}Q(x,t)Q^{*}(-x,t)Q(x,t) = 0, \quad x,t \in \mathbb{R},$$
(3)

is a reduction of equation (1) by $\Psi_1(x, t) = Q(x, t)$ and $\Psi_2(x, t) = \zeta^2 Q^*(-x, t)$, n = 2k, $\zeta^2 = \pm 1$, $\varepsilon = \sqrt{-1}$, where the dagger indicates the complex conjugate transpose. In the special case where Q is a column vector, then equation (3) reduces to the vector nonlocal NLS equation (Vector-Nonlocal-types) (see [2]):

$$Q_{-11}^{(n-1)}: \sqrt{-1}Q_t(x,t) - Q_{xx}(x,t) + 2\zeta^2 Q(x,t)Q^*(-x,t)Q(x,t) = 0, \quad x,t \in \mathbb{R},$$
(4)

namely, equation (4) is a reduction of equation (1) by $\Psi_1(x,t) = Q(x,t) = (q_1(x,t),...,q_{n-1}(x,t)), \ \Psi_2(x,t) = \zeta^2 Q^*(-x,t), \ k=1,\ \zeta^2=\pm 1,\ \varepsilon=\sqrt{-1}.$ And the natural generalization of equation (4) is a hierarchy of two-family-parameter $\{(\varepsilon_{x_{\vec{j}}},\varepsilon_{t_{\vec{j}}})|\varepsilon_{x_{\vec{j}}},\varepsilon_{t_{\vec{j}}}=\pm 1,\ j=1,2,...,n-1\}$ equation (called $Q^{(n-1)}_{\varepsilon_{x_{\vec{j}}},\varepsilon_{t_{\vec{j}}}}$ hierarchy) (see [15]):

$$Q_{\varepsilon_{x_{\gamma}},\varepsilon_{t_{\gamma}}}^{(n-1)}:\sqrt{-1}\,Q_{t}(x,t)-Q_{xx}(x,t)+2\zeta^{2}Q(x,t)Q^{*}(\varepsilon_{x_{\gamma}^{-}}x,\varepsilon_{t_{\gamma}^{-}}t)Q(x,t)=0,\quad x,t\in\mathbb{R}, \tag{5}$$

which is a reduction of equation (1) by $\Psi_1(x,t) = Q(x,t) = (q_1(x,t),...,q_{n-1}(x,t)), \ \Psi_2(x,t) = \zeta^2 Q^*(\varepsilon_{x_{\overline{j}}}x,\varepsilon_{t_{\overline{j}}}t) = (q_1(\varepsilon_{x_{\overline{j}}}x,\varepsilon_{t_{\overline{j}}}t),...,q_{n-1}(\varepsilon_{x_{\overline{n-1}}}x,\varepsilon_{t_{\overline{n-1}}}t)), \ k=1,\ \zeta^2=\pm 1,\ \varepsilon=\sqrt{-1}.$

Matrix Case 2 (Matrix-Local-types). The matrix NLS equation by Fordy and Kulish in [9] (or see [8,12,13]):

$$\sqrt{-1}Q_{t}(x,t) - Q_{vv}(x,t) + 2\zeta^{2}Q(x,t)Q^{*}(x,t)Q(x,t) = 0, \quad x,t \in \mathbb{R},$$
(6)

which is a reduction of equation (1) by $\Psi_1(x, t) = Q(x, t)$, $\Psi_2(x, t) = \zeta^2 Q^*(x, t)$, n = 2k, $\zeta^2 = \pm 1$, $\varepsilon = \sqrt{-1}$. In the special case where Q is a column vector, then equation (6) reduces to the vector local NLS equation (Vector-Local-types) (see [6,10,16]):

$$Q_{1,1}^{(n-1)}: \sqrt{-1}Q_t(x,t) - Q_{xx}(x,t) + 2\zeta^2 Q(x,t)Q^*(x,t)Q(x,t) = 0,$$
 (7)

i.e., equation (7) is a reduction of equation (1) by $\Psi_1(x,t) = Q(x,t) = (q_1(x,t),...,q_{n-1}(x,t))$, $\Psi_2(x,t) = \zeta^2 Q^*(x,t)$, $k=1,\zeta^2=\pm 1$, $\varepsilon=\sqrt{-1}$. Though equations (1)–(7) have some dynamical properties, e.g., solitons, general N-solitons, multi-soliton solutions, reflectionless solutions, and rogue wave solutions. Hence, a quite relevant question arises: does there exist a unified geometric interpretation of equations (3)–(7) or equation (1)?

This question is motivated by the work of geometric characterization of equation (6); it is proved by Terng and Uhlenbeck [13] that equation (6) is gauge equivalent to the complex compact Grassmannian manifolds $U(n)/U(k) \times U(n-k)$, and by Terng and Thorbergsson in [17] for the other three classical Hermitian symmetric spaces. Chen [18] generalized their result to the cases of u(k, n-k) and $Gl(n, \mathbb{R})$. This gives a unified geometric interpretation of the three typical second-order matrix NLS equations in the second matrix-AKNS hierarchies via Schrödinger flow. Along this route, in [19–22], the authors gave a complete description of the theory of vortex filament on symmetric algebras up to the second-order and third-order approximation from a purely geometric way. Recently, the first author showed that the coupled NLS equations, which are a reduction of equation (1) by $\Psi_1 = \varphi_1(x,t)$, $\Psi_2 = \varphi_2(x,t)$, k=1, n=2, $\varepsilon=\sqrt{-1}$, are geometrically interpreted as the equation of Schrödinger flow from \mathbb{R}^1 to the complex 2-sphere $\mathbb{C}\mathbb{S}^2(1) = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1^2 + z_2^2 + z_3^2 = 1\} \hookrightarrow \mathbb{R}^{3,3} \cong \mathbb{C}^3$ with the standard holomorphic metric, and is also gauge equivalent to the unconventional system of the coupled Landau-Lifshitz (CLL) equation (see [23,24]). CLL reads as the following evolution equation:

$$S_t = -\frac{\sqrt{-1}}{2}[S, S_{xx}],$$

where S = S(x, t) is a 2 × 2 complex-matrix with $S^2 = I_{2\times 2}$ ($I_{2\times 2}$ stands for the 2 × 2 unit matrix) and trS = 0. Some physical and geometrical properties of CLL are also discussed in [23,24].

On the other hand, by the loop group factorization method, Terng and Uhlenbeck [25] first constructed Bäcklund transformations for the Zakharov-Shabat (ZS)-AKNS sl(n, ℂ)-hierarchy. Afterward, using this method, many hierarchies (such as SU(1,1)-hierarchy, vmKdV-hierarchy, $A(1)^{n-1}$ -KdV-hierarchy, Gelfand-Dickey-hierarchy, $\hat{B}_n^{(1)}$ -hierarchy and $\hat{A}_{2n}^{(2)}$ -KdV-hierarchy) of Bäcklund and Darboux transformations are obtained (see [26-32]).

This article is organized as follows. Section 2 gives preliminary about the symmetric Lie algebras $\mathcal{G}l(n,\mathbb{C})$ and the second-order matrix-AKNS hierarchy. In Section 3, we show that the coupled matrix NLS-type equations are gauge equivalent to the equation of Schrödinger flow from \mathbb{R}^1 to complex Grassmannian manifold $\widetilde{G}_{n,k}$, which generalizes the correspondence between Schrödinger flow to the complex 2-sphere $\mathbb{C}\mathbb{S}^2(1) \hookrightarrow \mathbb{C}^3$ and the CLL equations. Section 4 explicits the soliton solutions of the Schrödinger flow to the complex Grassmannian manifold $\widetilde{G}_{2,1}$.

2 Symmetric Lie algebras and the second-order matrix-AKNS hierarchy

In this section, we recall some fundamental facts about the complex general linear Lie algebra $Gl(n,\mathbb{C})$ $(n \ge 2)$ with index k ($1 \le k < n$): the space of all $n \times n$ complex matrices and the second-order matrix-AKNS hierarchy.

First, we recall the concept of symmetric Lie algebra g. The so-called symmetric Lie algebra g is a Lie algebra that has a decomposition as a vector space sum: $\mathbf{g} = \mathbf{k} \oplus \mathbf{m}$ satisfying the (bracket) symmetric conditions: $[\mathbf{k}, \mathbf{k}] \subset \mathbf{k}$, $[\mathbf{m}, \mathbf{m}] \subset \mathbf{k}$ and $[\mathbf{k}, \mathbf{m}] \subset \mathbf{m}$ (see [9,33,34]). In such a symmetric Lie algebra, there is an element denoted by σ_3 in **k** such that **k** = Kernel(ad σ_3) = { $\chi \in \mathbf{g} | [\chi, \sigma_3] = 0$ }. A homogeneous space is a manifold M with a transitive action of a Lie group G. Equivalently, it is a manifold of the form G/K, where G is a Lie group and K is a closed subgroup of G.

Now, we recall some results of the complex general linear Lie algebra $Gl(n,\mathbb{C})$ $(n \ge 2)$ with index $k \ (1 \le k < n).$

Lemma 1. The complex general linear Lie algebra $Gl(n, \mathbb{C}) = \mathbf{k} \oplus \mathbf{m}$ is a symmetric Lie algebra, where

$$\mathbf{k} = \operatorname{Kernel} \left(\operatorname{ad}_{\sigma_3} \right) = \left\{ \begin{bmatrix} A_{k \times k} & 0 \\ 0 & B_{(n-k) \times (n-k)} \end{bmatrix} \in \mathcal{G}l(n, \mathbb{C}) \right\}$$

and

$$\mathbf{m} = \begin{cases} 0 & U_{k \times (n-k)} \\ V_{(n-k) \times k} & 0 \end{cases} \in \mathcal{G}l(n, \mathbb{C}) \quad \forall U_{k \times (n-k)} \quad and \quad V_{(n-k) \times k} \end{cases}.$$

And the adjoint obit space

$$\widetilde{G}_{n,k} = \{E^{-1}\sigma_3 E | \forall E \in GL(n, \mathbb{C})\}\$$

is a homogeneous symmetric space, where

$$\sigma_3 = \frac{\varepsilon}{2} \begin{pmatrix} I_k & 0 \\ 0 & -I_{n-k} \end{pmatrix}, \varepsilon^2 = \pm 1. \tag{8}$$

Proof. Let us define a (left) operation of the complex general linear Lie group $GL(n,\mathbb{C})$ on $\widetilde{G}_{n,k}$ by

$$\Phi: \mathrm{GL}(n,\mathbb{C}) \times \widetilde{G}_{n,k} \to \widetilde{G}_{n,k}, (X, \gamma) \mapsto \Phi(X, \gamma) = X \circ \gamma = X\gamma X^{-1},$$

since

$$\Phi(X, y) = X \circ y = XyX^{-1} = XE^{-1}\sigma_3EX^{-1} = XE^{-1}\sigma_3(XE^{-1})^{-1}$$
.

It is obvious to see that an operation satisfies the following:

$$\begin{split} I_{n\times n} \circ \gamma &= I_{n\times n} \gamma I_{n\times n}^{-1} = \gamma, \quad \forall \gamma \in \widetilde{G}_{n,k}, \\ (XY) \circ \gamma &= (XY) \gamma (XY)^{-1} = X(Y\gamma Y^{-1}) X^{-1} = X \circ (Y \circ \gamma), \quad \forall X, Y \in \mathrm{GL}(n,\mathbb{C}), \end{split}$$

and the action is transitive. In fact, $\forall y_1 = E_1^{-1} \sigma_3 E_1$, $y_2 = E_2^{-1} \sigma_3 E_2 \in \widetilde{G}_{n,k}$, then $\exists X = E_2^{-1} E_1 \in GL(n, \mathbb{C})$, s.t.,

$$X \circ \gamma_1 = E_2^{-1} E_1 \gamma_1 (E_2^{-1} E_1)^{-1} = E_2^{-1} E_1 E_1^{-1} \sigma_3 E_1 E_1^{-1} E_2 = E_2^{-1} \sigma_3 E_2 = \gamma_2.$$

Moreover, the isotropy group at the point $\sigma_3 \in \widetilde{G}_{n,k}$ is

$$G_{\sigma_3} = \{X \in \operatorname{GL}(n,\mathbb{C}) | X \circ \sigma_3 = \sigma_3\} = \{X \in \operatorname{GL}(n,\mathbb{C}) | X\sigma_3 = \sigma_3 X\}$$

$$= \left\{ \begin{bmatrix} A_{k \times k} & 0 \\ 0 & B_{(n-k) \times (n-k)} \end{bmatrix} \in \operatorname{GL}(n,\mathbb{C}) \right\} = K.$$

Hence, $\widetilde{G}_{n,k}$ is a homogeneous space of the group $GL(n, \mathbb{C})$; in fact, the map

$$G/K \to \widetilde{G}_{n,k}, [x] \mapsto X \circ \sigma_3$$

is diffeomorphism and the K-principle bundle $K \to \mathrm{GL}(n,\mathbb{C}) \to \widetilde{G}_{n,k}$. The Lie algebra $\mathcal{G}l(n,\mathbb{C})$ ($n \ge 2$) with index k ($1 \le k < n$) of $\mathrm{GL}(n,\mathbb{C})$ decomposes as $\mathcal{G}l(n,\mathbb{C}) = \mathbf{k} \oplus \mathbf{m}$, where

$$\mathbf{k} = \left\{ \begin{bmatrix} A_{k \times k} & 0 \\ 0 & B_{(n-k) \times (n-k)} \end{bmatrix} \in \mathcal{G}l(n, \mathbb{C}) \right\}$$

is the Lie algebra of K with the property: $[\mathbf{k}, \mathbf{k}] \subset \mathbf{k}$ and

$$\mathbf{m} = \left\{ \begin{bmatrix} 0 & U_{k \times (n-k)} \\ V_{(n-k) \times k} & 0 \end{bmatrix} \in \mathcal{G}l(n, \mathbb{C}) \middle| \forall U_{k \times (n-k)} \text{ and } V_{(n-k) \times k} \right\}.$$

It is easy to verify that the symmetric connections fulfill

$$[k, m] \subset m, [m, m] \subset k.$$

Therefore, $Gl(n, \mathbb{C}) = \mathbf{k} \oplus \mathbf{m}$ is a symmetric algebra, and hence, $\widetilde{G}_{n,k}$ is a homogeneous symmetric space.

Now, we recall the concept of $(J^2 = \pm 1)$ -Kähler manifold (M, J, g) (such as see [35]). A manifold will be called to have a $J^2 = \pm 1$ -structure if an almost complex $(J^2 = -1)$ or almost product $(J^2 = 1)$ structure J is an isometry and $\nabla J = 0$, where ∇ denotes the Levi-Civita connection of g. It is also said that (M, J, g) is a $(J^2 = \pm 1)$ -Kähler manifold.

Lemma 2. The adjoint obit space $\widetilde{G}_{n,k}$ is a $J^2 = \pm 1$ -Kähler manifold with tensor $J_{\nu} = [\gamma, \cdot]$ at a point $\gamma \in \widetilde{G}_{n,k}$.

Proof. First, we consider the tangent space of a point $\gamma = E^{-1}\sigma_3 E$ on $\widetilde{G}_{n,k}$. We can decompose the element P of $\mathcal{G}l(n,\mathbb{C})$ of the form $P = \operatorname{diag}(P) + \widetilde{P}$, where $\widetilde{P} = \operatorname{off-diag}(P) \in \mathbf{m}$ is defined to be the off-diagonal part of P with respect to the decomposition $\mathcal{G}l(n,\mathbb{C}) = \mathbf{k} \oplus \mathbf{m}$. So,

$$\sigma(t) = \exp(-t \operatorname{diag}(P) - t\widetilde{P})\sigma_3 \exp(t \operatorname{diag}(P) + t\widetilde{P})$$

is a curve on $\widetilde{G}_{n,k}$ passing the point σ_3 . By taking its derivation, we can obtain the tangent space of the point σ_3 of $\widetilde{G}_{n,k}$:

$$\sigma_3 \widetilde{P} - \widetilde{P} \sigma_3 + \sigma_3 \operatorname{diag}(P) - \operatorname{diag}(P) \sigma_3 = [\sigma_3, \widetilde{P}],$$

which is a matrix of form \widetilde{P} , because diag(P) is communicative with σ_3 . So the tangent space $T_{\gamma}\widetilde{G}_{n,k}$ at γ consisted of

$$T_{\nu}\widetilde{G}_{n,k} = \{E^{-1}[\sigma_3, P]E | \forall P \in \mathcal{G}l(n, \mathbb{C})\} = \{E^{-1}[\sigma_3, \widetilde{P}]E | \forall \widetilde{P} \in \mathbf{m}\}.$$

Hence, $\forall X = E^{-1}[\sigma_3, P]E \in T_v \widetilde{G}_{n,k}, P \in \mathbf{m}$. Let us define an operation J_v at γ by

$$J_{\nu} = [\gamma, \cdot] : T_{\nu} \widetilde{G}_{n,k} \to T_{\nu} \widetilde{G}_{n,k}, X \mapsto J_{\nu}(X) = [\gamma, X]. \tag{9}$$

Therefore, $\forall X = E^{-1}[\sigma_3, \widetilde{P}]E \in T_{\nu}\widetilde{G}_{n,k}$; it is a direct verification that

$$\begin{split} J_{\gamma}(X) &= [\gamma, X] = \gamma X - X \gamma = E^{-1} \sigma_{3} E E^{-1} [\sigma_{3}, \widetilde{P}] E - E^{-1} [\sigma_{3}, \widetilde{P}] E E^{-1} \sigma_{3} E \\ &= E^{-1} \sigma_{3} [\sigma_{3}, \widetilde{P}] E - E^{-1} [\sigma_{3}, \widetilde{P}] \sigma_{3} E \\ &= \frac{\varepsilon^{2}}{2} E^{-1} \widetilde{P} E - \frac{\varepsilon^{2}}{2} E^{-1} (-\widetilde{P}) E \\ &= \varepsilon^{2} E^{-1} \widetilde{P} E, \\ J_{\gamma}^{2}(X) &= [\gamma, [\gamma, X]] = [\gamma, \varepsilon^{2} E^{-1} \widetilde{P} E] = E^{-1} \sigma_{3} E \varepsilon^{2} E^{-1} \widetilde{P} E - \varepsilon^{2} E^{-1} \widetilde{P} E E^{-1} \sigma_{3} E \\ &= \varepsilon^{2} E^{-1} [\sigma_{3}, \widetilde{P}] E - \varepsilon^{2} E^{-1} \widetilde{P} \sigma_{3} E \\ &= \varepsilon^{2} E^{-1} [\sigma_{3}, \widetilde{P}] E \\ &= \varepsilon^{2} X = + X. \end{split}$$

This shows that the $J^2 = \pm 1$ -Kähler structure of $\widetilde{G}_{n,k}$ is given by (9). In fact, we can define bi-invariant metric on $\widetilde{G}_{n,k}$:

$$\langle \cdot, \cdot \rangle_{\mathcal{V}} : T_{\mathcal{V}}\widetilde{G}_{n,k} \to T_{\mathcal{V}}\widetilde{G}_{n,k}, \quad (X,Y) \mapsto \langle X,Y \rangle_{\mathcal{V}} = -\operatorname{tr}(XY).$$

It is a direct verification that $\forall X, Y, Z \in T_v \widetilde{G}_{n,k}$, we have

$$\begin{split} \mathrm{d}\omega_{\gamma}(X,Y,Z) &= X(\omega_{\gamma}(Y,Z)) - Y(\omega_{\gamma}(X,Z)) + Z(\omega_{\gamma}(X,Y)) - \omega_{\gamma}([X,Y],Z) + \omega_{\gamma}([X,Z],Y) - \omega_{\gamma}([Y,Z],X) \\ &= \langle \nabla_{X}(J_{\gamma}Y), Z \rangle_{\gamma} + \langle J_{\gamma}Y, \nabla_{X}Z \rangle_{\gamma} - \langle \nabla_{Y}(J_{\gamma}X), Z \rangle_{\gamma} - \langle J_{\gamma}X, \nabla_{Y}Z \rangle_{\gamma} + \langle \nabla_{Z}(J_{\gamma}X), Y \rangle_{\gamma} + \langle J_{\gamma}X, \nabla_{Z}Y \rangle_{\gamma} \\ &- \langle J_{\gamma}[X,Y], Z \rangle_{\gamma} + \langle J_{\gamma}[X,Z], Y \rangle_{\gamma} - \langle J_{\gamma}[Y,Z], X \rangle_{\gamma} \\ &= 0. \end{split}$$

From Lemma 1, the symmetric space $\widetilde{G}_{n,k}$ is simply written as $\widetilde{G}_{n,k} = \mathrm{GL}(n,\mathbb{C})/\mathrm{GL}(k,\mathbb{C}) \times \mathrm{GL}(n-k,\mathbb{C})$ and is called the complex Grassmannian manifold.

Next, let us recall the three typical classes of the Hermitian symmetric Lie algebras $Gl(n, \mathbb{C})$ with index k $(1 \le k < n)$ having three types.

The first subclass of symmetric Lie algebras $\mathcal{G}l(n,\mathbb{C})$ consists of Hermitian symmetric Lie algebras $u(n) \subset Gl(n,\mathbb{C})$ ($n \ge 2$) with index k ($1 \le k < n$) of compact type. In fact, for any given $1 \le k < n$, u(n)is decomposable as $u(n) = \mathbf{k_1} \oplus \mathbf{m_1}$ satisfy the symmetric conditions, where

$$\mathbf{k_1} = \text{Kernel} \left(\operatorname{ad}_{\sigma_3} \right) = \left[\begin{pmatrix} A_{k \times k} & 0 \\ 0 & B_{(n-k) \times (n-k)} \end{pmatrix} \in u(n) \right]$$

and

$$\mathbf{m_1} = \left\{ \begin{bmatrix} 0 & U_{k \times (n-k)} \\ -U_{(n-k) \times k}^* & 0 \end{bmatrix} \in u(n) \right\},\,$$

where $U_{(n-k)\times k}^*$ stands for the transposed conjugate matrix of $U_{k\times (n-k)}$, σ_3 is given by (8), and $\varepsilon^2 = -1$.

The second subclass of symmetric Lie algebras $\mathcal{G}l(n,\mathbb{C})$ consists of Hermitian symmetric Lie algebras $u(k, n-k) \subset \mathcal{G}l(n,\mathbb{C})$ with index k ($1 \le k < n$) of noncompact type. In this case, we see that u(k, n-k)is decomposable as $u(k, n - k) = \mathbf{k}_2 \oplus \mathbf{m}_2$ satisfy the symmetric conditions, where

$$\mathbf{k}_2 = \text{Kernel}(\text{ad}_{\sigma_3}) = \left\{ \begin{bmatrix} A_{k \times k} & 0 \\ 0 & B_{(n-k) \times (n-k)} \end{bmatrix} \in u(k, n-k) \right\}$$

and

$$\mathbf{m}_2 = \left\{ \begin{bmatrix} 0 & U_{k\times(n-k)} \\ U_{(n-k)\times k}^* & 0 \end{bmatrix} \in u(k, n-k) \right\},\,$$

where σ_3 is given by (8), and $\varepsilon^2 = -1$.

The third subclass of symmetric Lie algebras $\mathcal{G}l(n,\mathbb{C})$ consists of para-Hermitian symmetric Lie algebras $\mathcal{G}l(n,\mathbb{R}) \subset \mathcal{G}l(n,\mathbb{C})$ $(n \geq 2)$ with index k $(1 \leq k < n)$. In this case, for any given $1 \leq k < n$, we see that $\mathcal{G}l(n,\mathbb{R}) = \mathbf{k}_3 \oplus \mathbf{m}_3$ is a symmetric Lie algebra, where

$$\mathbf{k_3} = \mathrm{Kernel} \left(\mathrm{ad}_{\sigma_3} \right) = \left\{ \begin{bmatrix} A_{k \times k} & 0 \\ 0 & B_{(n-k) \times (n-k)} \end{bmatrix} \in \mathcal{G}l(n, \mathbb{R}) \right\}$$

and

$$\mathbf{m}_3 = \begin{cases} 0 & U_{k \times (n-k)}^+ \\ U_{(n-k) \times k}^- & 0 \end{cases} \in \mathcal{G}l(n, \mathbb{R}) \mid \forall U_{k \times (n-k)}^+ \quad \text{and} \quad U_{(n-k) \times k}^- \end{cases},$$

where σ_3 is given by (8), and $\varepsilon^2 = 1$.

Finally, we briefly review the second matrix-AKNS hierarchy on a symmetric Lie algebra. It is well known that the coupled matrix NLS equations are equivalent to the compatibility condition of a Lax pair for the potential matrix

$$u = \begin{pmatrix} 0 & \Psi_1(x, t) \\ \Psi_2(x, t) & 0 \end{pmatrix} \in \mathbf{m},$$

where the first equation in the Lax pair is the so-called matrix ZS or AKNS system (see [1]). Specifically, the coupled matrix NLS equations (1) admit the Lax pair

$$E_{x} = (-\sigma_{3}\lambda + u)E, E_{t} = (\sigma_{3}\lambda^{2} - u\lambda + \varepsilon^{2}P_{-1}(u))E, \tag{10}$$

where $E: \mathbb{R}^2 \times \mathbb{C} \to \mathrm{GL}(n, \mathbb{C})$ and

$$P_{-1}(u) = 2\sigma_3(u_x - u^2) = \varepsilon \begin{bmatrix} -\Psi_1(x, t)\Psi_2(x, t) & \Psi_{1x}(x, t) \\ -\Psi_{2x}(x, t) & \Psi_2(x, t)\Psi_1(x, t) \end{bmatrix}.$$

We call $E: \mathbb{R}^2 \to \mathrm{GL}(n, \mathbb{C})$ a frame of the solution u of the $\widetilde{G}_{n,k}$ -NLS equation (2) with $E(0,0,\lambda) = I_{n \times n}$. Hence, rewrite equation (10) as:

$$\varepsilon^2 u_t = P_{-1}(u)_x + [P_{-1}(u), u]. \tag{11}$$

3 Schrödinger flow into the complex Grassmannian manifold $\widetilde{G}_{n,k}$

It is well known that the equation of Schrödinger flow from a Riemannian manifold (M, g) to a $J^2 = \pm 1$ -Kähler manifold (N, J, h), where J satisfies $J^2 = \pm 1$ and compatible to the metric h, is given by the following Hamiltonian gradient flow:

$$u_t = I_u \tau(u), \tag{12}$$

where $\tau(u)$ is the tension field of map $u: M \to N$ ([13,36–38]).

Theorem 1. The equation (12) of Schrödinger flow from \mathbb{R}^1 to complex Grassmannian manifold $\widetilde{G}_{n,k}$ is

$$y_t = \varepsilon^2 [y, y_{xx}]. \tag{13}$$

Proof. Let $\gamma = E^{-1}\sigma_3 E \in \widetilde{G}_{n,k}$ be the equation of Schrödinger flow from \mathbb{R}^1 to complex Grassmannian manifold $\widetilde{G}_{n,k}$, namely, γ solves [13]

$$J_{\nu}\gamma_{t} = \nabla_{\nu_{\nu}}\gamma_{x}$$

where $E = E(x, t) \in GL(n, \mathbb{C})$, J_v is the $J^2 = \pm 1$ -Kähler structure of $\widetilde{G}_{n,k}$ at the point γ , ∇_x the covariant derivative $\nabla_{\frac{\partial}{\partial x}}$ on the pull-back bundle $\gamma^{-1}T\widetilde{G}_{n,k}$ induced from the Levi-Civita connection on $\widetilde{G}_{n,k}$, and by γ_{x} the $\nabla_{x}\gamma$.

Let $\gamma = E^{-1}(t, x)\sigma_3 E(t, x)$ be a map from the line \mathbb{R} to $\widetilde{G}_{n,k}$, where σ_3 is given by (8). Without loss of generality, we may assume that E satisfies: $E_X = PE$ for some $P \in \mathbf{m}$, where \mathbf{m} fits with $\mathcal{G}l(n,\mathbb{C}) = \mathbf{k} \oplus \mathbf{m}$. In fact, if E does not meet the requirement, we may make a transform:

$$E \to \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} E$$

(this is because the form $E^{-1}\sigma_3 E$ is invariant up to the transform) such that by suitably choosing A and B (through solving a linear differential system of A and B), P can be modified so that the new P satisfies $P \in \mathbf{m}$. Based on this fact, it is shown that

$$\nabla_{y_x} y = y_x = E^{-1}[\sigma_3, P]E$$
 (taking the tangent part),

$$\nabla_{y_x} y_x = y_{xx} + E^{-1}[P, [\sigma_3, P]]E$$
 (taking the tangent part of) $(\nabla_x y)_x$.

Hence, we have

$$\begin{aligned} \gamma_t &= \varepsilon^2 J_y \, \nabla_{y_x} \gamma_x = \varepsilon^2 [\gamma, \nabla_{y_x} \gamma_x] \\ &= \varepsilon^2 [\gamma, \gamma_{xx}] + [\gamma, E^{-1}[P, [\sigma_3, P]]E] \\ &= \varepsilon^2 [\gamma, \gamma_{xx}] + [E^{-1}\sigma_3 E, E^{-1}[P, [\sigma_3, P]]E] \\ &= \varepsilon^2 [\gamma, \gamma_{xx}], \quad (\text{since } P \in \mathbf{m}). \end{aligned}$$

Hence, the Lax pair of equation (13) is

$$\delta_{x} = -\gamma \lambda \delta, \, \delta_{t} = (\gamma \lambda^{2} - \varepsilon^{2} [\gamma, \gamma_{x}] \lambda) \delta. \tag{14}$$

Let $\mathbb{CS}^{2,\varepsilon}(1) = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1^2 - \varepsilon^2 z_2^2 + z_3^2 = 1\} \hookrightarrow \mathbb{C}^3$ with the metric (i.e., $dz^2 = dz_1^2 - \varepsilon^2 dz_2^2 + dz_3^2$). Now, for vectors $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ in \mathbb{C}^3 , we define the cross-product of u and v by:

$$u \times_{\varepsilon} v = (u_2v_3 - u_3v_2, -\varepsilon^2(u_3v_1 - u_1v_3), u_1v_2 - u_2v_1).$$

Corollary 1. The equation of Schrödinger flow from \mathbb{R}^1 to complex Grassmannian manifold $\widetilde{G}_{2,1}$ is

$$\mathbf{s}_t = \varepsilon^2 \mathbf{s} \times_{\varepsilon} \mathbf{s}_{xx}. \tag{15}$$

Proof. $\forall E = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{C})$, then

$$\tau: \widetilde{G}_{2,1} \to \mathbb{C}\mathbb{S}^{2,\varepsilon}(1), \gamma = E^{-1}\sigma_{3}E = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} \frac{\varepsilon}{2} & 0 \\ 0 & -\frac{\varepsilon}{2} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= \frac{\varepsilon}{2(ad - bc)} \begin{pmatrix} ad + bc & 2bd \\ -2ac & -ad - bc \end{pmatrix} \in \widetilde{G}_{2,1}$$

$$\mapsto \begin{pmatrix} s_{3} & s_{1} - \varepsilon s_{2} \\ s_{1} + \varepsilon s_{2} & -s_{3} \end{pmatrix} \coloneqq S$$

$$\leftrightarrow \mathbf{s} = (s_{1}, s_{2}, s_{3}),$$

where $(s_1, s_2, s_3) = \left(\frac{bd - ac}{ad - bc}, \frac{\varepsilon(bd + ac)}{ad - bc}, \frac{ad + bc}{ad - bc}\right) \in \mathbb{C}^3$ satisfying $s_1^2 - \varepsilon^2 s_2^2 + s_3^2 = 1$. It is a direct computation that $y \times_{\varepsilon} y_{xx}$ is just $[\tau^{-1}y, \tau_{*}^{-1}y_{xx}]$, where τ_{*} is the tangent map induced from τ . Hence, the equation of Schrödinger flow from \mathbb{R}^1 to $\widetilde{G}_{2,1}$ returns to CLL equations (ε -CLL)

$$S_t = \frac{\varepsilon}{2}[S, S_{xx}],\tag{16}$$

where S = S(x, t) is a 2 × 2 matrix of the form

$$S(x,t) = \begin{cases} s_3(x,t) & s_1(x,t) - \varepsilon s_2(x,t) \\ s_1(x,t) + \varepsilon s_2(x,t) & -s_3(x,t) \end{cases}, \tag{17}$$

where $s_1^2 - \varepsilon^2 s_2^2 + s_3^2 = 1$ by the requirement $S^2 = I$, S is identified with a vector $\mathbf{s} = (s_1, s_2, s_3) \in \mathbb{C}\mathbb{S}^{2,\varepsilon}(1) \hookrightarrow \mathbb{C}^3$, and the ε -CLL equation (16) becomes equation (15).

Note that when $\varepsilon = \sqrt{-1}$, $\mathbb{C}\mathbb{S}^{2,\varepsilon}(1)$ becomes the complex 2-sphere $\mathbb{C}\mathbb{S}^2(1) = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1^2 + z_2^2 + z_3^2 = 1\}$. From Corollary 1, the equation of Schrödinger flow the complex 2-sphere $\mathbb{C}\mathbb{S}^2(1)$ with the standard holomorphic metric (i.e., $dz^2 = dz_1^2 + dz_2^2 + dz_3^2$) is

$$\mathbf{S}_t = -\mathbf{S} \times \mathbf{S}_{YY}$$

where \times denotes the cross-product of \mathbb{C}^3 , which also refers to [23]. By Corollary 1, we can interpret $\mathbb{C}\mathbb{S}^{2,\varepsilon}(1)$ as a symmetric space $\widetilde{G}_{2,1} = GL(2,\mathbb{C})/GL(1,\mathbb{C}) \times GL(1,\mathbb{C})$.

Theorem 2. Equations (11) and (13) are gauge equivalent to each other.

Proof. Let $u : \mathbb{R}^2 \to \mathbf{m}$ be a smooth solution of equation (11), we let $G : \mathbb{R}^2 \to GL(n, \mathbb{C})$ satisfy the following linear system:

$$G_x = -Gu$$
, $G_t = -\varepsilon^2 G P_{-1}(u)$, (since $\varepsilon^2 u_t = P_{-1}(u)_x + [P_{-1}(u), u]$, G exist).

By using the gauge transformation:

$$\delta = G\varphi$$
, $\gamma = G\sigma_3G^{-1}$,

where φ satisfies equation (10), we see that

$$\delta_x = (G\varphi)_x = G_x\varphi + G\varphi_x = -Gu\varphi + G(-\sigma_3\lambda + u)\varphi = -G\sigma_3\lambda\varphi = -\gamma\lambda\delta$$

and

$$\begin{split} \delta_t &= (G\varphi)_t = G_t \varphi + G\varphi_t = -\varepsilon^2 G P_{-1}(u) \varphi + G(\sigma_3 \lambda^2 - u\lambda + \varepsilon^2 P_{-1}(u)) \varphi \\ &= (G\sigma_3 \lambda^2 - Gu\lambda) \varphi \\ &= (\gamma \lambda^2 - GuG^{-1}\lambda) \delta \\ &= (\gamma \lambda^2 - \varepsilon^2 [\gamma, \gamma,]\lambda) \delta, \text{ since } [\gamma, \gamma,] = \varepsilon^2 GuG^{-1}. \end{split}$$

Namely, $\gamma = \gamma(x, t) = G(x, t)\sigma_3G(x, t)^{-1}$ is a solution of the Schrödinger flow (13) on $\widetilde{G}_{n,k}$. Hence, we have a gauge transform from equation (11) to equation (13).

Next, if $\gamma = E^{-1}(t, x)\sigma_3 E(t, x) \in \widetilde{G}_{n,k}$ is a solution of the Schrödinger flow equation (13). Without loss of generality, we may assume that E satisfies (see [39]):

$$E_{X}E^{-1} = \begin{pmatrix} 0 & R_{1} \\ R_{2} & 0 \end{pmatrix} = P_{1} \in \mathbf{m}.$$

By $y_t = \varepsilon^2[y, y_{xx}]$, it is a direct verification that

$$[\sigma_3, E_t E^{-1}] = P_{1x}$$
, since $J_{\nu}(\gamma_{xx}) = \varepsilon^2 E^{-1} P_{1x} E$, $\gamma_t = E^{-1} [\sigma_3, E_t E^{-1}] E$.

Hence, we have

$$E_t E^{-1} = \begin{bmatrix} \xi_{11} & \frac{R_{1x}}{\varepsilon} \\ -\frac{R_{2x}}{\varepsilon} & \xi_{22} \end{bmatrix} = P_2.$$

Moreover, from the integrability condition: $E_{xt} = E_{tx}$, i.e., $P_{1t} = P_{2x} + [P_2, P_1]$, we can obtain

$$\xi_{11} = -\frac{1}{\varepsilon} R_1 R_2 + C_1(t), \quad \xi_{22} = \frac{1}{\varepsilon} R_2 R_1 + C_2(t),$$

where $C(t) = \begin{pmatrix} C_1(t) & 0 \\ 0 & C_2(t) \end{pmatrix}$ depend only on t, and

$$E_t E^{-1} = \frac{1}{\varepsilon} \begin{bmatrix} -R_1 R_2 & R_{1x} \\ -R_{2x} & R_2 R_1 \end{bmatrix} + \begin{bmatrix} C_1(t) & 0 \\ 0 & C_2(t) \end{bmatrix} = \frac{2}{\varepsilon^2} \sigma_3(P_{1x} - P_1^2) + C(t).$$

In order to vanish C_1 and C_2 , we take

$$\rho = \begin{pmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{pmatrix},$$

where $\rho_1 = \rho_1(t)$, $\rho_2 = \rho_2(t)$ depend only on t, satisfying

$$\rho_{1t} = -\rho_1 C_1, \rho_{2t} = -\rho_2 C_2.$$

Let $g = \rho E$; hence,

$$g_{x}g^{-1} = \rho E_{x}E^{-1}\rho^{-1} = \rho P_{1}\rho^{-1} = \rho \begin{pmatrix} 0 & R_{1} \\ R_{2} & 0 \end{pmatrix} \rho^{-1} := \begin{pmatrix} 0 & \Psi_{1} \\ \Psi_{2} & 0 \end{pmatrix} := u, \tag{18}$$

and moreover,

$$g_{t}g^{-1} = (\rho_{t}E + \rho E_{t})E^{-1}\rho^{-1}$$

$$= \left[\rho_{t}E + \rho \left(\frac{2}{\varepsilon^{2}}\sigma_{3}(P_{1x} - P_{1}^{2})E + C(t)E\right)\right]E^{-1}\rho^{-1}$$

$$= \frac{2}{\varepsilon^{2}}\rho\sigma_{3}(P_{1x} - P_{1}^{2})\rho^{-1}$$

$$= \frac{2}{\varepsilon^{2}}\sigma_{3}(\rho P_{1x}\rho^{-1} - \rho P_{1}^{2}\rho^{-1})$$

$$= \frac{2}{\varepsilon^{2}}\sigma_{3}(u_{x} - u^{2}) := \frac{1}{\varepsilon^{2}}P_{-1}(u),$$
(19)

where $P_{-1}(u) = 2\sigma_3(u_x - u^2)$. Let $G = g^{-1}$, $\varphi = G^{-1}\delta$, where δ satisfies equation (14). From equations (18) and (19), we obtain

$$G_x = -Gu, G_t = -\frac{1}{c^2}GP_{-1}(u) = -\varepsilon^2GP_{-1}(u).$$

Moreover, we have

$$\varphi_{X} = -G^{-1}G_{X}G^{-1}\delta + G^{-1}\delta_{X} = (-\sigma_{3}\lambda + u)\varphi,$$

$$\varphi_{t} = -G^{-1}G_{t}G^{-1}\delta + G^{-1}\delta_{t} = (\sigma_{3}\lambda^{2} - u\lambda + \varepsilon^{2}P_{-1}(u))\varphi,$$

i.e., φ satisfies equation (10). Hence, we have proved that equation (13) is gauge equivalent to equation (10). \Box

From equations (10), (11), (13), (14), and Theorem 2, we have the following:

Theorem 3. The coupled matrix NLS equations (1) on $Gl(n, \mathbb{C}) = \mathbf{k} \oplus \mathbf{m}$ are gauge equivalent to the equation (13) of Schrödinger flow from \mathbb{R}^1 to complex Grassmannian manifold $\widetilde{G}_{n,k}$.

Corollary 2. The matrix NLS equation (6) on the first subclass $u(n) = \mathbf{k}_1 \oplus \mathbf{m}_1$ or the second subclass $u(k, n - k) = \mathbf{k}_2 \oplus \mathbf{m}_2$ is gauge equivalent to the equation (13) of Schrödinger flow from \mathbb{R}^1 to complex Grassmannian manifold $U(n)/U(k) \times U(n - k)$ or $U(k, n - k)/U(k) \times U(n - k)$ (see [13,18]).

Corollary 3. The matrix version of the nonlinear heat equations

$$\begin{cases} \Psi_{1t} - \Psi_{1xx} + 2\Psi_1\Psi_2\Psi_1 = 0, \\ \Psi_{2t} + \Psi_{2xx} - 2\Psi_2\Psi_1\Psi_2 = 0, \end{cases}$$

which are a reduction of equation (1) by $\varepsilon = 1$, and $\Psi_1 = \Psi_1(x, t)$, $\Psi_2 = \Psi_2(x, t)$ are $k \times (n - k)$ and $(n - k) \times k$ real matrix-valued function, on the third subclass $\mathcal{G}l(n, \mathbb{R}) = \mathbf{k}_3 \oplus \mathbf{m}_3$ is gauge equivalent to equation (13) of Schrödinger flow from \mathbb{R}^1 to manifold $\mathrm{GL}(n, \mathbb{R})/\mathrm{GL}(k, \mathbb{R}) \times \mathrm{GL}(n - k, \mathbb{R})$ (see [18]).

4 Darboux transformations and explicit soliton solutions

In this section, we use the loop factorization method given in [25] to construct Darboux transformation for $\widetilde{G}_{n,k}$ -NLS, and we apply Darboux transformation (Theorems 4 and 5) to:

(1) the trivial solution u = 0 of the coupled NLS equations

$$\begin{cases} \varepsilon \Psi_{1t} - \Psi_{1xx} + 2\Psi_1 \Psi_2 \Psi_1 = 0, \\ \varepsilon \Psi_{2t} + \Psi_{2xx} - 2\Psi_2 \Psi_1 \Psi_2 = 0, \end{cases}$$
 (20)

where $\Psi_1 = \Psi_1(x, t)$, $\Psi_2 = \Psi_2(x, t)$ are the complex valued function and $\varepsilon^2 = \pm 1$, to obtain soliton solutions; (2) the constant map solution $\gamma(x, t) = a$ and to the solutions of the Schrödinger flow (13) on $\widetilde{G}_{2,1}$. Let $\alpha_1, \alpha_2 \in \mathbb{C}$, $\{v_1, v_2\}$ a basis of \mathbb{C}^2 , π the projection of \mathbb{C}^2 onto $\mathbb{C}v_1$ along $\mathbb{C}v_2$ and

$$f_{\alpha_1,\alpha_2,\pi}(\lambda) = I_{2\times 2} + \frac{\alpha_1 - \alpha_2}{\lambda - \alpha_1}(I_{2\times 2} - \pi).$$

Theorem 4. (Darboux transformation for the $\widetilde{G}_{2,1}$ -NLS equation (2))

Let $u = \begin{pmatrix} 0 & \Psi_1 \\ \Psi_2 & 0 \end{pmatrix}$ be a solution of the $\widetilde{G}_{2,1}$ -NLS equation (2), and $E(x, t, \lambda)$ a frame of u. Let $v_1 = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \in \mathbb{C}^2$, $v_2 = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \in \mathbb{C}^2$, c_i , d_i , a_1 , $a_2 \in \mathbb{C}$, i = 1, 2, and $a_1 \neq a_2$, $\det(v_1, v_2) \neq 0$, and $\pi = \frac{1}{c_1d_2 - c_2d_1} \begin{pmatrix} c_1d_2 & -c_1d_1 \\ c_2d_2 & -c_3d_3 \end{pmatrix}$. If

$$\tilde{v}_1 = (\tilde{c}_1, \tilde{c}_2)^T = E(x, t, \alpha_1)^{-1}(v_1), \tilde{v}_2 = (\tilde{d}_1, \tilde{d}_2)^T = E(x, t, \alpha_2)^{-1}(v_2),$$

and suppose \tilde{v}_1 , \tilde{v}_2 are linearly independent. Then, we have the following.

(i) $\tilde{u} = u + (\alpha_1 - \alpha_2)[\sigma_3, \tilde{\pi}]$ is a solution of the $\widetilde{G}_{2,1}$ -NLS equation (2), and

$$\tilde{E}(x,t,\lambda) = f_{\alpha_1,\alpha_2,\tilde{\pi}}(\lambda)E(x,t,\lambda)f_{\alpha_1,\alpha_2,\tilde{\pi}}(x,t)(\lambda)^{-1}$$

is a frame for ũ, where

$$\tilde{\pi} = \frac{1}{\tilde{c}_1 \tilde{d}_2 - \tilde{c}_2 \tilde{d}_1} \begin{bmatrix} \tilde{c}_1 \tilde{d}_2 & -\tilde{c}_1 \tilde{d}_1 \\ \tilde{c}_2 \tilde{d}_2 & -\tilde{c}_2 \tilde{d}_1 \end{bmatrix}.$$

(ii) \tilde{u} satisfies $d\tilde{u} = \theta(\cdot,\cdot,\alpha)\tilde{u}$, where

$$\theta(x, t, \alpha) = (-\sigma_{3}\alpha + u)\mathrm{d}x(\sigma_{3}\alpha^{2} - u\alpha + \varepsilon^{2}P_{-1}(u))\mathrm{d}t,$$

$$\sigma_{3} = \frac{\varepsilon}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, u = \begin{bmatrix} 0 & \Psi_{1} \\ \Psi_{2} & 0 \end{bmatrix}, P_{-1}(u) = \varepsilon \begin{bmatrix} -\Psi_{1}\Psi_{2} & \Psi_{1x} \\ -\Psi_{2x} & \Psi_{2}\Psi_{1} \end{bmatrix}, i.e.,$$

$$\begin{bmatrix} \tilde{V}_{x} = \begin{bmatrix} -\frac{\alpha}{2}\varepsilon & \Psi_{1} \\ \Psi_{2} & \frac{\alpha}{2}\varepsilon \end{bmatrix} \tilde{V}, \\ \Psi_{2} & \frac{\alpha}{2}\varepsilon \end{bmatrix} \tilde{V},$$

$$\tilde{V}_{t} = \begin{bmatrix} \frac{\alpha^{2}}{2}\varepsilon - \varepsilon^{3}\Psi_{1}\Psi_{2} & -\Psi_{1}\alpha + \varepsilon^{3}\Psi_{1x} \\ -\alpha\Psi_{2} - \varepsilon^{3}\Psi_{2x} & -\frac{\alpha^{2}}{2}\varepsilon + \varepsilon^{3}\Psi_{2}\Psi_{1} \end{bmatrix} \tilde{V}.$$
(21)

Moreover, if $\alpha_1 \neq \alpha_2$, and $\tilde{v}_1(x,t) = (\tilde{c}_1(x,t), \tilde{c}_2(x,t))^T$, $\tilde{v}_2(x,t) = (\tilde{d}_1(x,t), \tilde{d}_2(x,t))^T$ are solutions of equation (21) with $\alpha = \alpha_1$ and $\alpha = \alpha_2$, respectively. Suppose \tilde{v}_1 , \tilde{v}_2 are linearly independent, then the formula of \tilde{u} given in (i) is a solution of the $\widetilde{G}_{2,1}$ -NLS equation (2).

Theorem 5. (Darboux transformation for the Schrödinger flow on $\widetilde{G}_{2,1}$). Let y be a solutions of Schrödinger flow (13) on $\widetilde{G}_{2,1}$, g(x,t) a Schrödinger frame of y, and $u = g^{-1}g_x$ the solution of the $\widetilde{G}_{2,1}$ -NLS equation (2). Let $E(x, t, \lambda) = g(0, 0)$ for all $\lambda \in \mathbb{C}$. Let $\alpha_1, \alpha_2 \in \mathbb{C} \setminus \mathbb{R}$ be a constant, π a constant Hermitian projection onto $V_1 \in \mathbb{C}^2$ along $V_2 \in \mathbb{C}^2$, and $\tilde{\pi}(x,t)$ the Hermitian projection onto $\tilde{V}_1(x,t) = E(x,t,\alpha_1)^{-1}(V_1)$ along $\tilde{V}_2(x,t) = V_1(x,t)$ $E(x, t, \alpha_1)^{-1}(V_2)$. Then,

$$\gamma(x,t) = g(x,t) f_{q_1,q_2,\tilde{\pi}}(0)(x,t)^{-1} \sigma_3 f_{q_1,q_2,\tilde{\pi}}(0)(x,t) g(x,t)^{-1}$$

is a new solution of (13).

Example 4.1. (1-Soliton solutions for the coupled NLS equations (20)) Note that

$$E(x, t, \lambda) = \exp(\sigma_3(-\lambda x + \lambda^2 t)) = \begin{cases} e^{-B(x, t, \lambda)} & 0\\ 0 & e^{B(x, t, \lambda)} \end{cases},$$

where $B(x, t, \lambda) = \frac{\varepsilon}{2}(-\lambda x + \lambda^2 t)$, is the frame of the solution u = 0 of the $\widetilde{G}_{n,k}$ -NLS equation (2) with $E(0,0,\lambda) = I$. Let π be a constant Hermitian projection onto $V_1 \in \mathbb{C}^2$ along $V_2 \in \mathbb{C}^2$, where $v_1(x,t) =$ $(c_1(x,t),c_2(x,t))^T$, $v_2(x,t)=(d_1(x,t),d_2(x,t))^T$, $c_i=c_i(x,t)$, $d_i=d_i(x,t)\in\mathbb{C}$, i=1,2, we have

$$\pi = \frac{1}{c_1 d_2 - c_2 d_1} \begin{pmatrix} c_1 d_2 & -c_1 d_1 \\ c_2 d_2 & -c_2 d_1 \end{pmatrix}.$$

Then,

$$\begin{split} \tilde{v}_1 &= E(x,\,t,\,\alpha)^{-1}(v_1) = (e^{B(x,t,\alpha_1)}c_1,\,e^{-B(x,t,\alpha_1)}c_2)^T \coloneqq (\tilde{c}_1,\,\tilde{c}_2)^T, \\ \tilde{v}_2 &= E(x,\,t,\,\alpha)^{-1}(v_2) = (e^{B(x,t,\alpha_2)}d_1,\,e^{-B(x,t,\alpha_2)}d_2)^T \coloneqq (\tilde{d}_1,\,\tilde{d}_2)^T, \end{split}$$

and

$$\tilde{\pi} = \frac{1}{\tilde{c}_1 \tilde{d}_2 - \tilde{c}_2 \tilde{d}_1} \begin{pmatrix} \tilde{c}_1 \tilde{d}_2 & -\tilde{c}_1 \tilde{d}_1 \\ \tilde{c}_2 \tilde{d}_2 & -\tilde{c}_2 \tilde{d}_1 \end{pmatrix} = \frac{1}{e^{\eta} c_1 d_2 - e^{-\eta} c_2 d_1} \begin{pmatrix} e^{\eta} c_1 d_2 & -e^{\xi} c_1 d_1 \\ e^{-\xi} c_2 d_2 & -e^{-\eta} c_2 d_1 \end{pmatrix},$$

namely,

$$\tilde{u} = u + (\alpha_1 - \alpha_2)[\sigma_3, \tilde{\pi}(x, t)] = \frac{\varepsilon(\alpha_1 - \alpha_2)}{e^{-\eta}c_2d_1 - e^{\eta}c_1d_2} \begin{bmatrix} 0 & e^{\xi}c_1d_1 \\ e^{-\xi}c_2d_2 & 0 \end{bmatrix}$$

is a solution of the $\widetilde{G}_{n,k}$ -NLS equation (2), where $\xi = \frac{\varepsilon}{2}(-(\alpha_1 + \alpha_2)x + (\alpha_1^2 + \alpha_2^2)t)$ and $\eta = \frac{\varepsilon}{2}(-(\alpha_1 - \alpha_2)x + (\alpha_1^2 - \alpha_2^2)t)$. Hence, $\tilde{\Psi}_1 = \frac{\varepsilon(\alpha_1 - \alpha_2)}{e^{-\eta}c_2d_1 - e^{\eta}c_1d_1}e^{\xi}c_1d_1$ and $\tilde{\Psi}_2 = \frac{\varepsilon(\alpha_1 - \alpha_2)}{e^{-\eta}c_2d_1 - e^{\eta}c_1d_2}e^{-\xi}c_2d_2$ are a solution of the coupled NLS equations (20).

If $c_1 = c_2 = d_1 = d_2 = 1$, $a_1 = r + is$, and $a_2 = r - is$, then

$$\tilde{\pi}(x,t) = \frac{1}{e^{i\varepsilon(-sx+2rst)} - e^{-i\varepsilon(-sx+2rst)}} \begin{pmatrix} e^{i\varepsilon(-sx+2rst)} & -e^{\varepsilon(-rx+(r^2-s^2)t)} \\ e^{-\varepsilon(-rx+(r^2-s^2)t)} & -e^{-i\varepsilon(-sx+2rst)} \end{pmatrix},$$

i.e.,

$$\tilde{\Psi}_1(x,t) = \frac{2is\varepsilon e^{\varepsilon(-rx+(r^2-s^2)t)}}{e^{-i\varepsilon(-sx+2rst)} - e^{i\varepsilon(-sx+2rst)}}, \quad \tilde{\Psi}_2(x,t) = \frac{2is\varepsilon e^{\varepsilon(-(-rx+(r^2-s^2)t))}}{e^{-i\varepsilon(-sx+2rst)} - e^{i\varepsilon(-sx+2rst)}}$$

is a soliton solution of the coupled NLS equations (20).

Example 4.2. (1-Soliton solutions for Schrödinger flow on $\widetilde{G}_{2,1}$)

The constant map $y(x, t) = \sigma_3$ is a solution of the Schrödinger flow (3.1) on $\widetilde{G}_{2,1}$, $g(x, t) = I_{2\times 2}$ is a Schrödinger frame for y, u = 0 is the corresponding solution of the $\widetilde{G}_{n,k}$ -NLS equation (2), and

$$E(x, t, \lambda) = \exp(-\sigma_3 \lambda x + \sigma_3 \lambda^2 t)$$

is the frame of u = 0, with $E(0, 0, \lambda) = I_{2\times 2}$.

By Theorem 5 to $\gamma(x, t) = \sigma_3$, $g(x, t) = I_{2\times 2}$, and use $\tilde{\pi}(x, t)$ given in Example 4.1 to obtain solution for Schrödinger flow on $\widetilde{G}_{2,1}$. We choose $\alpha_1 = is$, $\alpha_2 = -is$, and $c_i = d_i = 1$, i = 1, 2; then, we have

$$f_{is,-is,\tilde{\pi}}(0)(x,t) = \begin{bmatrix} \frac{2e^{-\varepsilon xi}}{e^{-\varepsilon xi}} - 1 & -\frac{2e^{-\varepsilon s^2t}}{e^{-\varepsilon sxi}} - \frac{2e^{-\varepsilon sxi}}{e^{-\varepsilon sxi}} \\ \frac{2e^{\varepsilon s^2t}}{e^{-\varepsilon sxi}} - \frac{2e^{\varepsilon sxi}}{e^{-\varepsilon sxi}} - 1 \end{bmatrix}.$$

Hence,

$$\tilde{\gamma}(x,t) = g(x,t) f_{is,-is,\tilde{\pi}}(0)(x,t)^{-1} \sigma_3 f_{is,-is,\tilde{\pi}}(0)(x,t) g(x,t)^{-1}$$

$$= \begin{bmatrix} \frac{\varepsilon(6e^{2\varepsilon xi} + e^{4\varepsilon xi} + 1)}{2(e^{2\varepsilon xi} - 1)^2} & \frac{-4\varepsilon cos(\varepsilon sx)e^{2\varepsilon xi}}{e^{\varepsilon s^2t} + e^{\varepsilon s(4xi+st)} - 2e^{\varepsilon s(2xi+st)}} \\ \frac{2\varepsilon(e^{\varepsilon s(xi+st)} + e^{\varepsilon s(3xi+st)})}{(e^{2\varepsilon xi} - 1)^2} & -\frac{\varepsilon(6e^{2\varepsilon xi} + e^{4\varepsilon xi} + 1)}{2(e^{2\varepsilon xi} - 1)^2} \end{bmatrix}$$

is a soliton solution for Schrödinger flow on $\widetilde{G}_{2,1}$ (CLL equations (16)). From equation (17), we have

$$\mathbf{s} = (s_1, s_2, s_3) = \left[\frac{-2\varepsilon \cos(\varepsilon s x)e^{2\varepsilon s x i}}{e^{\varepsilon s^2 t} + e^{\varepsilon s(4x i + s t)} - 2e^{\varepsilon s(2x i + s t)}} + \frac{\varepsilon(e^{\varepsilon s(x i + s t)} + e^{\varepsilon s(3x i + s t)})}{(e^{2\varepsilon s x i} - 1)^2}, \right.$$

$$\frac{2\cos(\varepsilon s x)e^{2\varepsilon s x i}}{e^{\varepsilon s^2 t} + e^{\varepsilon s(4x i + s t)} - 2e^{\varepsilon s(2x i + s t)}} + \frac{e^{\varepsilon s(x i + s t)} + e^{\varepsilon s(3x i + s t)}}{(e^{2\varepsilon s x i} - 1)^2}, \frac{\varepsilon(6e^{2\varepsilon s x i} + e^{4\varepsilon s x i} + 1)}{2(e^{2\varepsilon s x i} - 1)^2} \right]$$

is a soliton solution of equation (15).

Theorem 3 gives a geometric interpretation of the matrix generalization of the coupled NLS equation (i.e., CLL equation) via Schrödinger flow to the complex Grassmannian manifold $GL(n, \mathbb{C})/GL(k, \mathbb{C}) \times GL(n-k, \mathbb{C})$. And Example 4.2 shows that 1-soliton solution for Schrödinger flow on $\mathbb{CS}^{2,\varepsilon}(1)$ is given. There are many questions unclear in this aspect. For example, it is also of interest to consider N-soliton solutions for Schrödinger flow on $\mathbb{CS}^{2,\varepsilon}(1)$. As you know, there are many models for NLS equation such as the coupled NLS-type equations (see [40]), the extended coupled nonlinear Schrödinger equations (see [41]). Is it possible to give a geometric interpretation of this systems via Schrödinger flow? These questions deserve study in the future.

Acknowledgments: The authors are very grateful to the anonymous referees for their valuable suggestions.

Funding information: The authors are supported by the Natural Science Foundation of Jiangxi Province (No. 20212BAB211005), Science & Technology Project of Jiangxi Educational Committee (No. GJJ2201202), and Jiangxi Province Training Program of Innovation and Entrepreneurship for Undergraduates (No. S202210418008).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during this study.

References

- M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), no. 4, 249-315.
- M. I. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear equations, Stud. Appl. Math. 139 (2017), no. 1, 7–59. [2]
- [3] V. G. Makhankov and O. K. Pashaev, On the gauge equivalence of the Landau-Lifshitz and the nonlinear Schrödinger equations on symmetric spaces, Phys. Lett. A. 95 (1983), no. 2, 95-100.
- M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
- M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett. 110 (2013), no. 6, 064105.
- M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Soliton interactions in the vector NLS equation, Inverse Prob. 20 (2004), no. 4, 1217–1237.
- T. Aktosun and R. Weder, Direct and Inverse Scattering for the Matrix Schrödinger Equation, Springer, Cham, 2021,
- F. Demontis and C. van der Mee, Reflectionless solutions for square matrix NLS with vanishing boundary conditions, Math. Phys. Anal. Geom. 22 (2019), no. 4, 26.
- A. P. Fordy and P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras, Comm. Math. Phys. 89 (1983), no. 3, 427–443.
- [10] S. V. Manakov, On the theory of two-dimensional stationary self-focusing electro-magnetic waves, Sov. Phys. JETP. 38 (1974), no. 2,
- [11] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Consultants Bureau Press, New York, 1984.
- [12] B. Prinari, A. K. Ortiz, C. van der Mee, and M. Grabowski, Inverse scattering transform and solitons for square matrix nonlinear matrix nonlinear Schrodinger equations, Stud. Appl. Math. 141 (2018), no. 3, 308-352.
- [13] C. L. Terng and K. Uhlenbeck, Schrödinger flows on Grassmannians, in: C. L. Terng (Ed.), Integrable Systems, Geometry, and Topology, Vol. 36, American Mathematical Society, Providence, 2006.
- [14] J. Yang, Nonlinear Waves in Integrable and Non integrable Systems, SIAM, Philadelphia, 2010.
- [15] Z. Y. Yan, Nonlocal general vector nonlinear Schrödinger equations: Integrability, PT symmetribility, and solutions, Appl. Math. Lett. 62 (2016), 101-109.
- [16] C. Zhang and D. J. Zhang, Vector NLS solitons interacting with a boundary, Commun. Theor. Phys. (Beijing). 73 (2021), no. 4, 045005.
- [17] C. L. Terng and G. Thorbergsson, Completely integrable curve flows on adjoint orbits, Results Math. 40 (2001), no. 1-4, 286-309.
- [18] B. B. Chen, Schrödinger flows to symmetric spaces and the second matrix-AKNS hierarchy, Comm. Theor. Phys. (Beijing) 45 (2006), no. 4, 653-656.
- [19] Q. Ding and J. Inoguchi, Schrödinger flows, binormal motion of curves and the second AKNS hierarchies, Chaos Solitons Fractals. 21 (2004), no. 3, 669-677.
- [20] Q. Ding and Z. He, The noncommutative KdV equation and its para-Kähler structure, Sci. China Math. 57 (2014), no. 7, 1505–1516.
- [21] Q. Ding and Y. D. Wang, Vortex filament on symmetric Lie algebras and generalized bi-Schrödinger flows, Math. Z. 290 (2018), no. 1–2, 167-193.
- [22] Q. Ding and S. Zhong, On the vortex filament in 3-spaces and its generalizations, Sci. China Math. 64 (2021), no. 7, 1331–1348.
- [23] Q. Ding and S. Zhong, *The complex 2-sphere in* \mathbb{C}^3 *and Schrödinger flows*, Sci. China Math. **63** (2020), no. 4, 777–788.
- [24] T. A. Gadzhimuradov and A. M. Agalarov, Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation, Phys. Rev. A. 93 (2016), no. 6, 062124.
- [25] C. L. Terng and K. Uhlenbeck, Bäcklund transformations and loop group actions, Comm. Pure Appl. Math. 53 (2000), no. 1, 1-75.
- [26] H. F. Liu, C. L. Terng, and Z. W. Wu, Solitons for the Schrödinger flows on Hermitian symmetric spaces, Int. J. Math. 32 (2021), no. 12,
- [27] C. L. Terng, Dispersive geometric curve flows, in: H.-D. Cao, R. Schoen, and S.-T. Yau (Eds.), Surveys in Differential Geometry, Vol. 19, International Press, Boston, 2015, pp. 179-229.
- [28] C. L. Terng and Z. Wu, Bäcklund transformations for Gelfand-Dickey flows, revisited, J. Integrable Syst. 2 (2017), no. 1, xyw013.
- [29] C. L. Terng and Z. Wu, n-dimension central affine curve flows, J. Differential Geom. 111 (2019), no. 1, 145–189.
- [30] C. L. Terng, The geometric airy curve flow on \mathbb{R}^n , arXiv:2004.08497, 2020, https://doi.org/10.48550/arXiv.2004.08497.
- [31] C. L. Terng and Z. Wu, *Darboux transforms for the* $\hat{B}_n^{(1)}$ -hierarchy, J. Geom. Anal. **31** (2021), no. 5, 4721–4753.
- [32] C. L. Terng and Z. Wu, Darboux transformations for the $\hat{A}_{2n}^{(2)}$ -KdV hierarchy, J. Geom. Anal. **33** (2023), no. 4, 111.
- [33] S. Helgason, Differential Geometry, Lie Group and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978.
- [34] J. Langer and R. Perline, Geometric realizations of Fordy-Kulish nonlinear Schrödinger systems, Pacific J. Math. 195 (2000), no. 1, 157-178
- [35] F. Etayo, A. deFrancisco, and R. Santamaría, The Chern connection of a ($J^2 = \pm 1$)-metric manifold of class \mathcal{G}_1 , Mediterr. J. Math. 15
- [36] N. H. Chang, J. Shatah, and K. Unlenbeck, Schrödinger maps, Comm. Pure Appl. Math. 53 (2000), no. 5, 590-602.
- [37] W. Ding and Y. Wang, Schrödinger flows of maps into symplectic manifolds, Sci China A. 41 (1998), no. 7, 746–755.
- [38] Q. Ding, A note on the NLS and the Schrödinger flow of maps, Phys Lett. A 248 (1998), no. 1, 49-56.
- [39] V. E. Zakharov and L. A. Takhtajan, Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet, Theor. Math. Phys. **38** (1979), no. 1, 26–35.

- [40] M. E. Elbrolosy, *Qualitative analysis and new soliton solutions for the coupled nonlinear Schrödinger type equations*, Phys. Scr. **96** (2021), no. 12, 125275.
- [41] H. F. Wang and Y. F. Zhang, *Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations*, J. Comput. Appl. Math. **420** (2023), 114812.