Research Article

Chunhua Li*, Lingxiang Meng, Jieying Fang, and Baogen Xu

Admissible congruences on type B semigroups

https://doi.org/10.1515/math-2022-0551 received July 6, 2022; accepted December 15, 2022

Abstract: The main aim of this article is to study admissible congruences on a type B semigroup. First, we give characterizations of the minimum admissible congruence whose trace is a normal congruence on a type B semigroup. After obtaining some properties of admissible congruences with the same trace on a type B semigroup, we introduce the notion of a normal subsemigroup and give characterizations of the minimum and maximum admissible congruences whose kernels are normal subsemigroups. Finally, the concept of a congruence pair of a type B semigroup is given, and two congruences associated with the congruence pair are obtained.

Keywords: admissible congruences, trace, type B semigroups, congruence pairs

MSC 2020: 20M10, 06F05

1 Introduction

Since the establishment of the algebraic theory of semigroups, regular semigroups have been an important research topic. In recent years, as a class of generalized regular semigroups, abundant semigroups have attracted more and more attention from semigroup scholars (see [1-14]). In 1979, the concept of a type B semigroup was introduced by Fountain in [15]. Recently, many semigroup scholars investigated type B semigroups and obtained some results (see [6-8,10,12,13]). Congruences play an important role in characterizations of properties of semigroups. The study of congruences of semigroups has been deeply developed (see [1–3,7,16–20]). The kernel trace method is very successful in the study of an inverse semigroup congruence. In 1954, the concept of a kernel normal system was proposed for the first time by Preston, and congruences on inverse semigroups are characterized by the kernel normal system. On the basis of a kernel normal system, Reilly and Scheiblich proposed concepts of kernels and traces of congruences on inverse semigroups and obtained a kernel trace method [21]. Petrich studied congruences on inverse semigroups by using the method of a kernel trace in [18]. El-Qalliali extends it to the study of congruences of ample semigroups in [1]. It is well known that ample semigroups and type B semigroups are generalizations of inverse semigroups in the range of abundant semigroups. Therefore, it is a natural thing to characterize congruences of a type B semigroup by using the above method. This article is committed to extending these results to type B semigroups.

Lingxiang Meng: School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, P. R. China,

e-mail: 1662858823@gg.com

Jieying Fang: School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, P. R. China,

e-mail: 1421141879@qq.com

Baogen Xu: School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, P. R. China,

e-mail: Baogenxu@163.com

^{*} Corresponding author: Chunhua Li, School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, P. R. China, e-mail: chunhuali66@163.com

We proceed as follows: Section 2 provides some basic notions and properties of abundant semigroups. In particular, some properties of type B semigroups are given. In Section 3, we consider normal congruences of a type B semigroup S. It is shown that the minimum admissible congruence on S whose restriction to the idempotent set E of S is a normal congruence π and a congruence containing any admissible congruence whose restriction to E is a normal congruence π . In Section 4, we characterize admissible congruences with the same trace. In Section 5, we investigate kernels of congruences on a type B semigroup and obtain equivalent sets of kernels of σ_{π} and μ_{π} . In Section 6, we give the notion of a normal subsemigroup N of a type B semigroup and obtain some interesting results. In Section 7, we introduce the definition of a congruence pair on a type B semigroup. In Section 8, a conclusion is given.

2 Preliminaries

Throughout this article, we use notions and notations of [15,22–24]. For undefined concepts, the reader can refer to [24].

In the following, we first recall some basic properties of Green* relations \mathcal{L}^* and \mathcal{R}^* . For convenience, \mathcal{L}^*_a and \mathcal{R}^*_a denote the \mathcal{L}^* -class and \mathcal{R}^* -class containing a, respectively; E(S) denotes the set of idempotents of S; a^+ and a^* denote the typical idempotent of the \mathcal{L}^* -class and \mathcal{R}^* -class containing a, respectively.

Lemma 2.1. [23] Let S be a semigroup and $a, b \in S$. Then the following statements are equivalent:

- (1) $a\mathcal{L}^*b$ ($a\mathcal{R}^*b$);
- (2) for all $x, y \in S^1$, ax = ay (xa = ya) if and only if bx = by (xb = yb).

Corollary 2.2. [23] Let S be a semigroup and $a, e = e^2 \in S$. Then the following statements are equivalent:

- (1) $a\mathcal{L}^*e$ ($a\mathcal{R}^*e$);
- (2) ae = a (a = ea) and for all $x, y \in S^1$, ax = ay (xa = ya) implies ex = ey (xe = ye).

Obviously, the relations \mathcal{L}^* and \mathcal{R}^* are right and left congruences on semigroup S, respectively.

Definition 2.1. [15] A semigroup S is rpp (resp., lpp) if each \mathcal{L}^* -class (resp., \mathcal{R}^* -class) of S contains an idempotent. A semigroup S is said to be abundant if it is both rpp and lpp.

Definition 2.2. [15] An rpp (resp., lpp) semigroup S is *right adequate* (resp., left adequate) if E(S) is a semilattice. A semigroup is said to be adequate if it is both left and right adequate.

As in [15], if S is a right adequate semigroup, by Proposition 1.3 [15], any \mathcal{L}^* -class of S contains a unique idempotent. Dually, any \mathcal{R}^* -class of a left adequate semigroup S contains a unique idempotent.

Definition 2.3. [15] A right adequate semigroup *S* is right type *B*, if it satisfies the following conditions:

- (B1) for all $e, f \in E(S^1), a \in S, (efa)^* = (ea)^*(fa)^*;$
- (B2) for all $a \in S$, $e \in E(S)$, if $e \le a^*$, then there is $f \in E(S^1)$ such that $e = (fa)^*$.

Dually, a left adequate semigroup *S* is left type *B*, if it satisfies the following conditions:

- (B1') for all $e, f \in E(S^1)$, $a \in S$, $(aef)^+ = (ae)^+(af)^+$;
- (B2') for all $a \in S$, $e \in E(S)$, if $e \le a^+$, then there is $f \in E(S^1)$ such that $e = (af)^+$.

A semigroup is said to be type *B* if it is both left and right type B.

Lemma 2.3. [15] Let S be an adequate semigroup and a, $b \in S$. Then the following statements hold:

- (1) $a\mathcal{L}^*b$ if and only if $a^* = b^*$; $a\mathcal{R}^*b$ if and only if $a^+ = b^+$;
- (2) $(ab)^* = (a^*b)^*; (ab)^+ = (ab^+)^+;$

- (3) $(ab)^*b^* = (ab)^*; a^+(ab)^+ = (ab)^+;$
- (4) $(ae)^* = a^*e$; $(ea)^+ = ea^+$.

Recall from [22] that a congruence ρ on an adequate semigroup S is said to be *admissible* if for all $a \in S$, x, $y \in S^1$,

$$ax\rho av \Rightarrow a^*x\rho a^*v$$
, $xa\rho va \Rightarrow xa^+\rho va^+$.

Lemma 2.4. [22] Let ρ be an admissible congruence on an adequate semigroup S. If a, b are two elements of S such that $a\rho b$, then $a^*\rho b^*$ and $a^+\rho b^+$.

Lemma 2.5. [22] Let ρ be a congruence on an abundant semigroup S. Then ρ is an admissible congruence on S if and only if $a\rho \mathcal{L}^*a^*\rho$ and $a\rho \mathcal{R}^*a^+\rho$ for all $a \in S$.

Lemma 2.6. [14] Let ρ be an admissible congruence on an adequate semigroup S. Then

- (1) S/ρ is a type B semigroup if S is type B;
- (2) for all $a \in S$, $(a\rho)^* = a^*\rho$ and $(a\rho)^+ = a^+\rho$.

Let ρ be an admissible congruence on a type B semigroup *S*. We note that if $x\rho$ is an idempotent in S/ρ , then there exists an idempotent e in S such that $(x, e) \in \rho$.

Definition 2.4. [22] A homomorphism θ from an adequate semigroup S onto T is said to be an admissible homomorphism if

$$a\mathcal{L}^*(S)b \Rightarrow a\theta\mathcal{L}^*(T)b\theta; \quad a\mathcal{R}^*(S)b \Rightarrow a\theta\mathcal{R}^*(T)b\theta.$$

Definition 2.5. [15] Let *S* be an adequate semigroup. The relation μ is defined as follows:

$$(a, b) \in \mu$$
 if and only if for all $e \in E(S)$, $(ea)^* = (eb)^*$ and $(ae)^+ = (be)^+$.

As in [22], μ is the maximum congruence contained in \mathcal{H}^* . By [15], the congruence μ is an admissible congruence if any two elements of $E(S/\mu)$ commute. An adequate semigroup S is said to be *fundamental* if μ is the identity relation on S.

Lemma 2.7. [22] Let S be an adequate semigroup. If $E(S/\mu)$ is a semilattice, then $E(S/\mu) = \{e\mu | e \in E(S)\}$.

Lemma 2.8. [14] Let S be a type B semigroup. If any two elements of $E(S/\mu)$ are commutative, then

- (1) S/μ is a type B semigroup;
- (2) S/μ is fundamental.

Lemma 2.9. [6] Let S be a type B semigroup. The relation σ is defined as follows:

$$(a, b) \in \sigma \Leftrightarrow (\exists e \in E(S)) \ eae = ebe.$$

Then σ is the least cancellative monoid congruence on S.

Lemma 2.10. Let S be an adequate semigroup and $E(S/\mu)$ be a semilattice. Then S is a full subdirect product of a cancellative monoid and a fundamental type B semigroup if and only if S is a type B semigroup and $\sigma \cap \mu = \iota_S$, where ι_S is an identity relation on S.

Proof. Let *C* be a cancellative monoid and *T* be a fundamental type B semigroup. Put $S = \{(a, t) \mid a \in C, t \in T\}$. Define a multiplication on *S* as follows:

$$(a, t)(b, x) = (ab, tx).$$

Clearly, S is a semigroup and $E(S) = \{(1, e) \in C \times T \mid e \in E(T)\}$ is a semilattice. Now, we prove that S is a type B semigroup. Let $(c, t) \in S$ such that (c, t)(a, x) = (c, t)(b, y) for all (a, x), $(b, y) \in S^1$. Then (ca, tx) = (cb, ty). Hence, ca = cb and tx = ty. Note that C is a cancellative monoid and T is a fundamental type B semigroup. We have that a = b and $t^*x = t^*y$. Furthermore, $(1, t^*)(a, x) = (1, t^*)(b, y)$. But $(c, t) = (c, t)(1, t^*)$. Therefore, $(c, t)\mathcal{L}^*(1, t^*)$. Dually, $(c, t)\mathcal{R}^*(1, t^*)$. Hence, S is an adequate semigroup. In other words, for all $(c, t) \in S$, we have that $(c, t)^* = (1, t^*)$ and $(c, t)^+ = (1, t^*)$. Let (1, e), $(1, f) \in E(S)$ and $(c, t) \in S$. Then

$$[(1, e)(1, f)(c, t)]^* = (c, eft)^* = (1, (eft)^*)$$

$$= (1, (et)^*(ft)^*)$$

$$= (1, (et)^*)(1, (ft)^*)$$

$$= (c, et)^*(c, ft)^*$$

$$= [(1, e)(c, t)]^*[(1, f)(c, t)]^*.$$

Hence, S satisfies Condition (**B1**). Let $(1, e) \in E(S)$, $(c, t) \in S$. Then

$$(1, e) \leq (c, t)^* \Rightarrow (1, e) \leq (1, t^*)$$

$$\Rightarrow (1, e) = (1, e)(1, t^*) = (1, t^*)(1, e)$$

$$\Rightarrow e = et^* = t^*e$$

$$\Rightarrow e \leq t^*$$

$$= (\exists f \in E(T^1))e = (ft)^* \text{ (by Condition (B2))}$$

$$\Rightarrow (1, e) = (1, (ft)^*) = (c, (ft)^*) = [(1, f)(c, t)]^*,$$

where $(1, f) \in E(S)$. Hence, S satisfies Condition (**B2**) and S is a right type B semigroup. Dually, we can prove that S is a left type B semigroup. This shows that S is a type B semigroup.

Let $(c, t), (n, s) \in S$ such that $((c, t), (n, s)) \in \sigma \cap \mu$. Then there exists $(1, f) \in E(S)$ such that

$$(1, f)(c, t)(1, f) = (1, f)(n, s)(1, f),$$

where $f \in E(T)$. For any $(1, e) \in E(S)$, we have

$$[(1, e)(c, t)]^* = [(1, e)(n, s)]^*$$
 and $[(c, t)(1, e)]^+ = [(n, s)(1, e)]^+$,

where $e \in E(T)$. This shows that c = n, $(1, (et)^*) = (1, (es)^*)$ and $(1, (te)^+) = (1, (se)^+)$. Therefore, c = n and $(t, s) \in \mu(T)$. As T is fundamental, we have t = s. Thus, $\sigma \cap \mu = \iota_S$.

Conversely, suppose that S is a type B semigroup. Then S/σ is a cancellative monoid and S/μ is a fundamental type B semigroup. Define a mapping as follows:

$$\psi: S \to S/\sigma \times S/\mu$$
, $x\psi = (x\sigma, x\mu)$.

It is easy to see that ψ is a homomorphism. Let $a\mu$ be an idempotent of S/μ . Then there exists $e \in E(S)$ such that $(e, a) \in \mu$. But $e\sigma$ is an identity of S/σ . Thus, $e\psi = (e\sigma, e\mu)$ and $Im\psi$ is a full subdirect product of $S/\sigma \times S/\mu$. By the hypothesis, $\sigma \cap \mu = \iota_S$. Therefore, ψ is one-to-one and $S \cong Im\psi$.

3 Normal congruences of a type B semigroup

In this section, we shall consider a normal congruence on a type B semigroup. For convenience, we replace E(S) by E in the remaining. As usual, for an arbitrary congruence ρ on a semigroup S, the restriction $\rho \mid_E$ of ρ on the idempotent set E is called a *trace* of ρ , denoted by $\text{tr}\rho$. Obviously, $\text{tr}\rho$ is a congruence on the idempotent set E and if $e, f \in E$ with epf and $a \in S$, we have that $(ea, fa) \in \rho$ and $(ae, fe) \in \rho$. In particular, if ρ is an admissible, we have that $(ea)^*\rho(fa)^*$ and $(ae)^*\rho(af)^*$.

Definition 3.1. A congruence π on an idempotent set E of a type B semigroup S is said to be normal if for all $e, f \in E$ and $a \in S$,

$$e\pi f \Rightarrow (ea)^*\pi (fa)^* \text{ and } (ae)^*\pi (af)^*.$$

Definition 3.2. Let π be a normal congruence on E of a type B semigroup S. Define a relation on S as follows:

$$\sigma_{\pi} = \{(a, b) \in S \times S \mid (\exists e, f \in E) e \pi a^* \pi b^*, f \pi a^+ \pi b^+, f a e = f b e \}.$$

We now give the main theorem in this section.

Theorem 3.1. Let S be a type B semigroup. Then σ_{π} is the minimum congruence on S whose restriction to E is π . Furthermore, σ_{π} is an admissible congruence on S.

Proof. First, we prove that σ_{π} is an equivalence relation on S. Clearly, σ_{π} is reflexive and symmetric. Now, we show that σ_{π} is transitive. To see it, let a, b, $c \in S$ such that $(a, b) \in \sigma_{\pi}$ and $(b, c) \in \sigma_{\pi}$. Then there exist e, $f \in E$ such that $e\pi b^*\pi c^*$, $f\pi b^*\pi c^*$ and fae = fbe; and there exist g, $h \in E$ such that $g\pi b^*\pi c^*$, $h\pi b^*\pi c^*$ and hbg = hcg. Note that E is a semilattice. We have

$$fhaeg = hfaeg = hfbeg = fhbge = fhcge = fhceg.$$

Since $e\pi a^*\pi b^*$ and $g\pi b^*\pi c^*$, we have that $eg\pi a^*b^*\pi a^*a^*=a^*$ and $eg\pi b^*c^*\pi c^*c^*=c^*$. That is, there exists $eg\in E$ such that $eg\pi a^*\pi c^*$. Similarly, there exists $fh\in E$ such that $fh\pi a^+\pi c^+$. Therefore, σ_π is an equivalence relation on S.

Next, we prove that σ_{π} is a congruence on S. Let $a, b \in S$ such that $(a, b) \in \sigma_{\pi}$. Then fae = fbe for some $e, f \in E$, $e\pi a^*\pi b^*$ and $f\pi a^+\pi b^+$. Hence, for all $c \in S$, cfae = cfbe and $c^*fae = c^*fbe$. Note that $c^*f \leq c^*$. By Condition (**B2**), we have $c^*f = (gc)^*$ for some $g \in E^1$, and so $(gc)^*ae = (gc)^*be$. Therefore, gcae = gcbe. That is, $gc^+ca(ca)^*e = gc^+cb(cb)^*e$. Multiplying it on the left by c^* , we obtain that $c^*gc^+ca(ca)^*e = c^*gc^+cb(cb)^*e$. By the normality of π and Lemma 2.3(2), we have that

$$f\pi a^+ \Rightarrow (cf)^+\pi (ca^+)^+ = (ca)^+.$$

Note that \mathcal{R}^* is a left congruence and S is \mathcal{R}^* -unipotent. We have that $gc^+ = (gc)^+$. Again since $c^*\mathcal{L}^*c$ and \mathcal{L}^* is a right congruence, we have that $c^*(gc)^+\mathcal{L}^*c(gc)^+\mathcal{L}^*(c(gc)^+)^*$. Note that S is \mathcal{L}^* -unipotent. We have $c^*(gc^+) = (c(gc)^+)^*$. That is, $c^*gc^+\pi(c(gc)^+)^*$. Thus,

$$c^*gc^+\pi(c(gc)^*)^+\pi(cc^*f)^+=(cf)^+.$$

Similarly, $(cb)^+\pi c^*gc^+$. Therefore, $c^*gc^+\pi(ca)^+\pi(cb)^+$. Clearly, $c^*gc^+ca\mathcal{L}^*(c^*gc^+ca)^*$. Again, since S is a right congruence, we have that

$$(c^*gc^+ca(ca)^*e)^*\mathcal{L}^*c^*gc^+ca(ca)^*e\mathcal{L}^*(c^*gc^+ca)^*(ca)^*e$$
.

Hence, $(c^*gc^+ca(ca)^*e)^* = (c^*gc^+ca)^*(ca)^*e$ since S is \mathcal{L}^* -unipotent. Again since $e\pi a^*\pi b^*$, we obtain

$$(ca)^*e\pi(ca)^*a^*\pi(ca)^*$$
 and $(cb)^*e\pi(cb)^*b^*\pi(cb)^*$.

Thus, $(c^*gc^+ca)^*(ca)^*e\pi(c^*gc^+ca)^*(ca)^*$. But, $c^*gc^+\pi(ca)^+$. By the normality of π , $(c^*gc^+ca)^*(ca)^*\pi((ca)^+ca)^*(ca)^*$. Therefore,

$$(c^*gc^+ca(ca)^*e)^*\pi((ca)^+ca)^*(ca)^* = (ca)^*.$$

Similarly, we can prove that $(c^*gc^+cb(cb)^*e)^*\pi(cb)^*$. Since $c^*gc^+ca(ca)^*e = c^*gc^+cb(cb)^*e$. We obtain that $(ca)^*\pi(cb)^*\pi(ca)^*e = e(ca)^*$. But, gcae = gcbe. Multiplying it on the left by c^* and on the right by $(ca)^+$, we have that $c^*gc^+cae(ca)^* = c^*gc^+cbe(ca)^*$. Thus, $(ca, cb) \in \sigma_{\pi}$.

On the other hand, let $a, b \in S$ such that $(a, b) \in \sigma_{\pi}$. Then fae = fbe for some $e, f \in E$, $e\pi a^*\pi b^*$, $f\pi a^+\pi b^+$ and faec = fbec. Hence, $faec^+ = fbec^+$. Note that $ec^+ \le c^+$. By Condition (**B2**'), there exists $h \in E^1$ such that $ec^+ = (ch)^+$, and so $fa(ch)^+ = fb(ch)^+$. Multiplying it on the right by ch, we obtain that fach = fbch. That is, $f(ac)^+achc^*c^+ = f(bc)^+bchc^*c^+$. By the normality of π and Lemma 2.3(2),

$$e\pi a^* \Rightarrow (ec)^*\pi (a^*c)^* = (ac)^*.$$

Again since $hc^* = c^*h\mathcal{L}^*ch\mathcal{L}^*(ch)^*$ and S is \mathcal{L}^* -unipotent, we have that $hc^* = (ch)^*$ and so $hc^*c^+\mathcal{R}^*(ch)^*c\mathcal{R}^*((ch)^*c)^+$. This gives that $hc^*c^+ = ((ch)^*c)^+$ since S is \mathcal{R}^* -unipotent. Thus,

$$hc^*c^+\pi((ch)^+c)^*\pi(ec^+c)^* = (ec)^*.$$

Therefore, $hc^*c^+\pi(ac)^*$. Similarly, we can prove that $hc^*c^+\pi(bc)^*$. Hence, $hc^*c^+\pi(ac)^*\pi(bc)^*$. Obviously, $achc^*c^+\mathcal{R}^*(achc^*c^+)^+$. Since \mathcal{R}^* is a left congruence, we have that

$$(f(ac)^+achc^*c^+)^+\mathcal{R}^*f(ac)^+achc^*c^+\mathcal{R}^*f(ac)^+(achc^*c^+)^+.$$

Note that *S* is \mathcal{R}^* -unipotent. We have $(f(ac)^+achc^*c^+)^+ = f(ac)^+(achc^*c^+)^+$. But $f\pi a^+\pi b^+$, we have that

$$f(ac)^+\pi a^+(ac)^+\pi (ac)^+$$
 and $f(bc)^+\pi b^+(bc)^+\pi (bc)^+$.

Thus, $f(ac)^+(achc^*c^+)^+\pi(ac)^+(achc^*c^+)^+$. Again $hc^*c^+\pi(ac)^*$, by the normality of π , $(ac)^+(achc^*c^+)^+\pi(ac)^+$ $(ac(ac)^*)^+$. Therefore,

$$(f(ac)^+achc^*c^+)^+\pi(ac)^+(ac(ac)^*)^+ = (ac)^+.$$

Similarly, $(f(bc)^+bchc^*c^+)^+\pi(bc)^+$. But, $f(ac)^+achc^*c^+ = f(bc)^+bchc^*c^+$. We have

$$(ac)^+\pi(bc)^+\pi f(ac)^+$$
.

As fach = fbch, so $f(ac)^+achc^*c^+ = f(ac)^+bchc^*c^+$. Thus, $(ac, bc) \in \sigma_{\pi}$.

Summing up the above arguments, we conclude that σ_{π} is a congruence on S.

Now, we prove that $tr\sigma_{\pi} = \pi$. Clearly, $tr\sigma_{\pi} \subseteq \pi$. Let $e, f \in E$ such that $e\pi f$. Then fee = fe = ffe. By the definition of σ_{π} , we have $e\sigma_{\pi} f$. Thus, $tr\sigma_{\pi} = \pi$.

Next, we show that σ_{π} is the minimum congruence whose restriction to E is π . Let ρ be a congruence whose restriction to E is π . If $(a, b) \in \sigma_{\pi}$, then fae = fbe for some $e, f \in E$, $e\pi a^*\pi b^*$ and $f\pi a^+\pi b^+$. Since $tr\rho = \pi$, we have that $e\rho a^*\rho b^*$ and $f\rho a^+\rho b^+$. Hence,

$$a\rho = a^+aa^*\rho = a^+\rho a\rho a^*\rho = f\rho a\rho e\rho = (fae)\rho = (fbe)\rho = f\rho b\rho e\rho = b^+\rho b\rho b^*\rho = b^+bb^*\rho = b\rho$$
.

Thus, $(a, b) \in \rho$. That is, $\sigma_{\pi} \subseteq \rho$. Therefore, σ_{π} is the minimum congruence whose restriction to E is π .

Finally, we prove that σ_{π} is admissible. Let $a \in S$, $s, t \in S^1$ such that $(as, at) \in \sigma_{\pi}$. Then fase = fate for some $e, f \in E$, $e\pi(as)^*\pi(at)^*$ and $f\pi(as)^*\pi(at)^*$. By Lemma 2.3, $(as)^* = (a^*s)^*$ and $(at)^* = (a^*t)^*$, and so $e\pi(a^*s)^*\pi(a^*t)^*$. But

$$fase = fate \implies faa^*se = faa^*te \implies (fa)^*a^*se = (fa)^*a^*te$$
.

Thus, $(a^*s, a^*t) \in \sigma_{\pi}$. Similarly, $(sa, ta) \in \sigma_{\pi}$ implies $(sa^+, ta^+) \in \sigma_{\pi}$. Therefore, σ_{π} is an admissible congruence. This completes the proof.

Let π be an admissible congruence on S. By Theorem 3.1, we have that σ_{π} is the minimum admissible congruence on S whose restriction to E is π . As usual, a congruence ρ on a semigroup S is called *idempotent-separating* if $e\rho = f\rho$ implies e = f for all $e, f \in E$. Similarly, we can define an idempotent-separating homomorphism.

Proposition 3.2. Let ρ be an admissible congruence on a type B semigroup S whose restriction to E is π . Then S/ρ is an idempotent-separating homomorphic image of S/σ_{π} .

Proof. Define a mapping ϕ as follows:

$$\phi: S/\sigma_{\pi} \to S/\rho$$
, $(s\sigma_{\pi})\phi = s\rho$.

Then, it is easy to see that ϕ is a homomorphism of S/σ_{π} onto S/ρ . By Lemma 2.7, we have that

$$E(S/\sigma_{\pi}) = \{e\sigma_{\pi} \mid e \in E\}.$$

Let $e\sigma_{\pi}$, $f\sigma_{\pi}$ be two idempotents of S/σ_{π} , where $e, f \in E$. Then

$$(e\sigma_{\pi})\phi = (f\sigma_{\pi})\phi \Rightarrow e\rho = f\rho \Rightarrow (e,f) \in \rho \Rightarrow (e,f) \in \pi \quad (tr\rho = \pi) \Rightarrow e\sigma_{\pi} = f\sigma_{\pi}.$$

This means that ϕ is idempotent-separating. This completes the proof.

Definition 3.3. Let S be a type B semigroup and π be a normal congruence on E. Define a relation on S as follows:

$$\mu_{\pi} = \{(a, b) \in S \times S \mid (\forall e \in E)(ea)^*\pi(eb)^*, (ae)^*\pi(be)^*\}.$$

Lemma 3.3. Let S be a type B semigroup and π be a normal congruence on E. Then the following statements are equivalent:

- (1) $(a, b) \in \mu_{\pi}$;
- (2) for all $e, f \in E$, $e\pi f$ implies $(ea)^*\pi (fb)^*$ and $(ae)^*\pi (bf)^*$;
- (3) $(a\sigma_{\pi}, b\sigma_{\pi}) \in \mu(S/\sigma_{\pi})$, where $\mu(S/\sigma_{\pi})$ denotes the relation μ on S/σ_{π} .

Proof. (1) \Rightarrow (2) is clear. Now, we show that (2) \Rightarrow (1). For all $b \in S$, e, $f \in E$ with $e\pi f$, we have $(eb)^*\pi(fb)^*$. If $(a,b)\in\mu_n$, then $(ea)^*\pi(eb)^*$. Hence, $(ea)^*\pi(fb)^*$. On the other hand, for all $b\in S$, $e,f\in E$ with $e\pi f$, it follows that $(be)^+\pi(bf)^+$. If $(a,b)\in\mu_\pi$, then $(ae)^+\pi(be)^+$. Hence, $(ae)^+\pi(bf)^+$. That is, (2) holds.

(1) \Leftrightarrow (3) For all $a, b \in S$, we have

$$(a, b) \in \mu_{\pi} \Leftrightarrow (\forall e \in E)(ea)^*\pi(eb)^*, (ae)^+\pi(be)^+$$

$$\Leftrightarrow (\forall e \in E)(ea)^*\sigma_{\pi} = (eb)^*\sigma_{\pi}, (ae)^+\sigma_{\pi} = (be)^+\sigma_{\pi} \text{ (since } \operatorname{tr}\sigma_{\pi} = \pi)$$

$$\Leftrightarrow (\forall e \in E)(e\sigma_{\pi}a\sigma_{\pi})^* = (e\sigma_{\pi}b\sigma_{\pi})^*$$

$$(a\sigma_{\pi}e\sigma_{\pi})^+ = (b\sigma_{\pi}e\sigma_{\pi})^+ \text{ (since } \sigma_{\pi} \text{ is admissible)}$$

$$\Leftrightarrow (a\sigma_{\pi}, b\sigma_{\pi}) \in \mu(S/\sigma_{\pi}).$$

Theorem 3.4. Let S be a type B semigroup. Then $tr\mu_{\pi} = \pi$. In particular, if ρ is an admissible congruence on S with $tr \rho = \pi$, then $\rho \subseteq \mu_{\pi}$.

Proof. Obviously, μ_{π} is an equivalence relation on S. Now, we prove that μ_{π} is a congruence on S. For any $a, b, c \in S, e \in E$, if $(a, b) \in \mu_{\pi}$, then $(ea)^*\pi(eb)^*$. By the normality of π and Lemma 2.3(2), we have that

$$(ea)^*\pi(eb)^* \Rightarrow ((ea)^*c)^*\pi((eb)^*c)^* \Rightarrow (eac)^* = (ea)^*c^*\pi((eb)^*c)^* = (ebc)^*.$$

Hence, $(eac)^*\pi(ebc)^*$. Since $(ce)^+ \in E$, we have $(a(ce)^+)^+\pi(b(ce)^+)^+$ from the definition of μ_{π} . By Lemma 2.3(2), $(a(ce)^+)^+ = (ace)^+$ and $(b(ce)^+)^+ = (bce)^+$. That is, $(ace)^+\pi(bce)^+$. Thus, $(ac,bc) \in \mu_\pi$. On the other hand, for all $a, b, c \in S$, $e \in E$, if $(a, b) \in \mu_{\pi}$, then $(ae)^{+}\pi(be)^{+}$. By the normality of π and Lemma 2.3(2), we have

$$(ae)^+\pi(be)^+ \Rightarrow (c(ae)^+)^+\pi(c(be)^+)^+ \Rightarrow (cae)^+\pi(cbe)^+.$$

Since $(ec)^* \in E$, we obtain $((ec)^*a)^*\pi((ec)^*b)^*$. But $((ec)^*a)^* = (eca)^*$ and $((ec)^*b)^* = (ecb)^*$. This shows that $(eca)^* = (ecb)^*$. Thus, $(ca, cb) \in \mu_{\pi}$. To sum up, μ_{π} is a congruence.

Next, we prove that $tr\mu_{\pi} = \pi$. It is easy to see that $\pi \subseteq \mu_{\pi}$. For all $f, g \in E$ with $f\mu_{\pi}g$, then $ef\pi eg$ for all $e \in E$. Let e = f and e = g, respectively. This gives that $f\pi fg$ and $gf\pi g$. As fg = gf. So $f\pi g$. Thus, $tr\mu_{\pi} = \pi$.

Finally, we show that μ_{π} is the maximum admissible congruence whose trace is π . To see it, let ρ be any admissible congruence on S such that $tr \rho = \pi$. If $(a, b) \in \rho$, then $(ea, eb) \in \rho$ and $(ae, be) \in \rho$ for all $e \in E$. By Lemma 2.4,

$$((ea)^*, (eb)^*) \in \rho \text{ and } ((ae)^+, (be)^+) \in \rho.$$

Hence, $(ea)^*\pi(eb)^*$, $(ae)^+\pi(be)^+$. That is, $(a,b)\in\mu_\pi$. This completes the proof.

4 Congruences with same trace on a type B semigroup

In this section, we mainly describe the relationship between two admissible congruences ρ and τ on a type B semigroup S, which have the same trace. Clearly, if we restrict ρ to E, then tr ρ is normal, and

 $\sigma_{\text{tr}\rho}$, $\mu_{\text{tr}\rho}$ are the minimum and the maximum admissible congruences on S, respectively. In particular, $\text{tr}\sigma_{\text{tr}\rho} = \text{tr}\rho = \text{tr}\mu_{\text{tr}\rho}$, where

$$\sigma_{\text{tr}\rho} = \{(a, b) \in S \times S \mid a^*\rho b^*, a^+\rho b^+, (\exists e \in a^*\rho \cap E, \exists f \in a^+\rho \cap E) fae = fbe\}$$

$$\mu_{\text{tr}\rho} = \{(a, b) \in S \times S \mid (\forall e \in E)(ea)^*\pi(eb)^*, (ae)^+\pi(be)^+\}.$$

For convenience, we denote $\sigma_{\rm tr\rho}$ by $\sigma_{\!\rho}$ and denote $\mu_{\rm tr\rho}$ by $\mu_{\!\rho}$.

Theorem 4.1. Let ρ be an arbitrary admissible congruence on a type B semigroup S. Then $\sigma_{\rho} \subseteq \rho \subseteq \mu_{\rho}$ and $\operatorname{tr}\sigma_{\rho} = \operatorname{tr}\rho = \operatorname{tr}\mu_{\rho}$.

Proof. It follows directly from Theorems 3.1 and 3.4.

Definition 4.1. Let ρ and τ be two congruences on a type B semigroup S with $\tau \subseteq \rho$. Define a congruence ρ/τ on S/τ as follows:

$$(a, b \in S)a\tau(\rho/\tau)b\tau \Leftrightarrow a\rho b.$$

Theorem 4.2. Let ρ and τ be two admissible congruences on a type B semigroup S. Then the following statements are equivalent:

- (1) $tr\rho = tr\tau$;
- (2) $\rho \subseteq \mu_{\tau}$ and $\mu_{\tau}/\rho = \mu(S/\rho)$;
- (3) $(\forall a, b \in S)a\rho\mu(S/\rho)b\rho \Leftrightarrow a\tau\mu(S/\tau)b\tau$;
- (4) $(\forall a, b \in S)a\rho \mathcal{H}^*(S/\rho)b\rho \Leftrightarrow a\tau \mathcal{H}^*(S/\tau)b\tau$;
- (5) $\rho \cap \tau \mid_{e\rho}$ and $\rho \cap \tau \mid_{e\tau}$ are cancellative congruences, where $e \in E$;
- (6) $\rho/\rho \cap \tau$ and $\tau/\rho \cap \tau$ are congruences contained in $\mathcal{H}^*(S/\rho \cap \tau)$.

Proof. (1) \Rightarrow (2) Since $\mu_{\text{tr}\rho} = \mu_{\rho}$, $\mu_{\text{tr}\tau} = \mu_{\tau}$ and $\text{tr}\rho = \text{tr}\tau$, we have $\mu_{\rho} = \mu_{\tau}$. Thus, $\rho \subseteq \mu_{\tau}$. For all $a, b \in S$, it follows that

$$a\rho(\mu_{\tau}/\rho)b\rho \Leftrightarrow a\rho(\mu_{\sigma}/\rho)b\rho \Leftrightarrow a\mu_{\sigma}b \Leftrightarrow (\forall e \in E)(ea)^*\rho(eb)^*, (ae)^+\rho(be)^+ \Leftrightarrow (a\rho, b\rho) \in \mu(S/\rho).$$

 $(2) \Rightarrow (1)$ It is easy to see that $\text{tr} \rho \subseteq \text{tr} \mu_{\tau} \subseteq \text{tr} \tau$. For all $e, f \in E$, we have

$$e\tau f \Rightarrow e\mu_{\tau}f \Rightarrow e\rho(\mu_{\tau}/\rho)f\rho \Rightarrow e\rho = f\rho \Rightarrow e\rho f$$
.

That is, $tr\tau \subseteq tr\rho$. Thus, $tr\tau = tr\rho$.

 $(1) \Rightarrow (3)$ For all $a, b \in S$, we have

$$a\rho\mu(S/\rho)b\rho \Leftrightarrow (\forall e \in E)(ea)^*\rho = (eb)^*\rho, (ae)^+\rho = (be)^+\rho$$

 $\Leftrightarrow (\forall e \in E)(ea)^*\tau = (eb)^*\tau, (ae)^+\tau = (be)^+\tau$
 $\Leftrightarrow a\tau\mu(S/\tau)b\tau.$

 $(3) \Rightarrow (1)$ For all $e, f \in E$, it follows that

$$e\rho f \Leftrightarrow e\rho = f\rho \Leftrightarrow e\rho\mu(S/\rho)f\rho \Leftrightarrow e\tau\mu(S/\tau)f\tau \Leftrightarrow e\tau = f\tau \Leftrightarrow e\tau f.$$

- (1) \Rightarrow (4) For all $a, b \in S$ with $a\rho \mathcal{H}^*(S/\rho)b\rho$. We have $a\rho \mathcal{L}^*(S/\rho)b\rho$ and $a\rho \mathcal{R}^*(S/\rho)b\rho$. By the hypothesis, ρ is admissible. Thus, by Lemma 2.5, we have $a^*\rho \mathcal{L}^*(S/\rho)b^*\rho$ and $a^+\rho \mathcal{R}^*(S/\rho)b^+\rho$. By Lemma 2.6(1), S/ρ is a type B semigroup, it shows that S/ρ is \mathcal{L}^* -unipotent and \mathcal{R}^* -unipotent. Thus, $a^*\rho = b^*\rho$ and $a^+\rho = b^+\rho$. But, $tr\rho = tr\tau$, this shows that $a^*\tau = b^*\tau$ and $a^+\tau = b^+\tau$. Therefore, $a\tau \mathcal{H}^*(S/\tau)b\tau$. Similarly, $a\tau \mathcal{H}^*(S/\tau)b\tau$ implies $a\rho \mathcal{H}^*(S/\rho)b\rho$.
- $(4) \Rightarrow (1)$ For all $e, f \in E$ with $e\rho f$, we have $e\rho \mathcal{H}^*(S/\rho)f\rho$, and so $e\tau \mathcal{H}^*(S/\tau)f\tau$. Hence, $e\tau = f\tau$. That is, $e\tau f$. Similarly, $e\tau f$ implies $e\rho f$.

- (1) \Rightarrow (5) Clearly, $e\rho$ is an adequate semigroup, where $e \in E$. Let $a, b, c \in e\rho$ and $(ab, ac) \in \rho \cap \tau$. By the hypothesis, ρ and τ are admissible congruences. Hence, $(a^*b, a^*c) \in \rho \cap \tau$. Since $e\rho$ is an adequate semigroup, we have $a^*, b^+ \in \rho$. Thus, $(a^*, b^+) \in \rho \cap \tau$ and $(b, a^*b) \in \rho \cap \tau$. Similarly, we can show $(a^*, c^+) \in \rho \cap \tau$ such that $(a^*c, c) \in \rho \cap \tau$. According to transitivity, $(b, c) \in \rho \cap \tau$. Therefore, $\rho \cap \tau$ is left cancellative. Similarly, $\rho \cap \tau$ is right cancellative. Thus, $\rho \cap \tau|_{eo}$ is a cancellative congruence. Dually, we can prove that $\rho \cap \tau \mid_{e\tau}$ is a cancellative congruence.
- $(5) \Rightarrow (1)$ Let $g, h \in ep \cap E$. Clearly, ggh = gh, where $g, h, gh \in ep \cap E$. It follows that $(ggh, gh) \in p \cap \tau$. By the hypothesis, $\rho \cap \tau$ is a cancellative congruence. Hence, $(gh, h) \in \rho \cap \tau$. Similarly, we have $(hg, g) \in \rho \cap \tau$. As gh = hg, we have $(g, h) \in \rho \cap \tau$. In particular, for all $e, f \in E$,

$$e\rho f \Rightarrow f \in e\rho \Rightarrow (e,f) \in \rho \cap \tau \Rightarrow (e,f) \in \tau \Rightarrow e\tau f.$$

Similarly, $e\tau f \Rightarrow e\rho f$ is also true.

 $(1) \Rightarrow (6)$ For any $a, b \in S$, we obtain

$$\begin{split} a(\rho \cap \tau)\rho/\rho \cap \tau b(\rho \cap \tau) &\Rightarrow a\rho b \ \Rightarrow \ a^*\rho b^*, \, a^+\rho b^+ \\ &\Rightarrow a^*(\rho \cap \tau) \ \rho/\rho \cap \tau \quad b^*(\rho \cap \tau) \\ &a^+(\rho \cap \tau) \ \rho/\rho \cap \tau \quad b^+(\rho \cap \tau) \\ &\Rightarrow a(\rho \cap \tau) \ \mathcal{L}^*(S/\rho \cap \tau) \ b(\rho \cap \tau) \\ &a(\rho \cap \tau) \ \mathcal{R}^*(S/\rho \cap \tau) \ b(\rho \cap \tau) \\ &\Rightarrow a(\rho \cap \tau) \ \mathcal{H}^*(S/\rho \cap \tau) \ b(\rho \cap \tau). \end{split}$$

Hence, $\rho/\rho \cap \tau \subseteq \mathcal{H}^*(S/\rho \cap \tau)$. Similarly, $\tau/\rho \cap \tau \subseteq \mathcal{H}^*(S/\rho \cap \tau)$.

 $(6) \Rightarrow (1)$ For all $e, f \in E$, we have

$$e\rho f \Rightarrow e(\rho \cap \tau)\rho/\rho \cap \tau f(\rho \cap \tau) \Rightarrow e(\rho \cap \tau)\mathcal{H}^*(S/\rho \cap \tau)f(\rho \cap \tau) \Rightarrow e(\rho \cap \tau) = f(\rho \cap \tau) \Rightarrow e\tau f.$$

Similarly, $e\tau f$ implies $e\rho f$. This completes the proof.

Corollary 4.3. Let ρ be an admissible congruence on a type B semigroup S. Then $\rho = \mu_{\rho}$ if and only if S/ρ is fundamental.

Proof. By Theorem 4.2,

$$\rho = \mu_0 \Leftrightarrow \mu_0/\rho = \iota_S \Leftrightarrow \mu(S/\rho) = \iota_S \Leftrightarrow S/\rho$$
 is fundamental,

where t_S is an identity relation on S. This completes the proof.

5 Kernels of congruences on a type B semigroup

In this section, we investigate kernels of admissible congruences on a type B semigroup. Recall from the study of Petrich [19] that for any congruence ρ on a semigroup S, the kernel ker ρ of ρ is defined as follows:

$$\ker \rho = \{a \in S \mid (\exists e \in E)(e, a) \in \rho\}.$$

Proposition 5.1. Let ρ be an admissible congruence on a type B semigroup S. If $a \in \ker \rho$, then $(a^+, a^*) \in \operatorname{tr} \rho$.

Proof. Let $a \in \ker \rho$. Then there exists $e \in E$ such that $(e, a) \in \rho$. Since ρ is admissible, by Lemma 2.4, $(e, a^*) \in \rho$ and $(e, a^+) \in \rho$. Thus, $(a^*, a^+) \in \rho$. Clearly, $a^*, a^+ \in E$. Therefore, $(a^+, a^*) \in \text{tr}\rho$.

Proposition 5.2. Let ρ be an admissible congruence on a type B semigroup S. Then $e\rho = e\mu_{\rho} \cap \ker \rho$ for all $e \in E$.

Proof. Let $a \in S$, $e \in E$ such that $a \in e\mu_{\rho} \cap \ker \rho$. It follows that $a\mu_{\rho}e$ and there is $f \in E$ such that $a\rho f$. Since ρ is admissible, we have that $a^*\mu_{\rho}e$ and $a^*\rho f$. Again since $\operatorname{tr}\rho = \operatorname{tr}\mu_{\rho}$, we have $a^*\mu_{\rho}f$ and $a^*\rho e$. By transitivity, $e\rho f$ and $a\rho e$. Thus, $a \in e\rho$. That is, $e\mu_{\rho} \cap \ker \rho \subseteq e\rho$.

Conversely, if $a \in e\rho$, then $a \in \ker \rho$. Since $\rho \subseteq \mu_{\rho}$, we have $(a, e) \in \mu_{\rho}$. That is, $a \in e\mu_{\rho}$. Therefore, $a \in e\mu_{\rho} \cap \ker \rho$ and $e\rho \subseteq e\mu_{\rho} \cap \ker \rho$.

Proposition 5.3. Let ρ be an admissible congruence on a type B semigroup S. Then the following sets are the same:

- (1) $K_1 = \ker \sigma_0 = \{a \in S \mid (\exists e \in E)(e, a) \in \sigma_0\};$
- (2) $K_2 = \{a \in S \mid (\exists e \in a^* \rho \cap E, f \in a^+ \rho \cap E) f a e = f e \}.$

Proof. For all $a \in S$, we have

$$a \in K_1 \Rightarrow (\exists g \in E)(a, g) \in \sigma_p$$

 $\Rightarrow a^* \rho g, a^+ \rho g, (\exists e \in a^* \rho \cap E, f \in a^+ \rho \cap E) fae = fge$
 $\Rightarrow (e \in a^* \rho \cap E, fg \in a^+ \rho \cap E) fgae = fge \Rightarrow a \in K_2.$

On the other hand,

$$a \in K_2 \Rightarrow (\exists e \in a^* \rho \cap E, f \in a^+ \rho \cap E) fae = fe$$

 $\Rightarrow fe = fae \quad \rho \quad a^+ aa^* = a$
 $\Rightarrow fe \rho a^+, fe \rho a^* \quad (since \ \rho \ is admissible).$

Again since feafe = efaef = effeef = fe = fefefe, $fepa^+$ and $fepa^*$, we have $(a, fe) \in \sigma_p$. That is, $a \in K_1$. This completes the proof.

Corollaries directly from Proposition 5.3 are as follows.

Corollary 5.4. Let ρ be an admissible congruence on a type B semigroup S. Then the following sets are the same:

- (1) $K_1 = \ker \sigma_{\pi} = \{ a \in S \mid (\exists e \in E)(e, a) \in \sigma_{\pi} \};$
- (2) $K_2 = \{a \in S \mid (\exists e \in a^* \rho \cap E, f \in a^+ \rho \cap E) \text{ fae } = fe\}$

Corollary 5.5. Let ρ be an admissible congruence on a type B semigroup S. Then the following sets are the same:

- (1) $K_1 = \ker \mu_{\rho} = \{ a \in S \mid (\exists e \in E)(e, a) \in \mu_{\rho} \};$
- (2) $K_2 = \{a \in S \mid (\forall e \in E) \ ea\pi ae\}.$

Corollary 5.6. Let ρ be an admissible congruence on a type B semigroup S. Then the following sets are the same:

- (1) $K_1 = \ker \mu_{\pi} = \{ a \in S \mid (\exists e \in E)(e, a) \in \mu_{\pi} \};$
- (2) $K_2 = \{a \in S \mid (\forall e \in E) \ ea\pi ae\}.$

Proposition 5.7. Let ρ be an admissible congruence on a type B semigroup S. Then the following sets are the same:

- (1) $\ker \sigma = \{a \in S \mid (\exists e \in E) \ eae = e\};$
- (2) $\ker \mu = \{a \in S \mid (\forall e \in E) \ ea = ae\}.$

Proof. Obviously,

$$a \in \ker \sigma \Rightarrow (\exists f \in E) (a, f) \in \sigma \Rightarrow (\exists e \in E) eae = efe \Rightarrow (\exists e \in E) feafe = feaef = fefef = fe.$$

That is, $\ker \sigma \subseteq \{a \in S \mid (\exists e \in E) \ eae = e\}$. Conversely, let $a \in S$ such that eae = e for some $e \in E$. Then $(e, a) \in \sigma$, and so $a \in \ker \sigma$. That is, $\{a \in S \mid (\exists e \in E) \ eae = e\} \subseteq \ker \sigma$. Thus, $\ker \sigma = e$ $\{a \in S \mid (\exists e \in E) \ eae = e\}$. This completes the proof.

The aforementioned corollaries show that the kernel of μ on S is the centralizer $E\xi$ of E (i.e., for all $e \in E$, $s \in E\xi$, es = se).

Corollary 5.8. Let S be a type B semigroup and $x \in S$. If $x \in E\xi$, then

$$x^*=x^+,\quad x\mathcal{H}^*x^+.$$

Proof. For all $x \in S$, $e \in E$, if $x \in E\xi$, then ex = xe. Let $e = x^*$. Then $x = xx^* = x^*x$. By Lemma 2.1, $x^* = x^*x^*$. Let $e = x^+$. Then $x = xx^+ = x^+x$. By Lemma 2.1, $x^* = x^*x^+$. To sum up, $x^* = x^+$. In other words, $x \mathcal{L}^*x^* = x^+$. Clearly, $x\mathcal{R}^*x^+$. Therefore, $x\mathcal{H}^*x^+$.

6 Congruences with the same kernel on a type B semigroup

In this section, we shall extend the notion of normal subsemigroups in the class of inverse semigroups to the class of type B semigroups. By using the concept of a normal subsemigroup of a type B semigroup, some characterizations of congruences with the same kernel on a type B semigroup are given.

Definition 6.1. Let *S* be a type B semigroup and *N* be a full subsemigroup of *S* (i.e., E(N) = E(S)). Then *N* is said to be a *normal subsemigroup* of *S* if it satisfies the following conditions:

- (a) $(\forall x, y \in S)(\forall n \in N) xy \in N \Rightarrow xny \in N$;
- (b) $(\forall x, y \in S)(\forall n \in N) xny \in N \Rightarrow xn^*y \in N, xn^+y \in N$.

Remark 6.1.

- (1) Obviously, the idempotent set E of S is a full subsemigroup of S and it satisfies Condition (**b**). If Sis commutative, then Condition (a) holds for any subsemigroup of S. Thus, if S is commutative, then E
- (2) There are full subsemigroups of commutative type B semigroups which do not satisfy Condition (b). For example, under the general multiplication, \mathbb{Z} , \mathbb{Q} and \mathbb{R} are commutative type B semigroups. Clearly, the set of non-negative integers is a full subsemigroup of $\mathbb Z$ and a normal subsemigroup of $\mathbb Z$. While $\mathbb Z$ is a full subsemigroup of $\mathbb Q$ and $\mathbb Z$ is not normal. Therefore, Condition (a) is not sufficient for N to be normal in S.
- (3) When *N* and *S* are groups, for all $x, y \in S$, $n \in N$, $xy \in N$, we have $n^{-1} \in N$ and $xnn^{-1}y \in N$, $xn^{-1}ny \in N$. Hence, for all $x, y \in S$, $n \in N$, $xy \in N$ implies that $xny \in N \Leftrightarrow N$ is normal.
- (4) There are non-normal subsemigroups which satisfy Condition (**b**). That is, Condition (**b**) is not sufficient for N to be normal in S.

Example 6.1. Let \mathbb{R} be a real set. Put

$$S = \left\{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} | \quad x, y \in \mathbb{R}, xy \neq 0 \right\}, \quad T = \left\{ \begin{bmatrix} 0 & x \\ y & 0 \end{bmatrix} | \quad x, y \in \mathbb{R}, xy \neq 0 \right\}.$$

Let $G = S \cup T$. Then G is a group under the matrix multiplication. Clearly, G is a type B semigroup.

Let $N = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & x \end{bmatrix} | x \neq 0 \right\}$. Obviously, N is a subgroup of G. It is easy to see that N is a full subse-

$$\text{migroup of } G. \text{ For all } A = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \in T, A^{-1} = \begin{bmatrix} 0 & b^{-1} \\ a^{-1} & 0 \end{bmatrix} \text{ and for all } M = \begin{bmatrix} 1 & 0 \\ 0 & x \end{bmatrix} \in N, M^* = M^+ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in N,$$

 $AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in N$. But $AMA^{-1} = \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix} \notin N$. This means that N is not a normal subsemigroup of G.

Let
$$A, B \in G, C \in N$$
. Then $C^* = C^+ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in N$. Hence, $AC^*B = AC^+B = AB$. Note that

If $A, B \in S$ and $ACB \in N$, then $AB \in N$;

If $A \in S$ and $B \in T$, then $ACB \notin N$;

If $A \in T$ and $B \in S$, then $ACB \notin N$;

If
$$A, B \in T$$
 with $B = \begin{bmatrix} 0 & x \\ y & 0 \end{bmatrix}$, $xy = 1$ and $C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then $ACB \in N$ and so $AB \in N$.

From Example 6.1, Conditions (a) and (b) of normal semigroups are independent.

A non-empty subset A of a semigroup S is said to be *unitary* if for all $a \in A$, $s \in S$, as, $sa \in A$ imply that $s \in A$.

Theorem 6.1. Let ρ be an admissible congruence on a type B semigroup S. Then

- (1) If $ker \rho$ is unitary, then $ker \rho$ is a normal subsemigroup of S;
- (2) If $ker \rho$ is cancellative, then $ker \rho$ is a normal subsemigroup of S.

Proof. (1) By hypothesis, it is clear that $E \subseteq \ker \rho$ and $\ker \rho$ is a full subsemigroup of S. Let $x, y \in S$, $n \in \ker \rho$ and $xy \in \ker \rho$. Then there is $e \in E$ such that $(n, e) \in \rho$ and $(xny, xey) \in \rho$. Note that $ey^+ \le y^+$. We have that there exists $f \in E^1$ such that $ey^+ = (yf)^+$ from Condition (**B2**'). Hence,

$$xeyf = xey^+yf$$

= $x(yf)^+yf$ (since $ey^+ = (yf)^+$)
= $xyf \in \ker \rho$ (since $xy \in \ker \rho$, $f \in \ker \rho$).

Note that $f \in \ker \rho$ and $\ker \rho$ is unitary. We have that $xey \in \ker \rho$, and so $xny \in \ker \rho$. Thus, Condition (a) holds.

Since ρ is an admissible congruence on S and $(n, e) \in \rho$, we have $(n^*, e) \in \rho$. By transitivity, $(n, n^*) \in \rho$. Hence, for all $x, y \in S$, $(xny, xn^*y) \in \rho$. Thus, $xny \in \ker \rho$ implies $xn^*y \in \ker \rho$. Similarly, $xny \in \ker \rho$ implies $xn^*y \in \ker \rho$. This means that Condition (**b**) holds. To sum up, $\ker \rho$ is a normal subsemigroup of S.

(2) By the proof of (1), for all $x, y \in S$, $n \in \ker \rho$, there exist $e, f \in E$ such that xeyf = xyf. Since ρ is a congruence on S, we have $xeyf\rho xyf$. By the hypothesis, $xey\rho xy$. Note that $xy \in \ker \rho$, we have $xey \in \ker \rho$. Hence, $xny \in \ker \rho$. Thus, Condition (**a**) holds. By the proof of (1), Condition (**b**) holds. To sum up, $\ker \rho$ is a normal subsemigroup of S.

Definition 6.2. Let N be any subsemigroup of a type B semigroup S. Define a syntactic congruence η_N of N as follows:

$$\eta_N = \{(a,b) \in S \times S \mid (\forall x,y \in S^1) \ xay \in N \ \Leftrightarrow \ xby \in N\}.$$

Obviously, η_N is a congruence and η_N is the maximum congruence. If $E(S) \subseteq N$, then $\ker \eta_N \subseteq N$. If S is a type B semigroup and N is normal, then we have that the maximum congruence on S whose kernel is N on S.

Proposition 6.2. Let S be a type B semigroup and N be a normal subsemigroup of S. Then η_N is the maximum admissible congruence on S whose kernel is N.

Proof. It is easy to see that η_N is a congruence on S. Now, we prove that $\ker \eta_N = N$. To see it, let $a \in S$. Then

$$a \in \ker \eta_N \implies (\exists e \in E)(e, a) \in \eta_N \implies (\forall x, y \in S^1) \ xay \in N \quad \text{if and only if} \quad xey \in N.$$

Let $x = a^+$ and $y = a^*$. We have that $a^+ea^* \in N$ since N is a full subsemigroup. Hence, $a^+aa^* \in N$. That is, $a \in N$. On the other hand, let $n \in N$. Then, for all $x, y \in S^1$, we have

$$xny \in N \implies xn^*y \in N \implies xnn^*y \in N \implies xny \in N$$
.

Hence, $xny \in N$ if and only if $xn^*y \in N$. Thus, $(n, n^*) \in \eta_N$. This shows that $n \in \ker \eta_N$. Therefore, $\ker \eta_N = N$. Next, we prove that η_N is an admissible congruence on S. For all $a \in S$, m, $n \in S^1$, if $am\eta_N = an$, then for all $x, y \in S^1$, $xamy \in N$ if and only if $xany \in N$. Since N is a normal semigroup of S, we obtain that $xa^*my \in N$ if and only if $xa^*ny \in N$. Thus, $a^*m\eta_N$ a^*n . Similarly, for all $a \in S$, m, $n \in S^1$, $ma\eta_N$ na implies $ma^+\eta_N$ na^+ . Therefore, η_N is an admissible congruence.

Finally, we show that η_N is the maximum admissible congruence on S whose kernel is N. To see it, suppose ρ is an admissible congruence on S and $\ker \rho = N$. Let $(a, b) \in \rho$. Then for all $x, y \in S^1$, we have $(xay, xby) \in \rho$. Hence, $xay \in \ker \rho$ if and only if $xby \in \ker \rho$. That is, $xay \in N$ if and only if $xby \in N$. Therefore, $(a, b) \in \eta_N$.

To sum up, η_N is the maximum admissible congruence on S whose kernel is N.

Let S be a type B semigroup and N be a normal subsemigroup of S. In order to give the minimum admissible congruence on *S* whose kernel is *N*, we first give the following lemma:

Lemma 6.3. Let S be a type B semigroup and N be a normal subsemigroup of S. Define a relation τ_N on S as follows:

$$\tau_N = \{(xn_1y, xn_2y) \mid x, y \in S^1; n_1, n_2 \in N; n_1^+ = n_2^+\}.$$

Then the following statements hold:

- (1) τ_N is an equivalence relation on S;
- (2) $N = \{a \in S \mid (\exists e \in E) (a, e) \in \tau_N\};$
- (3) τ_N is contained in an arbitrary admissible congruence on S whose kernel is N.

Proof. (1) It is clear.

(2) Let $a \in N$. Clearly, $a = a^+aa^*$ and $a^+a^* = a^+a^*a^*$. Since $a, a^+ \in N$ and $a^+ = (a^+)^+ = a^+$, we have $(a, a^+a^*) \in \tau_N$. That is, there exists $e = a^+a^* \in E$ such that $(a, e) \in \tau_N$.

Conversely, let $a \in S$ and $(a, f) \in \tau_N$ for some $f \in E$. By the definition of τ_N , we have

$$a = xn_1y$$
, $f = xn_2y$; $n_1, n_2 \in N$; $n_1^+ = n_2^+$.

Note that $E \subseteq N$. We have $xn_2y = f \in N$. Since N is normal. We obtain $xn_1^+y = xn_2^+y \in N$. Hence, $xn_1y = xn_2^+y \in N$. $xn_1^+n_1y \in N$. That is, $a \in N$ and (2) holds.

(3) Let ρ be any admissible congruence on S whose kernel is N. Let $(a, b) \in \tau_N$. By the definition of τ_N ,

$$a = xn_1y$$
, $b = xn_2y$; $n_1, n_2 \in N$; $n_1^+ = n_2^+$.

Since $\ker \rho = N$, there are $e, f \in E$ such that $(n_1, e) \in \rho$, $(n_2, e) \in \rho$. Note that ρ is an admissible congruence on S. We have that $(n_1^+, e) \in \rho$ and $(n_2^+, f) \in \rho$. But $n_1^+ = n_2^+$, we have $(e, f) \in \rho$. Thus, $(xey, xfy) \in \rho$. It follows that:

$$(n_1, e) \in \rho, (n_2, f) \in \rho \implies (xn_1y, xey) \in \rho, (xn_2y, xfy) \in \rho \implies (xn_1y, xn_2y) \in \rho \implies (a, b) \in \rho.$$

Therefore, (3) holds.

As usual, let S be an arbitrary relation on X. Define S^{∞} , the transitive closure of S, by $S^{\infty} = \{ | \{S^n \mid n \geq 1 \} \}$.

Proposition 6.4. Let S be a type B semigroup and λ_N be a transitive closure of τ_N ($\lambda_N = \tau_N^t$). Then λ_N is the minimum admissible congruence on S whose kernel is N.

Proof. Obviously, λ_N is a congruence on S. Now, we prove that $\ker \lambda_N = N$. To see it, let $n \in N$. Then there exists $e \in E$ such that $(n, e) \in \tau_N$. By Lemma 6.3, we have that $(n, e) \in \lambda_N$ for some $e \in E$ and $n \in \ker \lambda_N$.

Conversely, let $a \in \ker \lambda_N$. Then $(a, f) \in \lambda_N$ for some $f \in E$. By hypothesis, $\lambda_N = \tau_N^t$. Hence, there exist $a_1, a_2, ..., a_n \in S$ such that

$$(a, a_1) \in \tau_N, (a_1, a_2) \in \tau_N, ..., (a_{n-1}, a_n) \in \tau_N, (a_n, f) \in \tau_N.$$

Note that

$$(a_n, f) \in \tau_N \implies a_n = x n_1 y, \quad f = x n_2 y; \quad n_1, n_2, f \in N; \quad n_1^+ = n_2^+;$$

 $x n_2 y = f \in N \implies x n_2^+ y \in N \implies x n_1^+ y \in N \implies x n_1 y \in N \implies a_n \in N.$

Similarly, $a_{n-1}, a_{n-2}, ..., a_1, a \in N$. That is, $a \in N$. Therefore, ker $\lambda_N = N$.

Finally, we show that λ_N is the minimum admissible congruence on S whose kernel is N. Let ρ be any admissible congruence on S whose kernel is N. By Lemma 6.3, we have that $\tau_N \subseteq \rho$, and so $\lambda_N \subseteq \rho$.

The following corollary can be obtained from Propositions 6.2 and 6.4.

Corollary 6.5. Let S be a type B semigroup and ρ be an admissible congruence on S whose kernel is N. Then $\lambda_N \subseteq \rho \subseteq \eta_N$ and $\ker \lambda_N = \ker \rho = \ker \eta_N$.

A congruence on *S* is said to be *idempotent-pure* if for all $a \in S$, $e \in E$ and $(a, e) \in \rho$ imply $a \in E$.

Proposition 6.6. Let S be a type B semigroup and ρ be an admissible congruence. If λ_N is an admissible congruence on S, then S/ρ is an idempotent-pure image of S/λ_N .

Proof. Define a mapping ϕ as follows:

$$\phi: S/\lambda_N \to S/\rho$$
, $(a\lambda_N)\phi = a\rho$.

It is easy to see that ϕ is a homomorphism from S/λ_N to S/ρ . Let $a \in S$, $e \in E$ such that $(a\lambda_N)\phi = (e\lambda_N)\phi$. Then $a\rho = e\rho$. That is, $a\rho e$. By Proposition 5.7, $\ker \lambda_N = N = \ker \rho$. Hence, $a\lambda_N e$. That is, $a\lambda_N = e\lambda_N$. Therefore, S/ρ is an idempotent-pure image of S/λ_N .

7 Congruence pairs on a type B semigroup

In this section, we extend the concept of congruence pairs from inverse semigroup to type B semigroups.

Definition 7.1. Let N be a normal subsemigroup of a type B semigroup and π be a normal congruence on E. Then (π, N) is a congruence pair on S if the following statements hold:

- (1) for all $n \in N$, $n^+\pi n^*$;
- (2) for all $x, y \in S$, $e, f \in E$, $xey \in N$ and $e\pi f$ imply $xfy \in N$.

Lemma 7.1. Let ρ be an admissible congruence on a type B semigroup and ker ρ is unitary. Then (tr ρ , ker ρ) is a congruence pair of S.

Proof. Obviously, $\operatorname{tr}\rho$ is a normal congruence. Since $\ker\rho$ is unitary, by Theorem 6.1, we have that $\ker\rho$ is a normal subsemigroup of S. Let $n \in \ker\rho$. By Proposition 5.1, $(n^+, n^*) \in \operatorname{tr}\rho$. Let $x, y \in S$, $e, f \in E$ such that $xey \in \ker\rho$ and $e\operatorname{tr}\rho f$. Then

$$etr\rho f \Rightarrow e\rho f \Rightarrow xey \quad \rho \quad xfy.$$

Since $xey \in \ker \rho$, we obtain $xfy \in \ker \rho$. Therefore, $(\operatorname{tr} \rho, \operatorname{ker} \rho)$ is a congruence pair of S.

Let N be a normal subsemigroup of a type B semigroup and π be a normal congruence on E such that (π, N) is a congruence pair of S. A congruence ρ is said to be associated with the congruence pair (π, N) if $\ker \rho = N$, $\operatorname{tr} \rho = \pi$. The following theorem will show that a congruence associated with the congruence pair (π, N) can be constructed on S by using relations μ_{π} and η_{N} .

Theorem 7.2. The relation $\mu_{\pi} \cap \eta_N$ is a congruence on a type B semigroup S associated with the congruence pair (π, N) .

Proof. Let $\rho = \mu_{\pi} \cap \eta_N$. Clearly, ρ is a congruence on S. Now, we prove that $\ker \rho = N$. Let $n \in N$. Then for all $e \in E \subseteq N$, we have $en \in N$. Since (π, N) is a congruence pair, we obtain that $(en)^+\pi(en)^*$, $n^+\pi n^*$ and $en^+\pi en^*$. Note that $en^* = (en^*)^*$ and $en^+ = (en)^+$. We have

$$(en)^*\pi(en)^+\pi en^+\pi en^*\pi(en^*)^*$$
.

That is, $(en)^*\pi(en^*)^*$. Similarly, $(ne)^*\pi(n^*e)^*$. Thus, $(n, n^*) \in \mu_{\pi}$. By the proof of Proposition 6.2, $(n, n^*) \in \eta_N$. Thus, $(n, n^*) \in \rho$, $n \in \ker \rho$. That is, $N \subseteq \ker \rho$. On the other hand, it is easy to see that $\ker \rho \subseteq \ker \eta_N = N$. Therefore, $\ker \rho \subseteq N$ and $\ker \rho = N$.

Next, we show that $\text{tr}\rho = \pi$. Obviously, $\rho \subseteq \mu_{\pi}$. For all $e, f \in E$ and $(e, f) \in \rho$, we have $(e, f) \in \mu_{\pi}$. Furthermore, $e\pi f$ and $\operatorname{tr} \rho \subseteq \pi$. On the other hand, let $e, f \in E$ with $e\pi f$. Then, by the definition of (π, N) , we have that $xey \in N$ if and only if $xfy \in N$. Hence, $(e,f) \in \eta_N$. Since $(e,f) \in \mu_\pi$, we have that $(e,f) \in \rho$ and $\pi \subseteq \text{tr}\rho$. Therefore, $\text{tr}\rho = \pi$.

Let ρ be an admissible congruence on a type B semigroup S. If $\ker \rho = N$ and $\operatorname{tr} \rho = \pi$, then $\rho \subseteq \mu_{\pi}$ from Theorem 3.4 and $\rho \subseteq \eta_N$ from Proposition 6.2. Thus, we have the following corollary:

Corollary 7.3. Let ρ be an admissible congruence on a type B semigroup S. If $\ker \rho = N$ and $\operatorname{tr} \rho = \pi$, then $\rho \subseteq \mu_{\pi} \cap \eta_{N}$.

Theorem 7.4. The relation $\sigma_{\pi} \vee \lambda_{N}$ is a congruence on a type B semigroup S associated with the congruence pair (π, N) .

Proof. Let $\tau = \sigma_{\pi} \vee \lambda_{N}$. Then

$$\tau = \bigcap \{ \rho \mid \rho \text{ is a congruence}, \sigma_{\pi} \subseteq \rho \text{ and } \lambda_{N} \subseteq \rho \},$$

and for all $a, b \in S$, $(a, b) \in \tau$ if and only if there exist $a_1, a_2, ..., a_n \in S$ such that

$$(a, a_1) \in \lambda_N, (a_1, a_2) \in \sigma_{\pi}, (a_2, a_3) \in \lambda_N, ..., (a_{n-1}, a_n) \in \sigma_{\pi}, (a_n, b) \in \lambda_N.$$

Therefore, τ is the minimum congruence containing both σ_{π} and λ_{N} .

Now, we prove $\ker \tau = N$. To see it, let $a \in \ker \tau$. Then there exists $e \in E$ such that $(a, e) \in \tau$. Hence, there exist $a_1, a_2, ..., a_n \in S$ such that

$$(a, a_1) \in \lambda_N, (a_1, a_2) \in \sigma_{\pi}, (a_2, a_3) \in \lambda_N, ..., (a_{n-1}, a_n) \in \sigma_{\pi}, (a_n, e) \in \lambda_N.$$

Since $(a_n, e) \in \lambda_N$, by Proposition 6.4, $a_n \in N$, $(a_{n-1}, a_n) \in \sigma_\pi$. By the definition of σ_π , there are $e, f \in E$ such that

$$e\pi a_n^*\pi a_{n-1}^*$$
, $f\pi a_n^*\pi a_{n-1}^+$ and $fa_n e = fa_{n-1} e$.

Since *N* is normal, $a_n \in N$, $fa_n e \in N$ and $fa_{n-1} e \in N$, we have

$$fa_{n-1}ea_{n-1}^* \in N$$
, $e\pi a_{n-1}^*$.

By the definition of congruence pairs, we obtain

$$fa_{n-1} = fa_{n-1}a_{n-1}^*a_{n-1}^* \in N.$$

Thus, $a_{n-1}^+fa_{n-1} \in N$. Again, since $f\pi a_{n-1}^+$, we have

$$a_{n-1} = a_{n-1}^+ a_{n-1}^+ a_{n-1} \in N$$
.

Hence, $a_{n-1} \in N$ and $(a_{n-2}, a_{n-1}) \in \lambda_N$. By the proof of Theorem 6.4, $a_{n-2} \in N$. Since $(a_{n-3}, a_{n-2}) \in \sigma_{\pi}$, we have $a_{n-3} \in N$ from the above proof. The process will continue until we reach $a \in N$. Thus, $\ker \tau \subseteq N$. Conversely,

$$n \in N \implies n \in \ker \lambda_N \implies (\exists e \in E)(n, e) \in \lambda_N \implies (\exists e \in E)(n, e) \in \tau \implies n \in \ker \tau.$$

Hence, $N \subseteq \ker \tau$. Therefore, $\ker \tau = N$.

Next, we prove that $tr\tau = \pi$. Let $e, f \in E$. Then

$$(e,f) \in \pi \implies (e,f) \in \sigma_{\pi} \implies (e,f) \in \tau.$$

This means that $\pi \subseteq \operatorname{tr} \tau$.

On the other hand, let $e, f \in E$ and $(e, f) \in \text{tr}\tau$. That is, $(e, f) \in \tau$. Then there exist $a_1, a_2, ..., a_n \in S$ such that

$$(e, a_1) \in \lambda_N, (a_1, a_2) \in \sigma_{\pi}, (a_2, a_3) \in \lambda_N, ..., (a_{n-1}, a_n) \in \sigma_{\pi}, (a_n, f) \in \lambda_N.$$

Note that $(e, a_1) \in \lambda_N$. There are $b_1, b_2, ..., b_k \in S$ such that

$$(e, b_1) \in \tau_N, (b_1, b_2) \in \tau_N, ..., (b_{k-1}, b_k) \in \tau_N, (b_k, a_1) \in \tau_N.$$

Again $(e, b_1) \in \tau_N$, by the definition of τ_N ,

$$e = xn_1y$$
, $b_1 = xn_2y$; n_1 , $n_2 \in N$; $n_1^+ = n_2^+$.

According to the definition of congruence pairs, for all $n \in N$, we have $n^*\pi n^+$. Thus, for all $x, y \in S$, $ny^+ \in N$, which follows $(ny^+)^+\pi(ny^+)^*$. Since $(ny)^+=(ny^+)^+$, we have $(ny)^+\pi(ny^+)^*$. By the normality of π ,

$$(x(ny)^+)^+\pi(x(ny^+)^*)^+$$
.

That is, $(xny)^+\pi(x(ny^+)^*)^+$. In particular, since $n_1, n_2 \in N$, we have

$$(xn_1y)^+\pi(x(n_1y^+)^*)^+, (xn_2y)^+\pi(x(n_2y^+)^*)^+.$$

Again since $n_1^*\pi n_1^+$, $n_1^+ = n_2^+$ and $n_2^*\pi n_2^+$, we obtain $n_1^*\pi n_2^*$, $n_1^*y^+\pi n_2^*y^+$ and $(n_1y^+)^*\pi (n_2y^+)^*$. By the normality of π , $(x(n_1y^+)^*)^+\pi (x(n_2y^+)^*)^+$. By transitivity of π , $(xn_1y^+)^*\pi (xn_2y^+)^+$. That is, $e\pi b_1^+$. Note that $(b_1, b_2) \in \tau_N$. We have

$$b_1 = x_1 n_3 y_1$$
, $b_2 = x_1 n_4 y_1$; $n_3, n_4 \in N$; $n_3^+ = n_4^+$.

Similarly, we can prove $b_1^+\pi b_2^+$, $b_2^+\pi b_3^+$, ..., $b_k^+\pi a_1^+$. By transitivity, we have $e\pi a_1^+$. Since $(a_1, a_2) \in \sigma_\pi$, we obtain $a_1^+\pi a_2^+$. Note that $(a_2, a_3) \in \lambda_N$. According to the above procedure, $a_2^+\pi a_3^+$, $a_3^+\pi a_4^+$, $a_4^+\pi a_5^+$, ..., $a_{n-1}^+\pi a_n^+$ and $a_n^+\pi f$. By transitivity, $e\pi f$. Therefore, $\operatorname{tr} \tau \subseteq \pi$.

To sum up, $\sigma_{\pi} \vee \lambda_{N}$ is a congruence on a type B semigroup associated with the congruence pair (π, N) . This completes the proof.

Let ρ be an admissible congruence on a type B semigroup. If $\ker \rho = N$, $\operatorname{tr} \rho = \pi$. By Theorem 3.1, we have $\sigma_{\pi} \subseteq \rho$. By Proposition 6.4, we obtain $\lambda_N \subseteq \rho$. Therefore, we obtain the following corollary:

Corollary 7.5. Let ρ be an admissible congruence on a type B semigroup S. If $\ker \rho = N$ and $\operatorname{tr} \rho = \pi$, then $\sigma_{\pi} \vee \lambda_{N} \subseteq \rho$.

Theorem 7.6. Let ρ be an admissible congruence on a type B semigroup S. If $\ker \rho = N$ and $\operatorname{tr} \rho = \pi$, then $\mu_{\pi} \cap \eta_{N}$ and $\sigma_{\pi} \vee \lambda_{N}$ are congruences on S associated with the congruence pair (π, N) . Furthermore, $\sigma_{\pi} \vee \lambda_{N} \subseteq \rho \subseteq \mu_{\pi} \cap \eta_{N}$.

Proof. It follows from Theorems 7.2 and 7.4 and Corollary 7.5.

8 Conclusion

As we know, abundant semigroups are generalized regular semigroups and type B semigroups are generalized inverse semigroups in the range of abundant semigroups. The kernel-trace approach consists in splitting the analysis of a congruence on a regular semigroup into two parts: the kernel and the trace. Here we develop the kernel-trace approach of inverse semigroups to the cases of type B semigroups. As a concrete application of the above approach, we introduce admissible congruences of type B semigroups. Admissible congruences introduced here could improve studies of the inverse semigroup theory.

Acknowledgements: The authors are very grateful to the referees for their valuable suggestions which lead to an improvement of this article.

Funding information: This work was supported by the NNSF (CN) (Nos 11261018 and 11961026), the NSF of Jiangxi Province (No. 20181BAB201002).

Conflict of interest: The authors state no conflict of interest.

References

- [1] A. El-Qalliali, Congruences on ample semigroups, Semigroup Forum 99 (2019), 607-631, DOI: https://doi.org/10.1007/ s00233-018-9988-4.
- [2] A. El-Qalliali, A network of Congruences on an ample semigroups, Semigroup Forum 102 (2021), 612-654, DOI: https:// doi.org/10.1007/s00233-021-10168-z.
- [3] X. J. Guo and A. Q. Liu, Congruences on abundant semigroups associated with Green's*-relations, Period. Math. Hungar. 75 (2017), 14-28, DOI: https://doi.org/10.1007/s10998-016-0163-y.
- [4] J. Y. Guo and X. J. Guo, Abundant semigroup algebras which are Azumaya, Semigroup Forum 103 (2021), 879-887.
- [5] J. Y. Guo and X. J. Guo, Semiprimeness of semigroup algebras, Open Math. 19 (2021), 803-832, DOI: https://doi.org/10. 1515/math-2021-0026.
- [6] C. H. Li and L. M. Wang, On the translational hull of a type B semigroup, Semigroup Forum 82 (2011), 516-529, DOI: https://doi.org/10.1007/s00233-011-9301-2.
- [7] C. H. Li, B. G. Xu, and H. W. Huang, Congruences on \sim bisimple right type B ω semigroups, J. Discrete Math. Sci. Crypto. 20 (2017), 1251–1262, DOI: https://doi.org/10.1080/09720529.2017.1303940.
- [8] C. H. Li, L. M. Wang, B. G. Xu, and H. W. Huang, An automorphism theorem on certain type B semigroups, Italian J. Pure Appl. Math. 42 (2019), 616-623.
- [9] C. H. Li, B. G. Xu, and H. W. Huang, Cayley graphs over green * relations of abundant semigroups, Graphs Combin. 35 (2019), 1609–1617, DOI: https://doi.org/10.1007/s00373-019-02106-2.
- [10] C. H. Li and B. G. Xu, A characterization of the translational hull of a strongly right type B semigroup, Open Math. 17 (2019), 1340-1349, DOI: https://doi.org/10.1515/math-2019-0105.
- [11] C. H. Li, B. G. Xu, and H. W. Huang, Bipolar fuzzy abundant semigroups with applications, J. Intelli. Fuzzy Syst. 39 (2020), 167-176, DOI: https://doi.org/10.3233/JIFS-190951.
- [12] C. H. Li, Z. Pei, and B. G. Xu, A new characterization of a proper type B semigroup, Open Math. 18 (2020), 1590-1600, DOI: https://doi.org/10.1515/math-2020-0104.
- [13] C. H. Li, Z. Pei, and B. G. Xu, A *-prehomomorphism of a type B semigroup, J. Algebra Appl. 20 (2022), 2150222, DOI: https://doi.org/10.1142/S0219498821502224.
- [14] C. Shu, Some studies of type B semigroups, East China Jiaotong University, Nanchang, 2015.
- [15] J. B. Fountain, Adequate semigroups, Proc. Edinb. Math. Soc. 22 (1979), no. 2, 113–125.
- [16] Y. Y. Feng, L. M. Wang, L. Zhang, and H. Y. Huang, A new approach to a network of congruences on an inverse semigroup, Semigroup Forum 99 (2019), 465-480, DOI: https://doi.org/10.1007/s00233-019-09993-0.
- [17] R. S. Gigon, Topologically congruence-free compact semigroups, Topology Appl. 252 (2019), 17-26, DOI: https://doi.org/ 10.1016/j.topol.2018.11.005.
- [18] M. Petrich, Congruences on inverse semigroups, J. Algebra 55 (1978), 231-256.
- [19] M. Petrich, Congruences on completely regular semigroups, Canad. J. Math. 41 (1989), 439-461.
- [20] M. Petrich, The kernel relation for a completely regular semigroup, J. Algebra 172 (1995), 90-112.

- [21] N. Reilly and H. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360.
- [22] A. El-Qalliali and J. B. Fountain, *Idempotent-connected abundant semigroups*, Proc. Roy. Soc. Edinburgh Sect. A **91** (1981), 79–90.
- [23] J. B. Fountain, *Abundant semigroups*, Proc. Lond. Math. Soc. **44** (1982), 103–129.
- [24] M. Petrich, *Inverse Semigroups*, John Wiley Sons, New York, 1984.