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Abstract: In this article, we study a class of variational inequality problems with non-Newtonian polytropic
parabolic operators. We introduce a mapping with an adjustable parameter to control the polytropic term,
which exactly meets the conditions of Leray-Schauder fixed point theory. At the same time, we construct a
penalty function to transform the variational inequality into a regular parabolic initial boundary value
problem. Thus, the existence is treated with a Leray-Schauder fixed point theory as well as a suitable
version of Aubin-Lions lemma. Then, the uniqueness and stability of the solution are analyzed.
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1 Introduction

Let p > 2, m € (0, p — 1] and assume that Q ¢ Ry (N > 2) be a bounded domain and Q7 = Q x (0, T] with
T > 0. The author of this study considered a kind of variational inequality problem

min{Lu, u — ug} = 0, (x,t) € Qr, (1)
with the non-Newtonian polytropic operator
Lu = du - V([VU™P2Vu™) + yu,y = 0 ®))
and the Dirichlet initial-boundary value condition
u(0, x) = up(x), xeQ; u(t,x)=0, (x,t)eoQx(0,T). (3)

Variational inequality has a good application in the value analysis of financial products with early imple-
mentation clauses, for details see [1,2]. Recent years, much attention has been paid to the study of varia-
tional inequality with linear, quasi-linear, and degenerate parabolic operator [3-5]. In [3], Li and Bi
considered two-dimensional variational inequality systems

min{Liu; — fi(x, t, w, ), U; — U0} = 0, (x,t) € Qr,
u(oy X) = uO(X)’ X € Qy
u(t, x) =0, (x,t) e 0Q x (0, T)
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with degenerate parabolic operator
Liu; = owu; — div(qui|Pf‘2Vui), i=1,2.

The existence of weak solution is studied by a limit process. In [4], Sun and Wu considered a kind of
variational inequality problem with a double degenerate operator

Lu = du — udiv(a(u)|Vu[P®-2vu) — yuP® — f(x, t).

Similar methods to those presented in [3] have been used, and the existence and uniqueness of the
solutions in the weak sense are proved.

The structure of parabolic initial boundary value problem is simpler than that of variational inequality.
When m = 0, initial boundary value problems with parabolic operator Lu have been extensively studied in
the last few years, see for details [6-13]. Some articles are focused on the existence of generalized solutions
related to this article [6-8]. Some results for uniqueness of generalized solutions can be found in [9-11].
There are other arguments worth studying, such as stability of boundary output feedback [12,13].

In this article, we extend the corresponding results in [3,6,9] to study a class of variational inequality
problems with non-Newtonian polytropic parabolic operators with the Dirichlet initial-boundary value
condition. Since m and p are coupled in Lu and Lu is degenerate, we plan to solve this problem with
Leray-Schauder fixed point theory by constructing a map. In order to overcome the difficulty of establishing
generalized solutions on variational inequalities, we turn the variational inequalities into regular problems
through penalty functions. Some estimates of regular problems and continuity, boundedness and compact-
ness of Leray-Schauder map are given by the inequality technique as well as a suitable version of Aubin-
Lions lemma. In what follows, we prove the existence, uniqueness, and stability of the solution under
the proper setting of the parameters in (1).

2 Statement of the problem and the main results

Our consideration in this article is motivated by an application model about fresh agricultural product
supply chain. Here we consider a fresh agricultural product supply chain formed by a supplier and a retailer
in which retailers face uncertain market demand. Assuming that the current time is 0, the time agreed in the
contract for retailers to purchase agricultural products is T, and the retail price of agricultural products
agreed in the contract meets

dP(t) = uP(t)dt + oP()dW;, P(0) = P,

where y and o denote the expected rate and the volatility of return on the retail price of agricultural
products, respectively. {W,, t > 0} is a Winner process, which drives the random noise of the market.
P, represents the market price at time 0.

Since fresh agricultural products are easy to deteriorate and decay, retailers will have no residual value
for their remaining agricultural products. Therefore, the order of agricultural products must be placed
before the sales season T. Retailers can buy a call option contract in which they have the right to purchase
a certain amount of fresh agricultural products at the agreed price of K from 0 to T. Of course, retailers need
to pay a certain premium of C to obtain such rights. If the retailer finds a more suitable source of goods,
it will give up the option contract and lose the option premium C. This means that retailers can decide
whether to exercise or hold options based on their own earnings. According to the literature [1-3], the value
of options meets

min{LC, C - max(P - K,0)} =0, (P,t) € [0,B] x [0, T],
C(0, P) = max(P - K, 0), P e [0,B],

C(t, B) = P — exp{-rt},

C(t,0)=0

(4)
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where B represents the artificially set price ceiling for agricultural products,

2
_ + l02PZE + rP% - rC.

LC=—
o 2 oP? oP

In addition, if the loss of agricultural products during transportation is considered, then the expression
of LC is more complicated that ¢ in LC is a function of C and g—g, for details see [14].

More complex case than (5) is considered in this article. In doing so, we give a class of maximal
monotone maps defined in [11,13]

0, x>0,
GO0 = {_ Mo, x -0 (5)

where M, is a positive constant which can be chosen later. Since m and p are coupled in Lu and Lu
is degenerate, problem (1) do not have a classical solution. So we consider its generalized case as follows.

Definition 1. A pair (u, ¢) is said to be a generalized solution of variational inequality (1), if (u, &) satisfies
u € L°(0, T, W-P(Q)), du € LX(Q7),

(@) ulx, t) = ug(x), u(x, 0) = up(x) for any (x, t) € Qr,

(b) &€ G(u — up) for any (x, t) € Qr,

(c) for every test function ¢ € C*°(Qr), there admits the equality

J J.atu <@ + VU P2VumVpdxdt + yJ. ju(pdxdt = J. j£~ @dxdt.
Qr Qr Qr

Because of coupling in Lu, we cannot prove the existence of solution of problem (1) by using a common limit
method. Here, we plan to use the Leray-Schauder fixed point theory as well as a suitable version of Aubin-
Lions lemma based on the map

M : L°(0, T; WyP(Q)) x [0, 1] — L®(0, T; WyP(Q)), (6)
such that for every function w € L*(0, T; Wé’p(Q)) and 0 € [0, 1], u, = M(w, 0) is a solution of the equation

L&“u, = -0B,(us — up),  (x,1) € Qr,

Us(x, 0) = Uuge(X) = ug + &, x € Q, 7
Ue(x, t) = &, (x, t) € 0Qr,
with an operator
L%y, = du, - div((lVAg(ug)lz + a)"T’ZVAB(ug)) +yw. ®)

Here u" € L*(0, T; WyP(Q)), As(ue) = Ou + (1 - O)ue, the penalty map B, : R, — R_ satisfies
€€ (O’ 1)’ Bg() € CZ(R)’ ﬁg(x) < O’ Bé(x) > 0’ ﬂSH(X) < 0’
{0, x>0, )

X>e,

0 .
Pl = {—Mo x=0, AN =1y, x=o.

Then the existence of problem (1) is equivalent to u, = M(u,, 1). With a similar method to that in [6,7],
we may prove that the regularized problem (7) admits a weak solution as follows:

Definition 2. A function u, is said to be a solution of problem (7) if u. satisfies u* € L(0, T; WP(Q)),

Iatus -9+ (VAP + £)'2 VAp(ue)Vpdx + y wapdx = Jﬁg(ug —Uo) - pdx, Vt€(0,T) (10
Q Q Q

for any ¢ € C*(Qr).
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Because of the denseness of C*®°(Qr) in L(0, T; WLP(Q)), one can assert that the identities in Definition
2.1 and Definition 2.2 hold for any L(0, T; WP(Q)). Furthermore, one can obtain the following inequalities
[6,7]:

Up < Ug < |Upleo + & Uy S U, fOr g < 8. (11)

It is clear that the constructed generalized solution in this article is non-negative. Then we give the
restriction in (6) that w > 0.

3 Some preliminaries
To discuss the existence of weak solution of equation (1), we give certain useful estimates.

Lemma 1. For any fixed t € [0, T] and y > 0,

luellFrqy < C, 12)
_[(wwgm + (1 -0)Vul? + s)p§2|0Vugm + (1 - 60)Vudx < C, (13)
Q
j 16VU™ + (1 - 6)Vu|Pdx < C. 14)
Q

Proof. Since u" € L(0, T; W'P(Q)), combining with (11) gives 6u" + (1 — O)u. € L(0, T; WHP(Q)).
So choosing a test function ¢ as 6u" + (1 — 0)u, in (10), it can be easily verified that

J J‘arug - (6u + (1 - Ou)dxdt + Iy = —GI Iﬁg(us - up)(Ou™ + (1 — O)u,)dxdt

Qr Q (15)

_ yj jw(eug" + (1 - Ouy)dxdt,
Q

where

= f ,[(|9Vu£" + (1= Vil + )3 16Vl + (1 - O)VuePdxdt.
Q

From the first part of (11), u, — up > 0 for any (x, t) € Qr. Combining with (9) leads to |B,(us — uo)| < Mo,
such that ffgﬁg(ug - up)(Ou" + (1 - B)u.)dxdt can be estimated as

-6 [ [ B.ue - uo)Ou" + (1 - Ouddrde < MoT (max(luto o, [4flko} + D 16)
Q

Since w > 0, 6 € (0, 1), it is easy from the first part of (12) to see that

j Jw - (6u™ + (1 - O)up)dxdt > 0. )
Q

Using differential transformation method gives (recall that m € (0, p — 1])



DE GRUYTER Weak solution of non-Newtonian polytropic variation inequality =—— 5

j Iarug - (6u™ + (1 - O)ug)dxdt

I f —aru'"+1 N (1 ~ 0)d,u2dxdt (18)

1
7 1 _ 1 1
l(uusu;",:ﬂ(m o elfith ) + 51 = O)ells o) ~ Tt el )-
Since A; > 0, we drop IT; to arrive at
—— el + 1( Dlluel? —9 IIu e o + l(1 = Oluo,l? (19)
1 eliLPQ) 2 £ LZ(Q) 0,e Lm+1 @ P 0,¢ LZ(Q)'

This implies (12) follows.

On the contrary, if we drop non-negative term ”Qw(eug" + (1 - O)u,)dxdt and non-positive term

6] [ B — uo)(6u" + (1 - Ou)dxdt in (14),
2
I < muuo,e”fp(m + ||U0,e||iz(0)- (20)

Thus (13) follows. If e = 0
I J 16VU™ + (1 — 6)Vu,Pdxdt < Jjuewy + (1= OV + )5 10V + (1 - 6)Vu, Pdxdt,

such that estimate (14) is an immediate result of (13). O

Lemma 2. Assume thaty > 0, m > 0, and p > 2. Then there exists a constant C, independent of €, such that

[ 1oz + 1 - uoPdx < Cp, Mo, 101, It o), o
0™ 120,75 0y < C(p, T, 1QD, (22)
Idatell0.1; ) < C(p, T, 1. @3)

Proof. Since 0 € (0, 1). It follows from the first part of (11) that
deuedeu" < m(Juolls™ + 1)|0guel?. (24)

Multiplying the first line of (7) by 9,(6u" + (1 — 0)u,) and integrating both sides of the equality over Qr,
we have

P j I|at(9ugﬂ + (1 - OupPRdxdt < -TL — T + L, )

where the constant 7 depends only upon m and |ug|,

L, = I I(|ewg" + (1= OV + £)7OVU™ + (1 — 0)Vu)OVU™ + (1 — O)Vu)dxdt,
M-y j J-a) O™ + (1 - Oudxdr, I, = -9_[ fﬁg(ug ~ uo) -3:(6u™ + (1 — B)uy)dxdt.

Using some differential transformation techniques,

I = —1I jat(wwg" + (1= )i + £)bdxdr < lj(wwg“(,-O) (1= 0)Vu(,-0)P + £)%dx. (26)
p p
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It follows by Holder and Cauchy inequalities that

1 m
Il < 20y [l + 2 [ ROu + 1 - OpuoPa, o
Q Q

1
ML) = 27 M2Q] + gnIrejt(eug" + (1 OupPdx. 28)
Q

Since w € L*(0, T; WyP(Q)), combining (25), (26), (27), and (28), it is easy to verify that

3 .
2p [106ur + 1 - OuoPdx < Cp, Mo, 10, o ko) 29)
Q

This implies that (21) follows. Using (24) again,

92J.|atu£"’|2dx " pJ'|atu£|2dx < J'|at(9u;" + (1 - Ouy)Pdx. (30)
Q Q Q

(22) and (23) are immediate results of (29) and (30). O

Next, we analyze the continuity of map M. To this end, assume that 6y — 0 and f; — f as k — oo and
define u; x = M(By, fi), such that u, y is the solution of (9) with degenerate parabolic operator

L = dte i — dliv (VA (e )P + €7 VAg, (4e,)) + Y. €

Lemma 3. The map M : L*(0, T; WEP(Q)) x [0, 1] — L=(0, T; WEP(Q)) is continuous for any 6 € (0, 1).

Proof. From the first part of (11), it can be seen that {u. x, k = 1, 2, 3, ...} is bounded, which together with the
uniform estimates in k allow one to extract from the sequence {u, k = 1, 2, 3, ...} a subsequence (for the
sake of simplicity, we assume that it merely coincides with the whole of the sequence) and a function u,
such that

Uex — Ue a.e. Qr as k — oo. 32)

So that we remain to prove that u, = M(6, f). From (12) and (13), one can infer that for any fix € € (0, 1),

~ 1,-P
(IVAg, (ue )P + €)' VAg, (s )WY, in Wy P~ (Q) as k — oo, (33)

such that combining (10) and (33) gives

Iatug @+ X Vodx + yfaxpdx = —Iﬁg(us ~ Uo) - pdx. (34)
Q Q Q

Hence, it remains to prove that

[revoax = [ avasuop + &7 vasuoax a5
Q Q

Choosing ¢ = u, x — u,, multiplying u,x = M(bx, fx) or Lfk””ku&k = B.(us — up) by ¢, and integrating
over Q, we have that

[t 0 + (VAGKUeOP + &5 VAnstei) ¥ + y [wrpde = - [ Bltes - wo) - pix. (35
Q Q Q
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Combining (34) and (36), and integrating over [0, T], one can have that

| [ @t = 3 - 0 + [ (VA0OP + &'+ Vilgxtae) - x, |vipdxee

Qr
t (37)
ty[ [ @i - opparde = - [ 18,600 - fa) paxd.
Qr 0Q
From (32), we infer that
t
lim [ [ @ - wypdxde = lim [ 1040 - @)} pdrde = o. (38)
Qr 0Q

Since uy ((x, 0) = us(x, 0) for any x € Q,

j j Qutte — daite) - pdxd = %j(uk,g ~upPdx = 0,
Qr Q

so we drop the non-negative term on the left-hand side and pass the limit k — oo to arrive at

tim [ [ [AvAox@oP + &)+ VAgutue) - x, |vpdxde < 0, (39)

k— o0
Qr

| (VA6 WP + )2 VAg (o) — (VAP + &)"+'VAg(ue) | (VAo (o) - VAs(w)) = 0.
Since VAg, (us) — VAg(u,) and Ve have the same sign,
| (1946, + £V A0, (o) — (VAG(Wo)P + €)' VAo(ut) |V > 0. (40)
Subtracting (39) and (40), we infer that

lim I J [ VA0 + )7V A - x, |Vpdxdt < 0. @D
Qr

Obviously, if we swap u, x and u,, it is easy to obtain another inequality

. p-2
lim j j [X. — AVAGwoE + )"V Ag(ue) |Vpdxdt < 0. )
Qr
(41) and (42) imply that Lemma 3.3 follows. O

By virtue of Lemmas 3.1 and 3.2, and the Ascoli-Arzela lemma [7], M maps any bounded set [0, 1] x Q
into a compact set of Q c L*°(0, T; W&’p(Q)). So we have the following result.

Lemma 4. The map M : L°(0, T; WyP(Q)) x [0, 1] — L®(0, T; WyP(Q)) is compact.
Let y € L*(0, T; Wé”’(Q)). By classical results (see, e.g., [8]), problem u, = M(O, f) + y, or
Ol — V((|Vug|2 + e)#Vug) +yu:+y=0 (43)

with the same initial boundary condition in (7), admits a unique solution in L*(0, T; Wy?(Q)). Combining
Lemmas 3.1-3.4 and the results related to (43), the following initial boundary problem
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Lu, = —B.(us — up), (x,t) € Qr,
Ug(x, 0) = upe(x), x€Q, (44)
uS(Xa t) =¢, (X’ t) € aQT’

by using the properties of the Leray-Schauder degree, has a solution u, € L*(0, T; W“P(Q)) that satisfies
Ot € L(0, T;L2(Q)),

I(atus C@ + ((VUP + )2 ViV + yup)dx = —Jﬂg(ug — Uo)pdx (45)
Q Q

with ¢ € CY(Qr). And, the solution of (44) satisfies (11), that is,

Uge < Ue < [Uploo + & Uy < U, fOr & < & (46)

Based on Lemmas 3.1 and 3.2, we conclude that

el < C. @7)
j(|Vug’“|2 + ) |VuPdx < C, 48)
Q

VUL, g < C, (49)
a1, < C(p, T 1)), (50)
ot o) < Cp, T, 10, (5)

Indeed, choosing u;" as a test function in (45) and repeating the proof of Lemma 3.1, (47)-(49) follow. As for
(50) and (51), it is a consequence of taking du," as a test function.

4 Existence

In this section, we consider the existence of generalized solution to (1). Using what we mentioned
in (46)—(51), the sequence {u., € > 0} contains a subsequence denoted again by itself weakly convergent

to a function u € L°(0, T; WyP(Q)), that is,

u. — u a.e.weaklyin Qrase — 0, (52)
u™ 5 um weakly = in L®(0, T; WHP(Q)) as € — 0, (53)
O — Ou weakly in I2(Qp) as € — 0. (54)

From (46), one can infer that u, < u, V(x, t) < Qr.

Lemma 5. Assume thaty > 0, m > 0, and p > 2. Then for any fixed t € (0, T),

j|u£" -umPdx - 0 ase— 0.
Q

Proof. Taking a test function (u" — € — u™) in (45), we infer that

J-E)tus - e - u™dx + J-(|Vug"|2 + e)pT’ZVung(uQ" - u™)dx
Q Q

(55)
= - yJ‘u‘g - e - u™dx - Iﬁg(ug - Uy) - (W' — € — uMdx.
Q Q
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From (9) and (46), u" — € — u™ < 0, such that—'[QBg(u‘g - up) - (W' — € — W™)dx is non-positive and we drop
it to arrive at

_[atug. (ug — € — w)dx + yIuS- W - & — u™dx
Q Q

- (56)
< - j (VUlP + &) Vv - umydx.
Q
This by adding J;) ((qug’"|2 + e)pEZVugm - |Vum|P‘2Vu"’)V(u£’" — u™)dx both hand sides of (50), leads to

Ja,ug S - g - umdx + yJ-ug S - e - umdx
Q Q

N I((wumz s |Vum|HVum)V(ug" — umydx (57)

Q
< - I|Vum|P*2VumV(u£’” - u™)dx.
Q

Applying Holder’s inequality and joining with Lemmas 3.1 and 3.2, (52), and (53), one can pass to the limit
€ — 0 to arrive at

Jatug W' -e-uMdx| < C\/Jlatuglzdx~j(u§" —&-u™?2dx — 0, (58)
Q Q Q
Ius (' - e - umdx — 0, (59)
Q
J‘|Vu’"|l’*2Vu’"V(usm - uMdx — 0. (60)
Q

Combining (57), (58), (59), and (60) and passing to the limit, one can infer that
lim I((wumz + )7V — (VP2 )V - wmd < 0, 1)
-0
Q

Since O < € < 1, it follows from [6] that

((|Vug"|2 e |Vum|v-2Vum)V(u;" —umy > (VUM PVUT — VU2 Vum Y - um) .
> C(p)|Vu* - vu™P > 0.

Combining (61) and (62), the proof of Lemma 4.1 is completed. O

Using Trigonometric inequality,
jnwgﬂp-ZVu;" VU2 dx < I||Vu;"|p—2 V) - vudx + j VP2 |V — Vum|dx.
Q Q Q
If p € [2, 3], applying|a” — b"| < |a - b',a > 0, b > 0, r € [0, 1], Holder’s inequality as well as Lemma 4.1,
I||Vu;"|z’-2 — |VumP-2||Vu|dx < _[Wu;" — VumP-2|Vu|dx — .
Q Q

If p > 3, one from Lemma 4.1 can obtain
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J‘||Vug"|1’*2 — |VumP~2||Vuldx < I(IVug’”| + |Vum)P2|Vu" - vum|dx — 0.
Q Q

Besides that using Lemma 4.1 also gives

J‘|Vu£’"|p‘2|Vugm - Vu™|dx — 0.
Q

Combining all the above, we have the following result.
Lemma 6. As € — 0, |Vu["|P=2Vu" converges to |Vu™P~2vu™ with norm L{(Q).
Furthermore, we focus on the limit of B,(u, — uo). Since B.(-) € C*(R) in (9), (46), and (47) , for all
(x, t) € Qr, give
B.(ug —ug) - & ase — 0.
We consider ¢ in two cases: u; > up + € and 0 < ug < up + €. If u, > ug + €, B.(ug — up) = 0, such that
Ex,t) =0 © u > up. (63)
Ifup < ue < up + €, B.(0) = Mo, and B,(-) € CX(R) imply that
E(x, t) = -Mp © u = uo. (64)
Combining (63) and (64), it can be easily verified that
—B(ue —up) » &€ Glu—-ug)ase - 0 (65)

for all (x, t) € Qr. Furthermore, passing the limit € — 0 in the second line of (44) and the second part
of (46),

u(x, 0) = up(x) in Q, u(x,t) > up(x) in Qr. (66)
Combining Lemmas 4.1, 4.2, (65), and (66), we infer that (u, &) satisfies the conditions of Definition 2.1, such

that (u, &) is a generalized solution of (1).

Theorem 1. Assume that ug € WHP(Q), y = 0. Then (1) admits a solution within the class of Definition 2.1.

5 Stability and uniqueness

In this section, we study the stability and uniqueness of generalized solution forally > 0,m > 0,and p > 2.
Consider generalized solutions (u;, &;) of (1) with initial conditions

u(0, x) = up,i(x), xeQ, i=1,2. (67)

Since uy, u, € L°(0, T; WyP(Q)), u — u, € L®(0, T; WyP(Q)). So choosing ¢ = u; — u, in Definition 2.1, one
can infer that

IIatw <@ + (V" P2Vt — [Vt P2Vl Vedxdt + yJ- I(pzdxdt — J-I('fl - &) - pdxdt. (68)
Q Q Q

As what we mentioned in (62),
(V" PP=2vu" - |Vud P2 vl (vt - Vgt > 0.

f(uw) = u and g(u) = u™ are both increasing functions with u, sgn(Vu/" — V") = sgn(Vy; — Vuy), so
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(IVu™P=2vu™ - |V |P2vgHVe > 0. (69)

As for “;)({1 - &) - pdxdt, we first give the estimate

J‘,[(é’l - 'fz) -@pdxdt <0, Vte][0,T]. (70)
Q
Indeed, if ui(x, t) > wy(x, t), then wi(x, t) > wy,0(x). (5) and (65) imply &, = 0 < &, such that
(51 - 52) Q= (fl - fz) (- uw) <0. (71)
On the contrary, if ui(x, t) < w(x, t), we swap wi(x, t) and uy(x, t), it is obvious to obtain
-8 =& (w-w<o0. (72)

Furthermore, we remove the non-negative term (69) and yj IQ(pzdxdt and also drop the non-positive term
(70) in (68) to arrive at

Jja[go . ngth <0e& jlul — uledX < J|U1,0 - llz,olde. (73)
Q Q Q

Uniqueness of solution can be found easily if u; o = uy0. Thus, we state our result as follows.

Theorem 2. Let (u;, ;) be a generalized solution of (1) with
u(0, x) = up,i(x), xeQ, i=1,2.
Then

lwy = wallzeogo, 7; 20y < Mo, 1() = o2z

Moreover, problem (1) has a unique solution in the sense of Definition 2.1 withy > 0, m > 0, and p > 2.

6 Conclusion

In this work, the existence, uniqueness, and stability of generalized solution to a kind of variational
inequality problem with non-Newtonian polytropic parabolic operators

Lu = du - V(|[Vu"|]P2Vu™) + yu, y = 0.

Since m and p are coupled in Lu and Lu is degenerate, we construct a map (6) based on the Leray-Schauder
lemma’s conditions and a penalty map function used to deal with inequality constraint that regular pro-
blem (7) is established. Some estimates of problem (7) and continuity, boundedness and compactness of
map (6) are proved a Leray-Schauder fixed point theory as well as a suitable version of Aubin-Lions lemma.
The existence, uniqueness, and stability of the solution are analyzed.

In this article, we limit that y > 0. In the proof of Lemma 3.1, formula (17) holds only when y is greater
than 0. The Holder inequality is used in Lemma 3.2, where p needs to satisfy p > 2. In addition, if parameter
p depends on x or t, (26) in Lemma 3.2 does not work, Lemma 3.2 is difficult to be proved in this case.
We will study those focuses in the future.
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