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Abstract: Let μ be a positive Borel measure on the interval 0, 1[ ). The Hankel matrix μμ n k n k, , 0� ( )=
≥

with

entries μ μn k n k, =

+
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[ )
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where f z a zn n
n

0( ) = ∑

=

∞ is an analytic function in � . In this article, we characterize those positive Borel
measures on 0, 1[ ) for which μ�� is bounded (resp. compact) from Dirichlet spaces α0 2α� ( )< ≤

into β2 4β� ( )≤ < .
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1 Introduction

Let z z: 1� �{ ∣ ∣ }= ∈ < be the open unit disk in the complex plane �, and let H �( ) denote the class of all
analytic functions in � .

For p0 < < ∞ and f H �( )∈ , the integral means M r f,p( ) are defined by

M r f
π

f re θ r, 1
2

d , 0 1.p

π

iθ p

0

2 p
1

( )
⎛

⎝

⎜⎜
∣ ( )∣
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⎠

⎟⎟
∫= < <

The Hardy space H p0p( )< < ∞ consists of those functions f H �( )∈ with

f M r fsup , ,H
r

p
0 1

p ( )‖ ‖ = < ∞

< <

and H∞ is the space of all bounded functions f in H �( ). We refer to [1] for the theory of Hardy spaces.
For p0 < < ∞, the Bergman space Ap consists of all functions f H �( )∈ for which

f f z A zd ,A
p p

p

�

∣ ( )∣ ( )∫‖ ‖ = < ∞

Yun Xu: School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China,
e-mail: xun_99_99@163.com



* Corresponding author: Shanli Ye, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023,
China, e-mail: slye@zust.edu.cn

Zhihui Zhou: School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China

Open Mathematics 2023; 21: 20220559

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/math-2022-0559
mailto:xun_99_99@163.com
mailto:slye@zust.edu.cn


where Ad denotes the normalized Lebesgue area measure on � . We refer to [2] for more information about
Bergman spaces.

For α �∈ , the Dirichlet space α� consists of all functions f z a z Hn n
n

0 �( ) ( )= ∑ ∈

=

∞ for which

f n a1 .
n

α
n

2

0

1 2
α� ( ) ∣ ∣∑‖ ‖ = + < ∞

=

∞

−

We obtain the classical Dirichlet space 0� �= if α 0= (see [3]), we obtain the Hardy space H2
1�= if α 1=

(see [1,4]), and we obtain the Bergman space A2
2�= if α 2= . We mention [3] for complete information on

Dirichlet spaces.
Suppose that μ is a positive Borel measure on [0,1), we furtherly define μ� to be the Hankel matrix

μn k n k, , 0( )
≥

with entries μ μn k n k, =

+

, where μ t μ tdn
n

0,1
( )

[ )
∫= . The matrix μ� can be seen as an operator on

f z a z Hk k
k

0 �( ) ( )= ∑ ∈

=

∞ by its action on the Taylor coefficients: a μ an n k n k k n0 0 , 0{ } →
{
∑

}≥
=

∞

≥

. Furthermore,

we can formally induce the Hankel operator μ� as follows:

f z μ a z z, ,μ
n k

n k k
n

0 0
, �� ⎜ ⎟( )( )
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⎝
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=
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whenever the right-hand side of this equation can be defined as an analytic function in � . If μ is the
Lebesgue measure, μ� is the classical Hilbert operator � . This is why μ� is called a generalized Hilbert
operator.

The operator μ� has been extensively studied in [5–13]. Galanopoulos and Peláez [13] characterized
those measures μ supported on 0, 1[ ) such that the generalized Hilbert operator μ� is well defined and is

bounded on H 1. Chatzifountas et al. [5] described those measures μ for which μ� is a bounded operator
from H p into Hq, where p q0 ,< < ∞. Diamantopoulos [9] gave many results about the operator induced by
Hankel matrices on Dirichlet spaces. Recently, Girela and Merchán [6] have studied the operators μ� acting
on certain conformally invariant spaces.

In Ye and Zhou’s works [14,15], they defined the derivative-Hilbert operator μ�� as follows:

f z μ a n z1 .μ
n k

n k k
n

0 0
,�� ⎜ ⎟( )( )

⎛

⎝

⎞

⎠

( )∑ ∑= +

=

∞

=

∞

It is closely related to the generalized Hilbert operator, that is,

f z z f z .μ μ�� �( )( ) ( ( )( ))= ′

Therefore, we called μ�� to be the derivative-Hilbert operator. In that work, the second and the third
authors characterized the measures μ for which μ�� is a bounded (resp. compact) operator from Ap into Aq

for some p and q, and they also characterized the measures μ for which μ�� is a bounded (resp. compact)
operator on the Bloch space.

Let us recall the definition of Carleson-type measures that play a very important role in the theory
of Banach spaces of analytic functions. We refer to [16,17] for some results about Carleson measures.

If I �⊂ ∂ in an arc, I∣ ∣ denotes the length of I , and the Carleson square S I( ) is defined as follows:

S I z re e I I
π

r: , 1
2

1 .it it( )
∣ ∣

{ }
= = ∈ − ≤ <

Suppose p0 < < ∞ and μ is a positive Borel measure on � , then μ is said to be an s-Carleson measure
if there exists a positive constant C such that

μ S I C I I, for any interval .s �( ( )) ∣ ∣≤ ⊂ ∂

Here, μ is said to be a vanishing s-Carleson measure if

μ S I
I

lim 0.
I s0

( ( ))

∣ ∣∣ ∣
=

→
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If μ is a Borel measure on [0, 1), it can been seen as a Borel measure on � by identifying it as
μ A μ Aˆ 0, 1( ) ( [ ))= ∩ , for every Borel set A �⊂ . In this way, for s0 < < ∞, we called μ to be an
s-Carleson measure if there exists a positive constant C such that

μ t C t t, 1 1 , 0, 1 .s([ )) ( ) [ )≤ − ∈

Also, μ is a vanishing s-Carleson measure on 0, 1[ ] if μ satisfies

μ t
t

lim , 1
1

0.
t s1

([ ))

( )−

=

→

−

In this article, we mainly characterize the positive Borel measures μ on 0, 1[ ) for which the derivative-
Hilbert operator μ�� is bounded (resp. compact) from Dirichlet spaces α0 2α� ( )< ≤ into β2 4β� ( )≤ < .

In this work, C denotes a positive constant that only depends on the displayed parameters but not
necessarily the same from one occurrence to the next. In addition, we say that A B≳ if there exist a constant
C (independent of A and B) such that A CB≥ , and A B≲ is the same as A B≳ .

2 Main results

We shall first give a sufficient condition such that the operator μ�� is well defined on the Dirichlet space

α� , for α 1≥ − . And we characterize the measure μ such that μ�� is bounded from Dirichlet spaces
α0 2α� ( )< ≤ into β2 4β� ( )≤ < .

Theorem 2.1. Suppose that α 1≥ − , and let μ be a positive Borel measure on 0, 1[ ). If the moments of μ satisfy

that μ O nn
εα

2( )
( )

=

− + for some ε 0> , then μ�� is well defined on .α�

Proof. Suppose f z a zn n
n

α0 �( ) = ∑ ∈

=

∞ . By Cauchy-Schwarz inequality, we obtain that

μ a μ a a
n k

k
n k

k a

k
n k

k a

k
f

1

1 1
1

1

1
1

1

1
1

.

k
n k k

k
n k k

k

k
ε

k
ε k

k

α

α ε
k

α
k

k
ε

0
,

0
,

0

0

0

1

2
0

1 2

0
1 2

α

α
α

α

α

2

1
2

2

1
2

1
2

1
2

1
2

�

⎜ ⎟ ⎜ ⎟

⎜ ⎟

∣ ∣
∣ ∣

( )

( )
( )

( ) ∣ ∣

⎛

⎝

( )

( )

⎞

⎠

⎛

⎝

( ) ∣ ∣
⎞

⎠

⎛

⎝
( )

⎞

⎠

∑ ∑ ∑

∑

∑ ∑

∑

≤ ≲

+ +

= +

+ +

+

≤

+

+ +

+

=

+

‖ ‖ < ∞

=

∞

=

∞

=

∞
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+

=

∞
−

+

=

∞

−

=

∞

+
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This shows that the operator μ�� is well defined on .α� □

Next, we import an auxiliary lemma, which is needed for the main theorem in this article.

Lemma 2.1. [18, Theorem 318] Let K x y,( ) be a real function of two variables and has the following properties:
(i) K x y,( ) is non-negative and homogeneous of degree 1− ;
(ii)

K x x x K y y y C, 1 d 1, d ;
0 0

1
2

1
2( ) ( )∫ ∫= =

∞

−

∞

−

(iii) K x x, 1 1
2( ) − is a strictly decreasing function of x, and K y y1, 1

2( ) − of y; or, more generally;
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iii’ K x x, 1 1
2( ) − decreases from x 1= onwards, while the interval 0, 1( ) can be divided into two parts, ξ0,( )

and ξ , 1( ), of which one may be null, in the first of which it decreases and in the second of which it

increases; and K y y1, 1
2( ) − has similar properties; and K x x, 0( ) = .

Then for every sequence an n 0{ }
≥

such that an n0
2∣ ∣∑ < ∞

=

∞ , we obtain

K n k a C a, .
n k

k
n

n
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2
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( )∣ ∣
⎞

⎠

∣ ∣∑ ∑ ∑≤

=
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=

∞
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∞

In short, if f z a z Hn n
n

0
2( ) = ∑ ∈

=

∞ , we have

K n k a C f, .
n k

k H
1 1

2
2 2

2⎜ ⎟
⎛

⎝

( )∣ ∣
⎞

⎠

∑ ∑ ≤ ‖ ‖

=

∞

=

∞

Theorem 2.2. Suppose that α0 2< ≤ , β2 4≤ < , and let μ be a positive Borel measure on 0, 1[ ),
which satisfies the condition in Theorem 2.1. Then the following conditions are equivalent:

(i) μ is a 2 β α
2( )

−

− -Carleson measure.

(ii) μ On
n

1
β α2 2

⎜ ⎟
⎛

⎝

⎞

⎠
=

−

−

.

(iii) μ�� is a bounded operator from α� into .β�

Before giving the proof, let us recall some classical conclusions about the Beta function. The Beta
function B s t,( ) can be defined as follows:

B s t x
x

x,
1

d ,
s

s t
0

1
( )

( )
∫=

+

∞

−

+

for each s t, with s tRe 0, Re 0( ) ( )> > . The value B s t,( ) can be expressed in terms of the Gamma function as
follows:

B s t s t
s t

, Γ Γ
Γ

.( )
( ) ( )

( )
=

+

Now we continue to complete the proof of the Theorem 2.2.

Proof. (i) ⇔ (ii). The result can be found in [5,10].
(ii) ⇒ (iii). First, we define two operators. For f z a zn n

n
α0 �( ) = ∑ ∈

=

∞ , we define V fα( ) by the formula

V f z n a z1 ,α
n

n
n

0

α1
2( )( ) ( )∑= +

=

∞

−

and for g z b z Hn n
n

0
2( ) = ∑ ∈

=

∞ , we define T gβ( ) by the formula:

T g z n b z1 .β
n

n
n

0

β 1
2( )( ) ( )∑= +

=

∞

−

It is easy to check thatVα is a bounded operator from α� into H2, and Tβ is a bounded operator from H2

into β� .
Now suppose that α0 2< ≤ and β2 4≤ < . We consider a new operator Sμ defined as follows:

If h z c z Hn n
n

0
2( ) = ∑ ∈

=

∞ , we define S hμ( ) by

S h z n k μ c z1 1 .μ
n k

n k k
n

0 0
,

β α3
2

1
2⎜ ⎟( )( )

⎛

⎝

( ) ( )
⎞

⎠

∑ ∑= + +

=

∞

=

∞

−
−
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A direct calculation shows that

S h n k μ c

n k μ c

n k c
n k

n k c
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−
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−
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∞
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−
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Let

K x y x y
x y

x y, 1 , 0, 0.
2

β α

β α

3
2

1
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2

( )
( )

=

+

> >

−

−
−

−

Then we obtain that

K x x x x
x

x B β α

K y y y y
y

y B α β

, 1 d
1

d 2
2

,
2

,

1, d
1

d
2

, 2
2

.

0 0

1

2

0 0

1

2

β

β α

α

β α

1
2

2

2

1
2

2

2

⎜ ⎟

⎜ ⎟

( )
( )

⎛

⎝

⎞

⎠

( )
( )

⎛

⎝

⎞

⎠
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=

+

= −

=

+

= −

∞

−

∞

−

−

∞

−

∞

−

−

−

−

And it is clear that the functions K x x, 1 1
2( ) − and K y y1, 1

2( ) − are strictly decreasing. By applying Lemma 2.1,
we have

n k c
n k

B β α h2
2

,
2

.
n k

β a k
H

1 1

3
2

1
2 1

2

2 2
2

β α
2

2⎜ ⎟⎜ ⎟

⎛

⎝
⎜

∣ ∣
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⎞

⎠
⎟

⎛

⎝

⎛

⎝
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⎠
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+

≲ − ‖ ‖
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∞

=

∞

−
−

−

−

−

This implies that the operator Sμ is bounded on H2.
For each f α�∈ , it is easy to check that

T S V f z n n k k μ a z

μ a n z f z

1 1 1 1

1 .

β μ α
n k

n k k
n

n k
n k k

n
μ

0 0
,

0 0
,
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1
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2
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⎞
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⎝

⎞

⎠
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=

∞

=

∞

=

∞

=

∞

− −
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Hence, μ�� is bounded from α� into β� .
(iii) ⇒ (i). For t0 1< < , let f z t t z1 .t n

n n2 1
0

α
2( ) ( )= − ∑

−

=

∞ We have that

f t n t1 1 1.t
α

n

α n2 2 2

0

1 2
α� ( ) ( )∑‖ ‖ = − + ≈

−

=

∞

−

Therefore,

f n n μ t t

t n t ς μ ς

t n t μ t

1 1 1

1 1 d

1 1 , 1 .

μ t
n

β

k
n k

α k

α

n

β

k

k

t

n k

α

n

β

k

n
n k

2

0

1

0
,

2 1 2

2

2 2

0

3

0

1 2

2 2

0

3

0

2
2

β
�� � ⎜ ⎟

⎜ ⎟

( ) ( )
⎛

⎝

( ) ( )
⎞

⎠

( ) ( )
⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟

( ) ( )
⎛

⎝

([ ))
⎞

⎠

∫

∑ ∑

∑ ∑

∑ ∑

‖ ‖ = + + −

≳ − +

≳ − +

=

∞

−

=

∞

−

−

=

∞

−

=

∞

+

−

=

∞

−

=

+
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Since μ�� is bounded from α� into β� , we obtain that

f f

t n t μ t

t n t μ t

μ t
t

1 1 , 1

1 1 , 1

, 1
1

.

μ t μ t

a

n

β

k

n
n k

a

n

β n

α β

2 2 2

2 2

0

3

0

2
2

2 2

0

5 6 2

2

2 4

β β β
�� ��� � �

⎜ ⎟

( )

( ) ( )
⎛

⎝

([ ))
⎞

⎠

( ) ( ) ([ ))

([ ))

( )

∑ ∑

∑

‖ ‖ ‖ ‖ ≥ ‖ ‖

≳ − +

≳ − +

≈

−

−

=

∞

−

=

+

−

=

∞

−

+ −

This implies that

μ t t, 1 1 ,2 2 β α
2([ )) ( )≲ −

−

−

which is equivalent to saying that μ is a 2 β α
2( )−

− -Carleson measure. □

In particular, if we take α β 2= = in Theorem 2.2, we can obtain the following corollary, which the
second and the third authors have proved in [14].

Corollary 2.1. The operator μ�� is bounded on A2 if and only if the measure μ is a 2-Carleson measure.

Lemma 2.2. Let α0 2< ≤ , β2 4≤ < , and μ�� is a bounded operator from α� into .β� Then μ�� is
a compact operator if and only if f 0μ n�� ( ) → in H2, for any bounded sequence fn{ } in α� , which converges
to 0 uniformly on every compact subset of � .

Proof. The proof is similar to that of in [19, Proposition 3.11], and we omit the details. □

Theorem 2.3. Suppose that α0 2< ≤ , β2 4≤ < , and let μ be a positive Borel measure on 0, 1[ ),
which satisfies the condition in Theorem 2.1. Then the following conditions are equivalent:

(i) μ is a vanishing 2 β α
2( )−

− -Carleson measure.

(ii) μ on
n

1
β α2 2

⎜ ⎟
⎛

⎝

⎞

⎠
=

−

−

.

(iii) μ�� is a compact operator from α� into β� .

Proof. (i) ⇔ (ii). The result can be found in [5,10].
(ii) ⇒ (iii). Take f z a zn n

n
α0 �( ) = ∑ ∈

=

∞ and h z c z Hn n
n

0
2( ) = ∑ ∈

=

∞ . Let

S h z n k μ c z1 1 .μ m
n

m

k
n k k

n
,

0 0
,

β α3
2

1
2⎜ ⎟( )( )

⎛

⎝

( ) ( )
⎞

⎠

∑ ∑= + +

= =

∞

−
−

Notice that Sμ m, is a finite rank operator, then Sμ m, is compact on H2. Since μn satisfies μ o nn
2 β α

2( )( )
=

− −

−

,

we obtain that for any ε 0,> and there exists an N 0> such that μ εnm
2 β α

2∣ ∣ ( )
<

− −

−

whenm N> . Then we note

S S h z n k μ c z1 1 ,μ μ m
n m k

n k k
n

,
1 0

,
β α3

2
1

2⎜ ⎟( )( )( )
⎛

⎝

( ) ( )
⎞

⎠

∑ ∑− = + +

= +

∞

=

∞

−
−

T S V T S V f z n μ a z

T S S V f z
f z

1

.

β μ a β μ m a
n m k

n k k
n

β μ μ m a

μ μ m

,
1 0

,

,

,�� ��

⎜ ⎟( )( )( )
⎛

⎝

( )
⎞

⎠
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∑ ∑∘ ∘ − ∘ ∘ = +
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= −

= +

∞

=

∞
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Therefore,

S S h n k μ c1 1 .μ μ m H
n m k

β α
n k k, 2

1 0

3
2

1
2 ,

2

2( )( ) ( ) ( )∑ ∑‖ − ‖ = + +

= +

∞

=

∞

−
−

Then for m N ,> we have

S S h ε n k c
n k

1 1
2

.μ μ m H
n m k

β α k
, 2 2

1 0

3
2

1
2

2

2

β α2
2

( )( )
⎛

⎝
⎜ ( ) ( )

∣ ∣

( )

⎞

⎠
⎟∑ ∑‖ − ‖ ≲ + +

+ += +

∞

=

∞

−
−

−

−

By Lemma 2.1 and the proof of Theorem 2.2, we obtain

S S h ε h .μ μ m H H, 2 2 2
2 2( )( )‖ − ‖ ≲ ‖ ‖

Thus,

S S ε.μ μ m H H, 2 2‖ − ‖ ≲
→

It is clear that

ε.μ μ m, α β�� �� � �‖ − ‖ ≲
→

Hence, μ�� is compact from α� into β� .
(iii) ⇒ (i). For t0 1,< < let f z t t z1 ,t n

n n2 1
0

α
2( ) ( )= − ∑

−

=

∞ we have

f t n t1 1 1,t
α

n

α n2 2 2

0

1 2
α� ( ) ( )∑‖ ‖ = − + ≈

−

=

∞

−

and f zlim 0t t1 ( ) =
→

for any z �∈ . Since all Hilbert spaces are reflexive, we obtain that ft is convergent
weakly to 0 in α� as t 1→ . By the assumption that μ�� is compact from α� into ,β� we have

flim 0.
t

μ t
1 β�� �( )‖ ‖ =

→

Similar to the proof of Theorem 2.2, we obtain that

μ t t f, 1 1 .μ t
2 β α

β2 �� �([ )) ( ) ( )≲ − ‖ ‖

−

−

Therefore,

μ t
t

lim , 1
1

0.
t 1 2 β α

2

([ ))

( )−

=

→ −

−

Thus, μ is a vanishing 2 β α
2( )−

− -Carleson measure. □
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