Research Article

Yun Xu, Shanli Ye*, and Zhihui Zhou

A derivative-Hilbert operator acting on Dirichlet spaces

https://doi.org/10.1515/math-2022-0559 received July 6, 2022; accepted January 24, 2023

Abstract: Let μ be a positive Borel measure on the interval [0, 1). The Hankel matrix $\mathcal{H}_{\mu} = (\mu_{n,k})_{n,k\geq 0}$ with entries $\mu_{n,k} = \mu_{n+k}$, where $\mu_n = \int_{[0,1)} t^n \mathrm{d}\mu(t)$, induces formally the operator as follows:

$$\mathcal{DH}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \mu_{n,k} a_k \right) (n+1) z^n, \quad z \in \mathbb{D},$$

where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is an analytic function in D. In this article, we characterize those positive Borel measures on [0, 1) for which \mathcal{DH}_{μ} is bounded (resp. compact) from Dirichlet spaces \mathcal{D}_{α} (0 < α ≤ 2) into \mathcal{D}_{β} (2 ≤ β < 4).

Keywords: Hilbert operator, Dirichlet space, Carleson measure

MSC 2020: 47B38, 47B35, 30H99

1 Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane \mathbb{C} , and let $H(\mathbb{D})$ denote the class of all analytic functions in \mathbb{D} .

For $0 and <math>f \in H(\mathbb{D})$, the integral means $M_p(r, f)$ are defined by

$$M_p(r,f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{\frac{1}{p}}, \quad 0 < r < 1.$$

The Hardy space $H^p(0 consists of those functions <math>f \in H(\mathbb{D})$ with

$$||f||_{H^p} = \sup_{0 < r < 1} M_p(r, f) < \infty,$$

and H^{∞} is the space of all bounded functions f in $H(\mathbb{D})$. We refer to [1] for the theory of Hardy spaces. For $0 , the Bergman space <math>A^p$ consists of all functions $f \in H(\mathbb{D})$ for which

$$||f||_{A^p}^p = \int_{\mathbb{D}} |f(z)|^p \mathrm{d}A(z) < \infty,$$

Yun Xu: School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China, e-mail: xun_99_99@163.com

Zhihui Zhou: School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China

^{*} Corresponding author: Shanli Ye, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China, e-mail: slye@zust.edu.cn

where dA denotes the normalized Lebesgue area measure on $\mathbb D$. We refer to [2] for more information about Bergman spaces.

For $\alpha \in \mathbb{R}$, the Dirichlet space \mathcal{D}_{α} consists of all functions $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D})$ for which

$$||f||_{\mathcal{D}_{\alpha}}^2 = \sum_{n=0}^{\infty} (n+1)^{1-\alpha} |a_n|^2 < \infty.$$

We obtain the classical Dirichlet space $\mathcal{D} = \mathcal{D}_0$ if $\alpha = 0$ (see [3]), we obtain the Hardy space $H^2 = \mathcal{D}_1$ if $\alpha = 1$ (see [1,4]), and we obtain the Bergman space $A^2 = \mathcal{D}_2$ if $\alpha = 2$. We mention [3] for complete information on Dirichlet spaces.

Suppose that μ is a positive Borel measure on [0,1), we furtherly define \mathcal{H}_{μ} to be the Hankel matrix $(\mu_{n,k})_{n,k\geq 0}$ with entries $\mu_{n,k}=\mu_{n+k}$, where $\mu_n=\int_{[0,1)}t^n\mathrm{d}\mu(t)$. The matrix \mathcal{H}_{μ} can be seen as an operator on $f(z)=\sum_{k=0}^{\infty}a_kz^k\in H(\mathbb{D})$ by its action on the Taylor coefficients: $\{a_n\}_{n\geq 0}\to\{\sum_{k=0}^{\infty}\mu_{n,k}a_k\}_{n\geq 0}$. Furthermore, we can formally induce the Hankel operator \mathcal{H}_{μ} as follows:

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \mu_{n,k} a_k \right) z^n, \quad z \in \mathbb{D},$$

whenever the right-hand side of this equation can be defined as an analytic function in \mathbb{D} . If μ is the Lebesgue measure, \mathcal{H}_{μ} is the classical Hilbert operator \mathcal{H} . This is why \mathcal{H}_{μ} is called a generalized Hilbert operator.

The operator \mathcal{H}_{μ} has been extensively studied in [5–13]. Galanopoulos and Peláez [13] characterized those measures μ supported on [0, 1) such that the generalized Hilbert operator \mathcal{H}_{μ} is well defined and is bounded on H^1 . Chatzifountas et al. [5] described those measures μ for which \mathcal{H}_{μ} is a bounded operator from H^p into H^q , where 0 < p, $q < \infty$. Diamantopoulos [9] gave many results about the operator induced by Hankel matrices on Dirichlet spaces. Recently, Girela and Merchán [6] have studied the operators \mathcal{H}_{μ} acting on certain conformally invariant spaces.

In Ye and Zhou's works [14,15], they defined the derivative-Hilbert operator \mathcal{DH}_{μ} as follows:

$$\mathcal{DH}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \mu_{n,k} a_k \right) (n+1) z^n.$$

It is closely related to the generalized Hilbert operator, that is,

$$\mathcal{DH}_{\mu}(f)(z) = (z\mathcal{H}_{\mu}(f)(z))'.$$

Therefore, we called \mathcal{DH}_{μ} to be the derivative-Hilbert operator. In that work, the second and the third authors characterized the measures μ for which \mathcal{DH}_{μ} is a bounded (resp. compact) operator from A^p into A^q for some p and q, and they also characterized the measures μ for which \mathcal{DH}_{μ} is a bounded (resp. compact) operator on the Bloch space.

Let us recall the definition of Carleson-type measures that play a very important role in the theory of Banach spaces of analytic functions. We refer to [16,17] for some results about Carleson measures.

If $I \in \partial \mathbb{D}$ in an arc, |I| denotes the length of I, and the Carleson square S(I) is defined as follows:

$$S(I) = \left\{ z = re^{it} : e^{it} \in I, 1 - \frac{|I|}{2\pi} \le r < 1 \right\}.$$

Suppose $0 and <math>\mu$ is a positive Borel measure on D, then μ is said to be an s-Carleson measure if there exists a positive constant C such that

$$\mu(S(I)) \leq C|I|^s$$
, for any interval $I \subset \partial \mathbb{D}$.

Here, μ is said to be a vanishing s-Carleson measure if

$$\lim_{|I| \to 0} \frac{\mu(S(I))}{|I|^s} = 0.$$

If μ is a Borel measure on [0, 1), it can been seen as a Borel measure on \mathbb{D} by identifying it as $\hat{\mu}(A) = \mu(A \cap [0,1))$, for every Borel set $A \subset \mathbb{D}$. In this way, for $0 < s < \infty$, we called μ to be an s-Carleson measure if there exists a positive constant C such that

$$\mu([t, 1)) \leq C(1 - t)^s, \quad t \in [0, 1).$$

Also, u is a vanishing s-Carleson measure on [0, 1] if u satisfies

$$\lim_{t\to 1^-} \frac{\mu([t,1))}{(1-t)^s} = 0.$$

In this article, we mainly characterize the positive Borel measures μ on [0, 1) for which the derivative-Hilbert operator \mathcal{DH}_u is bounded (resp. compact) from Dirichlet spaces $\mathcal{D}_{\alpha}(0 < \alpha \le 2)$ into $\mathcal{D}_{\beta}(2 \le \beta < 4)$.

In this work, C denotes a positive constant that only depends on the displayed parameters but not necessarily the same from one occurrence to the next. In addition, we say that A > B if there exist a constant C (independent of A and B) such that $A \ge CB$, and $A \le B$ is the same as $A \ge B$.

Main results

We shall first give a sufficient condition such that the operator \mathcal{DH}_{μ} is well defined on the Dirichlet space \mathcal{D}_{α} , for $\alpha \geq -1$. And we characterize the measure μ such that \mathcal{DH}_{μ} is bounded from Dirichlet spaces $\mathcal{D}_{\alpha}(0 < \alpha \leq 2)$ into $\mathcal{D}_{\beta}(2 \leq \beta < 4)$.

Theorem 2.1. Suppose that $\alpha \ge -1$, and let μ be a positive Borel measure on [0, 1). If the moments of μ satisfy that $\mu_n = O(n^{-(\frac{\alpha}{2}+\varepsilon)})$ for some $\varepsilon > 0$, then \mathcal{DH}_{μ} is well defined on \mathcal{D}_{α} .

Proof. Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{D}_{\alpha}$. By Cauchy-Schwarz inequality, we obtain that

$$\begin{split} \left| \sum_{k=0}^{\infty} \mu_{n,k} a_{k} \right| &\leq \sum_{k=0}^{\infty} \mu_{n,k} |a_{k}| \lesssim \sum_{k=0}^{\infty} \frac{|a_{k}|}{(n+k+1)^{\frac{\alpha}{2}+\varepsilon}} \\ &= \sum_{k=0}^{\infty} (k+1)^{\frac{\alpha-1}{2}} \frac{1}{(n+k+1)^{\frac{\alpha}{2}+\varepsilon}} (k+1)^{\frac{1-\alpha}{2}} |a_{k}| \\ &\leq \left(\sum_{k=0}^{\infty} \frac{(k+1)^{\alpha-1}}{(n+k+1)^{\alpha+2\varepsilon}} \right)^{\frac{1}{2}} \left(\sum_{k=0}^{\infty} (k+1)^{1-\alpha} |a_{k}|^{2} \right)^{\frac{1}{2}} \\ &= \left(\sum_{k=0}^{\infty} \frac{1}{(k+1)^{1+2\varepsilon}} \right)^{\frac{1}{2}} \|f\|_{\mathcal{D}_{\alpha}} < \infty. \end{split}$$

This shows that the operator \mathcal{DH}_{μ} is well defined on \mathcal{D}_{α} .

Next, we import an auxiliary lemma, which is needed for the main theorem in this article.

Lemma 2.1. [18, Theorem 318] Let K(x, y) be a real function of two variables and has the following properties: (i) K(x, y) is non-negative and homogeneous of degree -1; (ii)

$$\int_{0}^{\infty} K(x,1)x^{-\frac{1}{2}}dx = \int_{0}^{\infty} K(1,y)y^{-\frac{1}{2}}dy = C;$$

(iii) $K(x, 1)x^{-\frac{1}{2}}$ is a strictly decreasing function of x, and $K(1, y)y^{-\frac{1}{2}}$ of y; or, more generally;

iii' $K(x, 1)x^{-\frac{1}{2}}$ decreases from x = 1 onwards, while the interval (0, 1) can be divided into two parts, $(0, \xi)$ and $(\xi, 1)$, of which one may be null, in the first of which it decreases and in the second of which it increases; and $K(1, y)y^{-\frac{1}{2}}$ has similar properties; and K(x, x) = 0.

Then for every sequence $\{a_n\}_{n\geq 0}$ such that $\sum_{n=0}^{\infty} |a_n|^2 < \infty$, we obtain

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} K(n, k) |a_k| \right)^2 \le C^2 \sum_{n=1}^{\infty} |a_n|^2.$$

In short, if $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^2$, we have

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} K(n,k) |a_k| \right)^2 \leq C^2 \|f\|_{H^2}^2.$$

Theorem 2.2. Suppose that $0 < \alpha \le 2$, $2 \le \beta < 4$, and let μ be a positive Borel measure on [0, 1), which satisfies the condition in Theorem 2.1. Then the following conditions are equivalent:

- (i) μ is a $\left(2 \frac{\beta \alpha}{2}\right)$ -Carleson measure.
- (ii) $\mu_n = O\left(\frac{1}{n^{2-\frac{\beta-\alpha}{2}}}\right)$.
- (iii) \mathcal{DH}_{μ} is a bounded operator from \mathcal{D}_{α} into \mathcal{D}_{β} .

Before giving the proof, let us recall some classical conclusions about the Beta function. The Beta function B(s, t) can be defined as follows:

$$B(s,t)=\int_{0}^{\infty}\frac{x^{s-1}}{(1+x)^{s+t}}\mathrm{d}x,$$

for each s, t with Re(s) > 0, Re(t) > 0. The value B(s, t) can be expressed in terms of the Gamma function as follows:

$$B(s, t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}.$$

Now we continue to complete the proof of the Theorem 2.2.

Proof. (i) \Leftrightarrow (ii). The result can be found in [5,10].

(ii) \Rightarrow (iii). First, we define two operators. For $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{D}_{\alpha}$, we define $V_{\alpha}(f)$ by the formula

$$V_{\alpha}(f)(z) = \sum_{n=0}^{\infty} (n+1)^{\frac{1-\alpha}{2}} a_n z^n,$$

and for $g(z) = \sum_{n=0}^{\infty} b_n z^n \in H^2$, we define $T_{\beta}(g)$ by the formula:

$$T_{\beta}(g)(z) = \sum_{n=0}^{\infty} (n+1)^{\frac{\beta-1}{2}} b_n z^n.$$

It is easy to check that V_{α} is a bounded operator from \mathcal{D}_{α} into H^2 , and T_{β} is a bounded operator from H^2 into \mathcal{D}_{β} .

Now suppose that $0 < \alpha \le 2$ and $2 \le \beta < 4$. We consider a new operator S_{μ} defined as follows: If $h(z) = \sum_{n=0}^{\infty} c_n z^n \in H^2$, we define $S_{\mu}(h)$ by

$$S_{\mu}(h)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} (n+1)^{\frac{3-\beta}{2}} (k+1)^{\frac{\alpha-1}{2}} \mu_{n,k} c_k \right) z^n.$$

A direct calculation shows that

$$\begin{split} \|S_{\mu}(h)\|_{H^{2}}^{2} &= \sum_{n=0}^{\infty} \left| \sum_{k=0}^{\infty} (n+1)^{\frac{3-\beta}{2}} (k+1)^{\frac{\alpha-1}{2}} \mu_{n,k} c_{k} \right|^{2} \\ &\leq \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} (n+1)^{\frac{3-\beta}{2}} (k+1)^{\frac{\alpha-1}{2}} \mu_{n,k} |c_{k}| \right)^{2} \\ &\lesssim \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} (n+1)^{\frac{3-\beta}{2}} (k+1)^{\frac{\alpha-1}{2}} \frac{|c_{k}|}{(n+k+2)^{2-\frac{\beta-\alpha}{2}}} \right)^{2} \\ &= \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} n^{\frac{3-\beta}{2}} k^{\frac{\alpha-1}{2}} \frac{|c_{k-1}|}{(n+k)^{2-\frac{\beta-\alpha}{2}}} \right)^{2}. \end{split}$$

Let

$$K(x, y) = x^{\frac{3-\beta}{2}}y^{\frac{\alpha-1}{2}}\frac{1}{(x+y)^{2-\frac{\beta-\alpha}{2}}}, \quad x>0, \quad y>0.$$

Then we obtain that

$$\int_{0}^{\infty} K(x, 1)x^{-\frac{1}{2}} dx = \int_{0}^{\infty} \frac{x^{1-\frac{\beta}{2}}}{(x+1)^{2-\frac{\beta-\alpha}{2}}} dx = B\left(2-\frac{\beta}{2}, \frac{\alpha}{2}\right),$$

$$\int_{0}^{\infty} K(1, y)y^{-\frac{1}{2}} dy = \int_{0}^{\infty} \frac{y^{\frac{\alpha}{2}-1}}{(y+1)^{2-\frac{\beta-\alpha}{2}}} dy = B\left(\frac{\alpha}{2}, 2-\frac{\beta}{2}\right).$$

And it is clear that the functions $K(x, 1)x^{-\frac{1}{2}}$ and $K(1, y)y^{-\frac{1}{2}}$ are strictly decreasing. By applying Lemma 2.1, we have

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} n^{\frac{3-\beta}{2}} k^{\frac{\alpha-1}{2}} \frac{|c_{k-1}|}{(n+k)^{2-\frac{\beta-\alpha}{2}}} \right)^2 \leq \left(B \left(2 - \frac{\beta}{2}, \frac{\alpha}{2} \right) \right)^2 \|h\|_{H^2}^2.$$

This implies that the operator S_u is bounded on H^2 .

For each $f \in \mathcal{D}_{\alpha}$, it is easy to check that

$$T_{\beta} \circ S_{\mu} \circ V_{\alpha}(f)(z) = \sum_{n=0}^{\infty} \left((n+1)^{\frac{\beta-1}{2}} \sum_{k=0}^{\infty} (n+1)^{\frac{3-\beta}{2}} (k+1)^{\frac{\alpha-1}{2}} (k+1)^{\frac{1-\alpha}{2}} \mu_{n,k} a_k \right) z^n$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \mu_{n,k} a_k \right) (n+1) z^n = \mathcal{D} \mathcal{H}_{\mu}(f)(z).$$

Hence, \mathcal{DH}_{μ} is bounded from \mathcal{D}_{α} into \mathcal{D}_{β} .

(iii)
$$\Rightarrow$$
 (i). For $0 < t < 1$, let $f_t(z) = (1 - t^2)^{1 - \frac{\alpha}{2}} \sum_{n=0}^{\infty} t^n z^n$. We have that

$$||f_t||_{\mathcal{D}_{\alpha}}^2 = (1-t^2)^{2-\alpha} \sum_{n=0}^{\infty} (n+1)^{1-\alpha} t^{2n} \approx 1.$$

Therefore,

$$\begin{split} \|\mathcal{D}\mathcal{H}_{\mu}(f_{t})\|_{\mathcal{D}_{\beta}}^{2} &= \sum_{n=0}^{\infty} (n+1)^{1-\beta} \left(\sum_{k=0}^{\infty} (n+1)\mu_{n,k} (1-t^{2})^{1-\frac{\alpha}{2}} t^{k} \right)^{2} \\ &\geq (1-t^{2})^{2-\alpha} \sum_{n=0}^{\infty} (n+1)^{3-\beta} \left(\sum_{k=0}^{\infty} t^{k} \int_{t}^{1} \varsigma^{n+k} \mathrm{d}\mu(\varsigma) \right)^{2} \\ &\geq (1-t^{2})^{2-\alpha} \sum_{n=0}^{\infty} (n+1)^{3-\beta} \left(\sum_{k=0}^{n} t^{n+2k} \mu([t,1)) \right)^{2}. \end{split}$$

5 — Yun Xu et al. DE GRUYTER

Since \mathcal{DH}_{u} is bounded from \mathcal{D}_{α} into \mathcal{D}_{β} , we obtain that

$$\begin{split} \|\mathcal{D}\mathcal{H}_{\mu}\|_{\mathcal{D}_{\beta}}^{2}\|f_{t}\|_{\mathcal{D}_{\beta}}^{2} &\geq \|\mathcal{D}\mathcal{H}_{\mu}(f_{t})\|_{\mathcal{D}_{\beta}}^{2} \\ &\geq (1-t^{2})^{2-a}\sum_{n=0}^{\infty}(n+1)^{3-\beta}\Biggl(\sum_{k=0}^{n}t^{n+2k}\mu([t,1))\Biggr)^{2} \\ &\geq (1-t^{2})^{2-a}\sum_{n=0}^{\infty}(n+1)^{5-\beta}t^{6n}\mu([t,1))^{2} \\ &\approx \frac{\mu([t,1))^{2}}{(1-t^{2})^{4+\alpha-\beta}}. \end{split}$$

This implies that

$$\mu([t,1)) \lesssim (1-t^2)^{2-\frac{\beta-\alpha}{2}},$$

which is equivalent to saying that μ is a $(2 - \frac{\beta - \alpha}{2})$ -Carleson measure.

In particular, if we take $\alpha = \beta = 2$ in Theorem 2.2, we can obtain the following corollary, which the second and the third authors have proved in [14].

Corollary 2.1. The operator \mathcal{DH}_u is bounded on A^2 if and only if the measure μ is a 2-Carleson measure.

Lemma 2.2. Let $0 < \alpha \le 2$, $2 \le \beta < 4$, and \mathcal{DH}_{μ} is a bounded operator from \mathcal{D}_{α} into \mathcal{D}_{β} . Then \mathcal{DH}_{μ} is a compact operator if and only if $\mathcal{DH}_{\mu}(f_n) \to 0$ in H^2 , for any bounded sequence $\{f_n\}$ in \mathcal{D}_{α} , which converges to 0 uniformly on every compact subset of \mathbb{D} .

Proof. The proof is similar to that of in [19, Proposition 3.11], and we omit the details.

Theorem 2.3. Suppose that $0 < \alpha \le 2$, $2 \le \beta < 4$, and let μ be a positive Borel measure on [0, 1), which satisfies the condition in Theorem 2.1. Then the following conditions are equivalent:

- (i) μ is a vanishing $(2 \frac{\beta \alpha}{2})$ -Carleson measure.
- (ii) $\mu_n = o\left(\frac{1}{n^{2-\frac{\beta-\alpha}{2}}}\right)$.
- (iii) \mathcal{DH}_{μ} is a compact operator from \mathcal{D}_{α} into \mathcal{D}_{β} .

Proof. (i) \Leftrightarrow (ii). The result can be found in [5,10].

(ii)
$$\Rightarrow$$
 (iii). Take $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{D}_{\alpha}$ and $h(z) = \sum_{n=0}^{\infty} c_n z^n \in H^2$. Let

$$S_{\mu,m}(h)(z) = \sum_{n=0}^{m} \left(\sum_{k=0}^{\infty} (n+1)^{\frac{3-\beta}{2}} (k+1)^{\frac{\alpha-1}{2}} \mu_{n,k} c_k \right) z^n.$$

Notice that $S_{\mu,m}$ is a finite rank operator, then $S_{\mu,m}$ is compact on H^2 . Since μ_n satisfies $\mu_n = o(n^{-(2-\frac{\beta-\alpha}{2})})$, we obtain that for any $\varepsilon > 0$, and there exists an N > 0 such that $|\mu_m| < \varepsilon n^{-(2-\frac{\beta-\alpha}{2})}$ when m > N. Then we note

$$(S_{\mu}-S_{\mu,m})(h)(z)=\sum_{n=m+1}^{\infty}\left(\sum_{k=0}^{\infty}(n+1)^{\frac{3-\beta}{2}}(k+1)^{\frac{\alpha-1}{2}}\mu_{n,k}c_{k}\right)z^{n},$$

$$(T_{\beta} \circ S_{\mu} \circ V_{a} - T_{\beta} \circ S_{\mu,m} \circ V_{a})(f)(z) = \sum_{n=m+1}^{\infty} \left(\sum_{k=0}^{\infty} (n+1)\mu_{n,k}a_{k}\right) z^{n}$$

$$= T_{\beta} \circ (S_{\mu} - S_{\mu,m}) \circ V_{a}(f)(z)$$

$$= (\mathcal{D}\mathcal{H}_{\mu} - \mathcal{D}\mathcal{H}_{\mu,m})(f)(z).$$

Therefore,

$$\|(S_{\mu}-S_{\mu,m})(h)\|_{H^{2}}^{2}=\sum_{n=m+1}^{\infty}\left|\sum_{k=0}^{\infty}(n+1)^{\frac{3-\beta}{2}}(k+1)^{\frac{\alpha-1}{2}}\mu_{n,k}c_{k}\right|^{2}.$$

Then for m > N, we have

$$\|(S_{\mu}-S_{\mu,m})(h)\|_{H^{2}}^{2} \leq \varepsilon^{2} \sum_{n=m+1}^{\infty} \left(\sum_{k=0}^{\infty} (n+1)^{\frac{3-\beta}{2}} (k+1)^{\frac{\alpha-1}{2}} \frac{|c_{k}|}{(n+k+2)^{2-\frac{\beta-\alpha}{2}}}\right)^{2}.$$

By Lemma 2.1 and the proof of Theorem 2.2, we obtain

$$||(S_{\mu} - S_{\mu,m})(h)||_{H^2}^2 \lesssim \varepsilon^2 ||h||_{H^2}^2.$$

Thus.

$$||S_{\mu}-S_{\mu,m}||_{H^2\to H^2}\lesssim \varepsilon.$$

It is clear that

$$\|\mathcal{D}\mathcal{H}_{\mu} - \mathcal{D}\mathcal{H}_{\mu,m}\|_{\mathcal{D}_{\alpha} \to \mathcal{D}_{\beta}} \lesssim \varepsilon.$$

Hence, \mathcal{DH}_{μ} is compact from \mathcal{D}_{α} into \mathcal{D}_{β} .

(iii)
$$\Rightarrow$$
 (i). For $0 < t < 1$, let $f_t(z) = (1 - t^2)^{1 - \frac{\alpha}{2}} \sum_{n=0}^{\infty} t^n z^n$, we have

$$||f_t||_{\mathcal{D}_\alpha}^2 = (1-t^2)^{2-\alpha} \sum_{n=0}^{\infty} (n+1)^{1-\alpha} t^{2n} \approx 1,$$

and $\lim_{t\to 1} f_t(z) = 0$ for any $z\in \mathbb{D}$. Since all Hilbert spaces are reflexive, we obtain that f_t is convergent weakly to 0 in \mathcal{D}_{α} as $t\to 1$. By the assumption that \mathcal{DH}_{μ} is compact from \mathcal{D}_{α} into \mathcal{D}_{β} , we have

$$\lim_{t\to 1}\|\mathcal{D}\mathcal{H}_{\mu}(f_t)\|_{\mathcal{D}_{\beta}}=0.$$

Similar to the proof of Theorem 2.2, we obtain that

$$\mu([t,1)) \lesssim (1-t)^{2-\frac{\beta-\alpha}{2}} \|\mathcal{DH}_{\mu}(f_t)\|_{\mathcal{D}_{\beta}}.$$

Therefore,

$$\lim_{t\to 1}\frac{\mu([t,1))}{(1-t)^{2-\frac{\beta-\alpha}{2}}}=0.$$

Thus, μ is a vanishing $(2 - \frac{\beta - \alpha}{2})$ -Carleson measure.

Acknowledgments: The authors are grateful to the referees for instructive comments and numerous stylistic corrections.

Funding information: The research was supported by the National Natural Science Foundation of China (Grant No. 11671357) and the Zhejiang Provincial Natural Science Foundation (Grant No. LY23A010003).

Conflict of interest: The authors state no conflict of interest.

References

- [1] P. L. Duren, *Theory of H^p Spaces*, Academic Press, New York, 1970.
- [2] P. L. Duren and A. Schuster, Bergman Spaces, American Mathematical Society, Providence, 2004.

- [3] O. El-Fallah, K. Kellay, and J. Mashreghi, A Primer on the Dirichlet Space, Cambridge University Press, New York, 2014, DOI: https://doi.org/10.1017/CB09781107239425.
- [4] K. Zhu, Operator Theory in Function Spaces, Mathematical Surveys and Monographs, vol. 138, 2nd ed., American Mathematical Society, Providence, 2007.
- [5] C. Chatzifountas, D. Girela, and J. A. Peláez, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl. 413 (2014), no. 1, 154–168, DOI: https://doi.org/10.1016/j.jmaa.2013.11.046.
- [6] D. Girela and N. Merchán, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal. 12 (2018), no. 2, DOI: https://doi.org/10.1215/17358787-2017-0023.
- [7] D. Girela and N. Merchán, A Hankel matrix acting on spaces of analytic functions, Integral Equations Operator Theory 89 (2017), no. 3, 581–594, DOI: https://doi.org/10.1007/s00020-017-2409-3.
- [8] D. Girela and N. Merchán, *Hankel matrices acting on the Hardy space H*¹ and on Dirichlet spaces, Rev. Math. Complut. **32** (2019), no. 3, 799–822, DOI: https://doi.org/10.1007/s13163-018-0288-z.
- [9] E. Diamantopoulos, *Operators induced by Hankel matrices on Dirichlet spaces*, Analysis **24** (2004), no. 4, 345–360, DOI: https://doi.org/10.1524/anly.2004.24.14.345.
- [10] G. Bao and H. Wulan, Hankel matrices acting on Dirichlet spaces, J. Math. Anal. Appl. 409 (2014), no. 1, 228-235, DOI: https://doi.org/10.1016/j.jmaa.2013.07.006.
- [11] M. Jevtić and B. Karapetrović, *Generalized Hilbert matrices acting onspaces that are close to the Hardy space H*¹ and to the space BMOA, Complex Anal. Oper. Theory **13** (2019), no. 5, 2357–2370, DOI: https://doi.org/10.1007/s11785-019-00892-4.
- [12] N. Merchán, Mean Lipschitz spaces and a generalized Hilbert operator, Collect. Math. 70 (2019), no. 1, 59-69, DOI: https://doi.org/10.1007/s13348-018-0217-y.
- [13] P. Galanopoulos and J. A. Peláez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math. 200 (2010), no. 3, 201–220, DOI: https://doi.org/10.4064/sm200-3-1.
- [14] S. Ye and Z. Zhou, A Derivative-Hilbert operator acting on Bergman spaces, J. Math. Anal. Appl. 506 (2022), no. 1, 125553, DOI: https://doi.org/10.1016/j.jmaa.2021.125553.
- [15] S. Ye and Z. Zhou, A Derivative-Hilbert operator acting on the Bloch Space, Complex Anal. Oper. Theory 15 (2021), no. 5, 88, DOI: https://doi.org/10.1007/s11785-021-01135-1.
- [16] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. Math. 76 (1962), no. 2, 547–559, https://doi.org/10.2307/1970375.
- [17] P. L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math.Soc. (N.S.) 75 (1969), no. 1, 143–146, DOI: https://doi.org/10.1090/S0002-9904-1969-12181-6.
- [18] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, New York, 1952.
- [19] C. Cowen, and B. MacCluer, *Composition Operators on Spaces of Analytic Functions*, CRC Press, Boca Raton, 1995, DOI: https://doi.org/10.1201/9781315139920.