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Abstract: In this article, the coupled matrix nonlinear Schrédinger (NLS) type equations are gauge equivalent to the
equation of Schrodinger flow from R! to complex Grassmannian manifold G'n,k = GL(n,C)/GL(k,C) x GL(n - k, C),
which generalizes the correspondence between Schrédinger flow to the complex 2-sphere CS%(1) = €3 and the coupled
Landau-Lifshitz (CLL) equation. This gives a geometric interpretation of the matrix generalization of the coupled NLS
equation (ie, CLL equation) via Schrédinger flow to the complex Grassmannian manifold Gj, x. Finally, we explicit
soliton solutions of the Schrédinger flow to the complex Grassmannian manifold G 1.
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1 Introduction

In this article, the matrix generalization of the second Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy (i.e., the
coupled matrix nonlinear Schrodinger [NLS] type equations) (e.g., see [1-3]):

eV — Y + 291 HY = 0,

1
Wy + Wy — 2V, W W; = 0, @

where W) = Wy(x, t), ¥, = ¥y(x, t) are kx (n - k) and (n - k) x k complex matrix-valued functions and
€2 = £1. Note that the matrix form of the coupled matrix NLS equations (1) is

L, T, [, . ®

u 1[ U]
= —|a3, -
t 82 3, Uxx 282

where

_ t‘OIPl'[RZ Secton 2 gl O
u=ux,t)= w, 0| m (see Secton ),03—2 0 L)
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which is called the G, ;-NLS equation (see Section 2), where [-,-] denotes Lie bracket. These symmetry reduc-
tions and special orders of ¥; and ¥, lead to several relevant cases (e.g., see [1-16] for more details on this fact)
in the following:

Matrix Case 1 (Matrix-Nonlocal-types): The matrix nonlocal NLS equation (e.g., see [2]):

V-1Q,0x, ) = @, (x, ) + 2{2Q(x, HQ*(—x, DQ(x, 1) = 0, x,tER, 3

is a reduction of equation (1) by Wi(x, t) = Q(x, t) and Wy(x, t) = {2Q*(~x, t), n = 2k, {* = +1, € = /-1, where
the dagger indicates the complex conjugate transpose. In the special case where Q is a column vector, then
equation (3) reduces to the vector nonlocal NLS equation (Vector-Nonlocal-types) (see [2]):

QU VF1Q(x, 1) = Qu(x, ) + 20%Q(x, DQ'(~X, )Q(x, 1) = 0, x,t ER, @)

namely, equation (4) is a reduction of equation (1) by Wi(x, t) = Q(x, t) = (q;(X, ), ...,q,_1(X, 1)), Walx, 1) =
{2Q*(-x,t),k =1,{%=#1,& = J/-1. And the natural generalization of equation (4) is a hierarchy of two-
family-parameter {(exf, 8t7)|3x7) &-=1j=12 ..,n- 1} equation (called Qg:? hierarchy) (see [15]):

7

QD NF1Q6 ) = QX ) + 207Q(X, DQ"(exX, £:)Q(X, ) = 0, X, t ER, G)

Ex-sEt—
J

which is a reduction of equation (1) by Wi(x, t) = Q(x, t) = (q,(X, t), ...,qu_(X, 1)), Yo(X, t) = { 2(_)"(esxfx, £t7t) =
(qy(ex X, €t), oo Qug(Ex—X, & 1)), k=1, (2= 21, £ = /1.

Matrix Case 2 (Matrix-Local-types). The matrix NLS equation by Fordy and Kulish in [9] (or see [8,12,13]):
V106 1) = Qulx, ) + 20%Q(x, DQ°(X, DQ(X, 1) = 0, X, t ER, ®)

which is a reduction of equation (1) by Wi(x, t) = Q(x, t), Wy(x, t) = {20*(x, t),n = 2k, {* = +1,& = J/-1.In the
special case where Q is a column vector, then equation (6) reduces to the vector local NLS equation (Vector-
Local-types) (see [6,10,16]):

D2 JZ1Q,(x, £) = QX £) + 220X, DQ"(X, DO(X, 1) = 0, ™

ie, equation (7) is a reduction of equation (1) by Wi(x, t) = Q(x,t) = (q,(X, £), ...,q_1(X, 1)), Walx, ) =
Q" (x, t),k=1,{*=+l,¢e= J-1. Though equations (1)-(7) have some dynamical properties, e.g., solitons,
general N-solitons, multi-soliton solutions, reflectionless solutions, and rogue wave solutions. Hence, a quite
relevant question arises: does there exist a unified geometric interpretation of equations (3)-(7) or equa-
tion (1)?

This question is motivated by the work of geometric characterization of equation (6); it is proved by Terng
and Uhlenbeck [13] that equation (6) is gauge equivalent to the complex compact Grassmannian manifolds
U(n)/U(k) x U(n - k), and by Terng and Thorbergsson in [17] for the other three classical Hermitian sym-
metric spaces. Chen [18] generalized their result to the cases of u(k, n - k) and Gl(n, R). This gives a unified
geometric interpretation of the three typical second-order matrix NLS equations in the second matrix-AKNS
hierarchies via Schridinger flow. Along this route, in [19-22], the authors gave a complete description of the theory
of vortex filament on symmetric algebras up to the second-order and third-order approximation from a purely
geometric way. Recently, the first author showed that the coupled NLS equations, which are a reduction of equation
D by ¥1=0,(x,0), ¥, = 9,(x, ), k=1,n=2,¢e= V-1, are geometrically interpreted as the equation of Schro-
dinger flow from R! to the complex 2-sphere CS2(1) = {(z, 2z, z3) € C3 : z2 + z} + z% = 1} = R33 = €3 with the
standard holomorphic metric, and is also gauge equivalent to the unconventional system of the coupled Landau-
Lifshitz (CLL) equation (see [23,24]). CLL reads as the following evolution equation:

S = _%[S: Sxxls
where S = S(x, t) is a 2 x 2 complex-matrix with § = Ly, (L« stands for the 2 x 2 unit matrix) and trS = 0.
Some physical and geometrical properties of CLL are also discussed in [23,24].
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On the other hand, by the loop group factorization method, Terng and Uhlenbeck [25] first constructed
Béacklund transformations for the Zakharov-Shabat (ZS)-AKNS sl(n, C)-hierarchy. Afterward, using this
method, many hierarchies (such as SU(1,1)-hierarchy, vmKdV-hierarchy, A(1)""!-KdV-hierarchy, Gelfand-

Dickey-hierarchy, B,fl)-hierarchy and Az(,%)-KdV-hierarchy) of Backlund and Darboux transformations are ob-
tained (see [26-32]).

This article is organized as follows. Section 2 gives preliminary about the symmetric Lie algebras Gl(n, C)
and the second-order matrix-AKNS hierarchy. In Section 3, we show that the coupled matrix NLS-type equa-
tions are gauge equivalent to the equation of Schrédinger flow from R! to complex Grassmannian manifold
Gnx» which generalizes the correspondence between Schrédinger flow to the complex 2-sphere CS$%(1) = C3
and the CLL equations. Section 4 explicits the soliton solutions of the Schrédinger flow to the complex
Grassmannian manifold G, ;.

2 Symmetric Lie algebras and the second-order matrix-AKNS
hierarchy

In this section, we recall some fundamental facts about the complex general linear Lie algebra Gl(n, C) (n > 2)
with index k (1 £ k < n): the space of alln x n complex matrices and the second-order matrix-AKNS hierarchy.

First, we recall the concept of symmetric Lie algebra g. The so-called symmetric Lie algebra g is a Lie
algebra that has a decomposition as a vector space sum: g = k @ m satisfying the (bracket) symmetric con-
ditions: [k, k] C k, [m, m] C k and [k, m] C m (see [9,33,34]). In such a symmetric Lie algebra, there is an
element denoted by s in k such that k = Kernel(ad,,) = { € g|[x, 0;] = 0}. A homogeneous space is a mani-
fold M with a transitive action of a Lie group G. Equivalently, it is a manifold of the form G/K, where G is a Lie
group and K is a closed subgroup of G.

Now, we recall some results of the complex general linear Lie algebra Gl(n,C) (n 2 2) with index
k@ <k<n).

Lemma 1. The complex general linear Lie algebra Gl(n,C) = k & m is a symmetric Lie algebra, where

Agxic
k = Kernel(ad,,) = [ 0 B € Gl(n, ©)
and
0 Urx(n-k)
= € Ggl(n,C Y Uix(n- and  Vip-roxki-
Voot 0 Gl(n,C) ex(n-k) n-k)xk

And the adjoint obit space
Gnx = {E"'a3E| VE € GL(n, C)}

is a homogeneous symmetric space, where

el O 5
O3 = — , &%= %1, 8
3 2[0 —In_k] ®

Proof. Let us define a (left) operation of the complex general linear Lie group GL(n, C) on G, x by
@ : GL(n, €) X Gok = Gui, (X, ) = X, y) = X o y = XpX 7,
since

®(X,y) = X o y = XpX ' = XE'\0:EX™ = XE-\03(XE™1).
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It is obvious to see that an operation satisfies the following:
Lin ° V= IcaVltn = ¥, VY € G
(XY)e y=XY)yXY) = X(YyY DX1=X (Y o y), VX, YEGLnC),
and the action is transitive. In fact, Vy; = E;"03Ey, , = E;'03E; € Gy, then 3 X = E;'E; € GL(n, C), sit,,
X oy, = E'Eyy(E;'E) ™! = E;'BiE{'0sEAET'E, = E;'03E; = .
Moreover, the isotropy group at the point g3 € Gy is
Gy, = {X € GL(n, C)|X ° 03 = g3} = {X € GL(n, C)|X03 = 05X}

Apxk
0 Bn-iyx(n-k)

€ GL(n,C)} = K.

Hence, G, is a homogeneous space of the group GL(n, C); in fact, the map

GIK = G [X] » X © 03

is diffeomorphism and the K-principle bundle K — GL(n, C) — G . The Lie algebra Gl(n,C) (n = 2) with
index k (1 £ k < n) of GL(n, C) decomposes as Gl(n, C) = k @ m, where

[Akxk

k =
0 Bp-ryxn-k)

] € Gl(n, C)’

is the Lie algebra of K with the property: [k, k] C k and

0 Ukx(n-k)

m= € Gl(n,C)

Y Uiex(n-1y and V- o)k |-
Vinekok 0 kx(n-k) (n-k) k}

It is easy to verify that the symmetric connections fulfill

[k, m] Cm, [m,m] C k.
Therefore, Gl(n, C) = k ® m is a symmetric algebra, and hence, G, is a homogeneous symmetric space. [
Now, we recall the concept of (J? = +1)-Kédhler manifold (M, J, g) (such as see [35]). A manifold will be called to
have a J? = #1-structure if an almost complex (J? = —1) or almost product (J? = 1) structure J is an isometry

and VJ = 0, where V denotes the Levi-Civita connection of g. It is also said that (M, ], g) is a (J? = + 1)-Kéhler
manifold.

Lemma 2. The adjoint obit space G, is a J* = +1-Kihler manifold with tensor J, =1y, "latapointy € Gnk.

Proof. First, we consider the tangent space of a point y = E"lgsE on G, x. We can decompose the element P
of Gl(n, C) of the form P = diag(P) + P, where P = off-diag(P) € m is defined to be the off-diagonal part
of P with respect to the decomposition Gl(n, C) = k @ m. So,

a(t) = exp(-tdiag(P) - tP)as exp(t diag(P) + tP)

is a curve on G, passing the point g3. By taking its derivation, we can obtain the tangent space of the point g3
of En, k-

asP - Pay + g3diag(P) - diag(P)as = [3, P],

which is a matrix of form P, because diag(P) is communicative with g;. So the tangent space TV'G},k aty
consisted of

T,Gnx = {E7[03, PJE| VP € Gl(n, C)} = {E7Y[03, P]E| VP € m}.
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Hence, VX = E7Y[o;, P]E € Eén,k, P € m. Let us define an operation ]y aty by
]y = [V, ] : ]}En,k - Tygn,k:X H]y(X) = [V, X] (9)
Therefore, VX = E03, P|E € T,G,; it is a direct verification that
J,(X) = [y, X] = yX - Xy = E"'03EE [ 03, P]E - E"Y[03, P]EE'05E
= E"loy[03, P]E - EY[03, P]osE
e g ~
= —EPE - —EY-P)E
2 2
= e’E7'PE,
]V2 X) = [y, [y, X1] = [y, €2EPE]| = E"'03E€2E'PE - €2E'PEE 03
= g2E-19,PE - €2E7'P o,E
= g2EY g5, P|E
=g¥X = +X.
This shows that the J? = +1-Kéhler structure of G, is given by (9). In fact, we can define bi-invariant metric
on G

<':'>y : Tyén,k - Tygn,k; X,Y) » (X, Y)y = —tr(XY).

It is a direct verification that VX,Y,Z € Tygn,k, we have
de(X, Y’ Z) = X(wV(Y) Z)) - Y(wy(Xr Z)) + Z(wV(Xx Y)) - wy([X, Y]) Z) + wV([X! Z]) Y) - wV([Yr Z]sX)

= <VX(]V Y), Z>y + (]y Y, VXZ>V - <VY(]VX): Z>y - (]yX: VYZ>V + <VZUVX): Y>y + UVXs VZY>V

- gy[Xr Y]’Z>V + gy[X: Z]! Y)}/ - Uy[YJ Z])X>V
=0. U

From Lemma 1, the symmetric space Gn,k is simply written as C',,,k = GL(n, C)/GL(k,C) x GL(n - k,C)
and is called the complex Grassmannian manifold.

Next, let us recall the three typical classes of the Hermitian symmetric Lie algebras Gl(n, C) with index k
(1 < k < n) having three types.

The first subclass of symmetric Lie algebras Gl(n,C) consists of Hermitian symmetric Lie algebras
u(n) C Gl(n,C) (n = 2) with index k (1 < k <n) of compact type. In fact, for any given 1< k < n, u(n)
is decomposable as u(n) = ky & m, satisfy the symmetric conditions, where

Agxk 0
ki = Kernel(adgg) = [ 0 B € u(n)
and
0 ka(n—k) c ( )
my = . u(n)g,
R | /R

where Ug,_j«x stands for the transposed conjugate matrix of Uyx(n-r), 03 is given by (8), and &% = -1.

The second subclass of symmetric Lie algebras Gl(n, C) consists of Hermitian symmetric Lie algebras
u(k,n - k) C Ggl(n,C) with index k (1 < k < n) of noncompact type. In this case, we see that u(k,n - k)
is decomposable as u(k, n - k) = ky & m; satisfy the symmetric conditions, where

[Akxk

k; = Kernel(ad,,) = 0 Boioeaio

] € ulk,n - k)]

and

0 Ukx(n-k)
mp = %
Utn-ryxk 0

€ ulk,n- k)],
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where g3 is given by (8), and &2 = -1.

The third subclass of symmetric Lie algebras Gl(n, C) consists of para-Hermitian symmetric Lie algebras
Gl(n,R) C Gl(n,C) (n = 2) with index k (1 <k < n). In this case, for any given 1< k <n, we see that
Gl(n,R) = k3 & my is a symmetric Lie algebra, where

Apx 0
ks = Kernel(ad ) = |k € gl(n,R)
s ” 0 Ban-ixn-i)
and
0 Uk )
m3 = _ S Ql(n, R) VUk+><(n—k) and U(n—k)Xk B
Un-ioxk 0

where g3 is given by (8), and &2 = 1.

Finally, we briefly review the second matrix-AKNS hierarchy on a symmetric Lie algebra. It is well known
that the coupled matrix NLS equations are equivalent to the compatibility condition of a Lax pair for the po-
tential matrix

0 Pi(x, t)
le(X, t) 0

]

where the first equation in the Lax pair is the so-called matrix ZS or AKNS system (see [1]). Specifically,
the coupled matrix NLS equations (1) admit the Lax pair

Ey = (-0sA + WE, E; = (03A* - ud + €2P4(w))E, (10)
where E : R2 x C - GL(n, C) and

—lpl(X, t)lpz(X, t) ‘plx(X, t)

Pa(u) = 2051 — %) = € W00 Bax, O, 0

We call E : R2 - GL(n, C) a frame of the solution u of the En,k-NLS equation (2) with E(0, 0, A) = I,x,. Hence,

rewrite equation (10) as:

el = Py(w)y + [Pa(u), ul. an

3 Schrédinger flow into the complex Grassmannian manifold G, ;

It is well known that the equation of Schrédinger flow from a Riemannian manifold (M, g) to a J? = +1-Kéhler
manifold (N, J, h), where J satisfies J?2 = +1 and compatible to the metric h, is given by the following
Hamiltonian gradient flow:

ut = ]u T(u)? (12)

where 7(u) is the tension field of map u : M —» N ([13,36-38]).

Theorem 1. The equation (12) of Schrédinger flow from R to complex Grassmannian manifold G, is

Y = €Y, Vol- (13)
Proof. Let y = Elg3E € Gy be the equation of Schrédinger flow from R! to complex Grassmannian manifold
Gnx, namely, y solves [13]

]yyt = viyx’
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where E = E(x, t) € GL(n, C), ]V is the J? = +1-Kéhler structure of En,k at the point y, V, the covariant deri-
vative Vo on the pull-back bundle y TG, induced from the Levi-Civita connection on G, x, and by y, the V.
Let y = E™\(t, x)0:E(t, x) be a map from the line R to Gn,k, where g3 is given by (8). Without loss
of generality, we may assume that E satisfies: Ex = PE for some P € m, where m fits with Gl(n,C) = k @ m.
In fact, if E does not meet the requirement, we may make a transform:
A0
0 B
(this is because the form E'g;E is invariant up to the transform) such that by suitably choosing A and B

(through solving a linear differential system of A and B), P can be modified so that the new P satisfies P € m.
Based on this fact, it is shown that

E—>[ E,

v,y = ¥ = Eos, P]E (taking the tangent part),
V), = Yo + EY[P, [03, P]]E (taking the tangent part of) (V,y)y.

Hence, we have
Y = 82]yviVx =&y, iyl
=&Y, Yl + [y, ET'[P, [03, PIIE]
=&y, Yyl + [E"'03E, ET'[P, |03, P]]E]
=&y, Y, ), (since P € m). 0

Hence, the Lax pair of equation (13) is
8¢ = =y, 8 = (2% - €y, y, JN)6. (14)
Let CS*¢(1) = {(z, 7, z3) € C3 : z? - £%2} + z? = 1} = C3 with the metric (e, dz? = dz? - £2dz? + dzd).
Now, for vectors u = (uy, Uy, Us) and v = (vy, 3, v3) in C3, we define the cross-product of u and v by:

U X V= (U3 — UsVg, —€(UsVy — UyV3), UyVy — UgVy).

Corollary 1. The equation of Schrédinger flow from R* to complex Grassmannian manifold G, is

S; = €28 X, Syy. (15)

ab

€
c d GL(2, C), then

Proof. VE = [

—~ ~ 1 d -b
1 Gyqg — CS%(1),y = E! —_—
7: Gy~ CS%5(D), y o3E ad—bc[‘C a

oS N|m

€ [ad +bc  2bd
2(ad - bc)| -2ac  -ad - bc

S3 S1— &Sy
— = S
S1t+ €Sy =83

] € Gy

8= (sla S2, 33)1

bd-ac e(bd+ac) ad+bc
ad-bc’ ad-bc ’ ad-bc

where (s, Sz, S3) =

€ C? satisfying s - 2% + s7 = 1. It is a direct computation that

Y %e Yy 18 just [c7Y, 7Yy, ], where 7. is the tangent map induced from 7. Hence, the equation of Schrédinger
flow from R! to G, returns to CLL equations (¢-CLL)

&£
S = E[S) Sxxl, (16)
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where § = S(x, t) is a 2 x 2 matrix of the form

s3(x, t) s1(x, t) — €sy(x, t)

s1(x, t) + esy(x, t) -s3(x, t) an

Slx, t) =

3

where s? - g2s2 + s? = 1 by the requirement §% = I, S is identified with a vector s = (sy, Sy, $3) € CS*¢(1) = C3,
and the &-CLL equation (16) becomes equation (15). (I

Note that when & = /-1, C$%¢(1) becomes the complex 2-sphere CS%(1) = {(z, 2, ) € C3 : z} + zJ + z§ = 1}.
From Corollary 1, the equation of Schrédinger flow the complex 2-sphere CS%(1) with the standard holomorphic metric
(e, dz? = dzf + dz? + dzd) is

St = =S X Syy,

where X denotes the cross-product of C3, which also refers to [23]. By Corollary 1, we can interpret CS>¢(1)
as a symmetric space G1 = GL(2, C)/GL(1, C) x GL(1, C).

Theorem 2. Equations (11) and (13) are gauge equivalent to each other.

Proof. Let u : R? -~ m be a smooth solution of equation (11), we let G : R - GL(n, C) satisfy the following
linear system:

Gy = -Gu, G;=-€2GP4(u), (since &u; = Py(u)y + [P4(u), u], G exist).
By using the gauge transformation:
§=Go, y = GosG™,
where ¢ satisfies equation (10), we see that
6 = (GY)x = Gy + G, = —Gup + G(-03A + WP = -GoAp = —yAS
and
8t = (Go) = G + G, = ~€’GP4(W9 + G(aA* — Uk + £’P4(u))p
= (Gask* - GuA)p
= (A - GuG™)$
= (2% - €2y, ¥, J06, sincely, y,] = €2GuG™.
Namely, y = p(x, t) = G(x, t)asG(x, t)! is a solution of the Schrodinger flow (13) on Gn,k. Hence, we have
a gauge transform from equation (11) to equation (13).

Next, if y = E7\(t, x)a:E(t, x) € 5,[,;( is a solution of the Schrodinger flow equation (13). Without loss
of generality, we may assume that E satisfies (see [39]):

0 R

_1=
EE [Rz 0

]==P1€m.

By ), = €%y, )i, ], it is a direct verification that
[03, EEE™'] = Py, since J, () = €E7'PuE, ), = E7'[03, EE']E.

Hence, we have

R
&n 7“

EE"= Ry, = P,
- EZZ
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Moreover, from the integrability condition: E,; = Eyy, i.e., Py; = Py + [Py, P1], we can obtain

1 1
& = ‘;Rle +G(t), &n= ERZRl + Gy(t),

G(t)

where C(t) = [ 0 G

] depend only on ¢, and

rpi=1 “RiR,  Rix
‘ el ~Rx RR

Gi(t 0 2
- |80 Cz(t)]=;os(P1x—Pf>+C(r>.

In order to vanish C; and C,, we take

=P10
P 0 py)

where p, = p,(t), p, = p,(t) depend only on ¢, satisfying
Pt = —P1C1, Py = —PoCa
Let g = pE; hence,

g& = pEEp™ = pPypt = p[ 122 lél]p‘l [132 lzl] =, (18)
and moreover,
887" = (pE + pENE™p™
= [ptE +p éoguﬁx - P))E + C(t)E]]E‘ p!
— 2 2\ A-1
= 22Po3(Pix = P)p 19)

2
= Eﬁg(Pple_l - pPip™)
2 1
= 203~ uw) = 2P,

where P4y(u) = 205(u, — u?). Let G = g7, ¢ = G718, where & satisfies equation (14). From equations (18) and (19),
we obtain

1
Gy = -Gu,G; = —EGP_l(u) = -£2GP4(u).

Moreover, we have

Oy = -GGG + G716, = (-o3d + w)g,
@, = -GGG 8 + G716 = (031 - ud + €2P4(w))o,

i.e., ¢ satisfies equation (10). Hence, we have proved that equation (13) is gauge equivalent to equation (10). [
From equations (10), (11), (13), (14), and Theorem 2, we have the following:

Theorem 3. The coupled matrix NLS equations (1) on Gl(n, C) = k & m are gauge equivalent to the equation
(13) of Schrédinger flow from R! to complex Grassmannian manifold G, .

Corollary 2. The matrix NLS equation (6) on the first subclass u(n) =k, @ m; or the second subclass
uk,n - k) = k, ® my is gauge equivalent to the equation (13) of Schrédinger flow from R! to complex Grass-
mannian manifold U(n)/U(k) x U(n - k) or U(k,n - k)/U(k) x U(n - k) (see [13,18]).
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Corollary 3. The matrix version of the nonlinear heat equations

Wit = Pro + 291PW; = 0,

Wy + Yoy — 29,1 % = 0,
which are a reduction of equation (1) by € = 1, and ¥; = ¥y(x, t), ¥, = ¥y(x, t) arek x (n - k) and (n - k) x k
real matrix-valued function, on the third subclass Gl(n,R) = ks ® ms is gauge equivalent to equation (13)
of Schrédinger flow from R! to manifold GL(n, R)/GL(k, R) x GL(n - k, R) (see [18]).

4 Darboux transformations and explicit soliton solutions

In this section, we use the loop factorization method given in [25] to construct Darboux transformation
for G, ;-NLS, and we apply Darboux transformation (Theorems 4 and 5) to:
(1) the trivial solution u = 0 of the coupled NLS equations

Wy — P + 291 P%; = 0,

20
Wy + Wy — 2V, W, = 0, 20

where ¥, = Wi(x, t), ¥, = Wy(x, t) are the complex valued function and £ = +1, to obtain soliton solutions;
(2) the constant map solution y(x, t) = a and to the solutions of the Schrdinger flow (13) on G.
Let a3, a; € C, {vy, v} a basis of C%, 7 the projection of C2 onto Cv; along Cv, and

a— ay
Dxy — 7).
g 2™

Jarapn @) = bxa +

Theorem 4. (Darboux transformation for the G,1-NLS equation (2))

Letu =

~ G
be a solution of the G,1-NLS equation (2), and E(x, t, A) a frame of u. Let v, = [ c;] € C?,

ad, —-qd
Cd} ady, —ady 0
- od, —od;

¥
Y, 0 ]
d
d,

Vg = ECy¢dya, i, €EC, i=1,2,and a; # ay, det(vy,vy) # 0, and 77 =

U= (8, &) = E(x, t, a)H(vy), U = (dy, )T = E(x, t, ) ' (vy),
and suppose Vs, V, are linearly independent. Then, we have the following.

() @ = u+ (a; - @03, 7] is a solution of the G,1-NLS equation (2), and

EGG6A) = £y 0 s WECG & D, g 206 O
is a frame for ii, where

1 &d, -ad,

&d, - &d;

7t

62&2 - 62&1

(i) U satisfies dii = 0(-,-,a)ti, where

0(x, t, a) = (—osa + wdx(osa® — ua + £2P4(u))dt,

0w A
@=ﬂlo}u=[ 1Rm0=4 M

0 -1 W, 0 —y,  wy, | e
a
—58 P
T R
lpz ES

2 21)

(04
78 - 83q111p2 -Ya + 831P1X

V= ) P,
a
-a¥y, - 831P2X —78 + £3lp21p1
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Moreover, if ai # ap, and Vi(x, t) = (§(x, ), &(x, )T, Va(x, 1) = (di(x, 1), da(x, )T are solutions of equation
(2D) witha = oy and a = ay, respectively. Suppose Vi, V, are linearly independent, then the formula of i given
in (i) is a solution of the G,1-NLS equation (2).

Theorem 5. (Darboux transformation for the Schrodinger flow on G,.1). Let y be a solutions of Schrédinger flow
(13) on Gy, g(x,t) a Schrédinger frame of y, and u = g7'g, the solution of the G,3-NLS equation (2).
Let E(x,t,A) = g(0,0) for all A € C. Let a;, i, € C\R be a constant, m a constant Hermitian projection onto
Vi € C? along V, € C?, and 7(x,t) the Hermitian projection onto Vi(x, t) = E(x, t, )™ (V) along Vy(x, t) =
E(x,t, a) \(V,). Then,

YOG 8) = 806 Oy, 0,7 (0006 7103 fy, 6, 2(0)0x, D0, )7

is a new solution of (13).

Example 4.1. (1-Soliton solutions for the coupled NLS equations (20))
Note that

E(x, t,A) = exp(o3(-Ax + A%t)) =

e—B(x,t,)L) 0

0 eBtD|
where B(x,t,A) = %(—Ax + A%t), is the frame of the solution u=0 of the Gn,k-NLS equation (2) with
E(0,0,1) =1. Let m be a constant Hermitian projection onto V; € C? along V; € C2, where vi(x,t) =

(Cl(x) t)) CZ(X) t))T) Vz(X, t) = (dl(X) t)a dZ(X) t))T) G = Ci(Xa t): di = di(xy t) € Ca i= 1: 2; we have
1 [Cldz —C1d1

= ady - od (o —od|
Then,
U1 = E(x, t, ) (v) = (eBxtag, e Betmg)l = (g, &),
Uy = E(x, t, a)y'(vp) = (eB® 6@y, e Bxtadp)l = (dy, )T,
and
. 1 éd, - éd; 1 elad, -eSad
s m &d, - &d; ) M[e_%zdz —e"’cgdl]’
namely,
N . (o - a) 0 efaq
i=u+ (- mwlos, filx, )] = e od; - elad, eted, 0 ]

is a solution of the G, ,-NLS equation (2), where & = £(~(a; + @)x + (af + aP)t) andn = 5(~(a1 - a)x + (af - a)t).

Hence, ¥, = Mefcldl and ¥, = Me‘fczdz are a solution of the coupled NLS equations (20).

e lcydy - ecydy e cydy - e'leydy

Ifa=¢g=di=dy=1,a¢=r +is,and a; = r - is, then

1 ple(=sx+2rst)  _ ee(—rx+(r2—sz)t)
f((X, t) = ie(—sx+2rst) —ig(—sx+2rst) 2_ o2 : ’
e -e e—a(—rx+(r -s)t) e—ls(—sx+2rst)
ie,
. 2isgesTx+(r*=sHt) . 2isgee-(rx+(r=sMD)
Wy(x, t) = Yy(x, t) =

e—is(—sx+2rst) _ eie(—sx+2rst)’ e—ie(—sx+2rst) _ eie(—sx+2rst)

is a soliton solution of the coupled NLS equations (20).
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Example 4.2. (1-Soliton solutions for Schrédinger flow on G;1)
The constant map y(x,t) =03 is a solution of the Schrédinger flow (3.1) on Gy1, g(x,t) = by
is a Schrodinger frame for y, u = 0 is the corresponding solution of the G, x-NLS equation (2), and

E(x,t,A) = exp(-0aAx + asi?t)

is the frame of u = 0, with E(0, 0, A) = Lx,.
By Theorem 5 to y(x, t) = g3, g(X, t) = Lxs, and use 7(x, t) given in Example 4.1 to obtain soliton solution
for Schrédinger flow on 52,1. We choose ay = is,a, = —is, and ¢; = d; = 1, i = 1, 2; then, we have

ze—ssxi ze—sszt
e—esxi - egsxi e—gsxi - easxi
jlts,—is,ﬁ(o)(xi t) = 2[ .
205 2pEsXi
e—ssxi - eesxi - e—ssxi - eesxi -

Hence,
YOG 0 = 806 Oy 5 200X, 703 fis s 2(0)0x, D80, )7

8(6€2£sxi + edesxi 4 1) —4ECOS(€SX)€285Xi
Z(QZSSXi - 1)2 esszt + ess(4xi+st) _ Zess(Zstt)
B Zg(ess(xi+st) + ess(3xi+st)) 8(6e2£sxi + e4€sxi + 1)
(92£sxi — 1)2 - z(ezgsxi - 1)2

is a soliton solution for Schrédinger flow on G; (CLL equations (16)). From equation (17), we have

) -2 COS(ESX)QZESXi . 8(ess(xi+st) + e£s(3xi+st))
S = (81,82, 83) = i
(51, 82 53 e85t 4 ges(Axitst) _ oes(2xitst) (e2esxi — 1) )
ZCOS(SSX)eZESXi ees(xi+st) 4 pes(3xitst) g(eez.ssxi + pdesxi 4 1)
+ - -
esszt + ees(xi+st) _ 9 ges(2xi+st) (25Xt — 1)? ’ 2(e%sxi — 1)?

is a soliton solution of equation (15).

Theorem 3 gives a geometric interpretation of the matrix generalization of the coupled NLS equation (i.e.,
CLL equation) via Schrédinger flow to the complex Grassmannian manifold GL(n, C)/GL(k, C) x GL(n - k, C).
And Example 4.2 shows that 1-soliton solution for Schrodinger flow on €CS$%#(1) is given. There are many
questions unclear in this aspect. For example, it is also of interest to consider N-soliton solutions for Schro-
dinger flow on CS%¢(1). As you know, there are many models for NLS equation such as the coupled NLS-type
equations (see [40]), the extended coupled nonlinear Schrddinger equations (see [41]). Is it possible to give
a geometric interpretation of this systems via Schrodinger flow? These questions deserve study in the future.
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