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Abstract: It is well known that a sufficient and necessary condition for a continuous function g to be almost
periodic on time scale T is the existence of an almost periodic function f onR such that f is an extension of
g. The purpose of this article is to extend these results to SP-almost periodic functions. We prove that the
necessity is true, that is, an SP-almost periodic function on T can be extended to an SP-almost periodic
function on R. However, a counterexample is given to show that the sufficiency is not true in general.
By introducing a concept of minor translation set and characterizing the almost periodicity on T in terms of
this new concept, we obtain a condition to ensure the sufficiency. Moreover, we show the necessity of this
condition by a counterexample.
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1 Introduction

Periodic functions and almost periodic functions have numerous applications in the study of qualitative
theory of differential equations, difference equations, and dynamic equations on time scales (see, e.g.,
[1-5]), and the papers for more details (see, e.g., [6,7]). The theory of time scales was initiated by Hilger in
his Ph.D. thesis [8] in 1988 to unify continuous and discrete problems. The theory gives an effective
mathematical technique to economics, biomathematics, quantum physics, etc. In 2011, Li and Wang intro-
duced the almost periodic functions on time scales [9,10]. Since then, many concepts of almost periodic
functions were introduced on time scales, such as pseudo almost periodicity, almost automorphy,
SP-almost periodicity, and others. Recently, Lizama and Mesquita have studied the connection between
almost periodic functions defined on time scales and on the real line and obtained the following result.

Proposition 1.1. [11] If T is invariant under translations, a necessary and sufficient condition for a continuous
function g : T — [E" to be almost periodic on T is the existence of an almost periodic function f : R — [E" such
that f(t) = g(t) for every t € T, where E" denotes the Euclidian space R" or C".

Then Tang and Li extended this result to pseudo almost periodic functions and obtained the following
results.
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Proposition 1.2. [12]

(i) If T is invariant under translations and f € PAP(T; E"), then there exists g € PAP(R; E") such that
g)=f(t) forteT;

(ii) If T is invariant under translations and f € PAP(R; E™) is uniformly continuous, then the restriction
functiong =f|y : T - E"is in PAP(T; E™),

where [E™ denotes the Euclidian space R" or C".

The main purpose of this article is to extend these results to SP-almost periodic functions on time scales.
We prove that the necessity is true, that is, an SP-almost periodic function on T can be extended to an
SP-almost periodic function on R (Theorem 3.1). However, a counterexample (Example 3.1) is given to show
that the sufficiency is not true in general. Meanwhile, by introducing a concept of minor translation set of
T and characterizing the almost periodicity on T in terms of this new concept (Theorems 3.2 and 3.3),
we obtain a condition to ensure the sufficiency (Theorem 3.4). Moreover, under the condition “the interval
[w, w + K)r N T’ has finite elements,” we obtain a sufficient and necessary condition for gy € SPAP(T; X).
Then we give a counterexample to show that this condition is necessary (Example 3.2). Furthermore, we
present a result on the connection between SP-almost periodic functions defined on T; and T, from Theorem
3.4 (Corollary 3.1).

2 Preliminaries

The following concepts and results can be found in [8,13]. From now on, N, N*, 7, R, and R* indicate the
sets of nature numbers, positive integers, integers, real numbers, and nonnegative numbers, respectively.
Let E" be the Euclidian space R" or C" with Euclidian norm ||, and let (X, ||-||) be a Banach space.

2.1 Time scale

Let T ¢ R be atime scale, thatis, T # & is closed. The forward and backward jump operatorsg,p : T — T
and the graininess u : T — R™" are defined, respectively, by

o(t)=inf{seT :s>t}, pt)=sup{seT:s<t} u)=o()-t.

If o(t) > t, we say that t is right-scattered; otherwise, t is right-dense. Similarly, if p(t) < ¢, we say that ¢
is left-scattered; otherwise t is left-dense.

Definition 2.1. A time scale T is called invariant under translations if
M={treR:t+x1eT, teT}+{0}
and define

K - inf{lr| :tell, 7+ 0}, if T #R;
T, if T =R.

In fact, if T # R, then we have K > 0, and one can show thatII = KZ, and we say Il the translation set of T
(see, e.g., [12]).
In this article, we always assume that T is invariant under translations.

Definition 2.2. [8]
(i) Afunction f: T — X is continuous on T if f is continuous at every right-dense point and at every left-
dense point.
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(ii) Afunction f: T — X isuniformly continuousonT iffore > 0, thereisaé > O such that|f(x) — f(o)ll < &
for x, % € T with|x — x| < 6.

Denote by C(T; X) the set of all continuous functions g : T — X.

Fort,s e T, t<s,denote(t,s),|t,s],(t,s],[t,s) the standard intervals in R, and use the following
symbols:

t,s)r=t,s)nT, [t,sly=[ts]nT, (t,slt =, s]nT, [t,s)r=][t,s)nT.

Proposition 2.1. [13] Fix a point w € T and an interval [w, w + K)y, there are at most countably many right-
scattered points {t;}ic;, 1 < N in this interval. If we denote t; = t; + jK,i € 1,j € Z, we obtain all the right-
scattered points, and we have u(t;) = u(t;).

Let F1={[t,s)r : t,s € T with t < s}. Define a countably additive measure m; on #; by assigning
to every [t, S)1 € ¥ its lengths, i.e.,
my([t, s)r) =s - L.
By using m;, we can generate the outer measure m;" on the power set P(T) of T: for E € P(T):

e (E) - igf{Z(si - t,-)} €R*Y, B¢E;

ielg

+00, B €E,

where f = supT and
B = {[t;, si) € Fibier, : Iz <N, E ¢ | [t s}

ielg
A set A c T is called A-measurable if for E ¢ T, and we have
my(E) = m{(E n A) + m{(E n (T\A)).

Let M(m;) ={A : A isa A — measurable subset in T}. Restricting m;" to M(m;’), we obtain the Lebesgue
A-measure, which is denoted by u,.

Definition 2.3. [13]
(i) A function S : T - X is said to be simple if S takes a finite number of values g, ¢,--, Cy.
Let Ej = {s € T : S(s) = ¢}. Then

N
S =Y o
j=1
where X is the characteristic function of Ej, i.e.,

1, if s € Ej;
X5 () = 0, if seT\E.

(ii) Assume that E is a A-measurable subset of T and S : T — X is a A-measurable simple function.
Then the Lebesgue A-integral of S on E is defined as follows:

N
IS(S)AS = Y euy(E 1 E).
E j=1

(iii) A function g: T — X is a A-integrable function if there exists a simple function sequence {g; : k € N}
such that g (s) — g(s) a.e. in T, then the integral of g is defined as follows:
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g(s) = lim | g (s)As.
k—oo
T T

(iv) Forp >1,8: T — X is called locally LPA-integrable if g is A-measurable and for any compact A-mea-
surable set E c T, the A-integral

j||g(s)||PAs < co.
E

The set of all LPA-integrable functions is denoted by LP (T; X).

loc

Definition 2.4. [14] Define ||-|ls» : L2 .(T; X) — R* as follows:
s+K %

e
=sup| — NI|PAr| ,
lglls» p x gl
S

seT

where K is defined in Definition 2.1. A function g € LY (T; X) is called SP-bounded if||g|ls» < co. The space

loc

of all SP-bounded functions is denoted by BSP(T; X); if T = R, denote it by BSP(X).

Lemma 2.1. [15] The norm ||-|ls» and |- |sp in BSP(X) given below are equivalent.

t+1 %
lglse = |sup | lg(s)IPds| ,
teR
t
t+l ;7
1
Igllsy = sup -+ lg(s)IPds
teR

In fact, we have

min 15, 1°5)lgls» < lgllsy < max (17, 1) lglse-

Remark 2.1. The almost periodic properties will be kept for equivalent norm of a Banach space.

2.2 SP-almost periodic functions

Definition 2.5. [16] A set A c T is called relatively dense in T if there exists an [ > 0 such that
[s,s+ 1y NnA+ J,s €T, and we call [ the inclusion length.

Definition 2.6. [9] A function g € C(T; X) is almost periodic on T if for € > 0,
T(g,e)={tecll:|g(s+T1)—-g(s)| <€ for s e T}
is a relatively dense set in I1. We call T(g, €) the £-translation set of g and 7 the e-translation period of g,

and the set of all almost periodic functions on T is denoted by AP(T; X).

Definition 2.7. [10] A function g : T — X is said to be normal on IT if for any sequence {a,} c II, and there is
a subsequence {a,} c {a,} such that {g(t + a,)} converges uniformly for t € T.

Lemma 2.2. [10] A function g : T — X is almost periodic on T if and only if it is normal on II.
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Definition 2.8. [17,18]

(i) A function g € L (R; X) is said to be SP-almost periodic if for € > 0,

1
t+1 P

T(g,e) =47 €R : sup I lg(s + T) — g(s)|IIPds| < ¢
t

teR

is relatively dense in R.
(ii) (SP-normality) A function g € LP (R; X) is said SP-normal if for any sequence {a,} ¢ R, and there is
a subsequence {a,} ¢ {a,} such that
t+1 »

teR

sup I lg(s + an) — g(s + ap)llPds| — 0 (n, m — o0).
t

Lemma 2.3. [15] A function g is SP-almost periodic on R if and only if g is SP-normal on R.

Definition 2.9. [14,19]
(i) A function g € LF (T; X) is SP-almost periodic on T if given € > 0, the &-translation set of g

loc
T(g, &) = {r e I : |g(-+7) - g5 < €}

is a relatively dense set in I1. The space of all these functions is denoted by SPAP(T; X) with norm ||-||s».

(ii) (SP-normality on T) Let IT be the translation set of T. A function g € LE (T ; X) is SP-normal on IT if for

any sequence {a,} c TI, there is a subsequence {a,} ¢ {a,} such that

lg(-+an) — g(-+am)llsy — 0 (n, m — o).

Lemma 2.4. [14] A function g : T — X is SP-almost periodic on T if and only if g is SP-normal on I.

3 Main results

We first extend the necessity of Proposition 1.1 to SP-almost periodic functions.
Theorem 3.1. For any g € SPAP(T; X), there is § € SPAP(R; X) such that g|y = g.

Proof. Let

s ]8O, teT
8O- {g(fij): t € (&, 0(ty)), -

where t; is given for T in Proposition 2.1. For t € R\T, there is a right-scattered point ¢; such that
tij < t < 0(t;), and notice that o(t;) < t; + K, then we have

t+%K o(t)+K
1 . 1 .
sup — '[ 1§(s)IPds < sup — I 1§(s)IPds
ter\T K A t K !
ij

o(ty) o(t)+K

1
= —_ & Pd
sup - j + _[ [&(s)IPds

t
d & o(ty)
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o(t) o(t)+K

1 1
<sup — s)||Pds + sup — I g(s)|Pds
P jug< )IPds + sup 186l

tij &

t o(ty)

o(tj) o(t)+K
; I ¢ |
=sup — S)|[PAs + sup — S)|PAs
ti}_p % gl Up % g
o(ty)
t+‘K t+K
< sup — f Ig()IPAS + sup — j lg()IPAs
teT teT
=2|gl» < oo.
Obviously,
t+K t+K
sup— I I§(s)IPds = sup— I lg()IIPAs = |l < oo.
teT 7( teT
Since
t+K t+K t+K
1212, = sup— j |g()IPds = max sup— j Ig©)lPds, sup — j lg@)IPds b,
teR teT te[R\TI
we obtain
||§||g% < 2|gls (3.2)

Thus, g € BSP(X). Next we will show g € SPAP(R; X). For £ > 0, letting 7 € T(g, €), we derive

t+K
1EC¢+1) - & )Ilg’p =sup — j 1E(s + T) — &(s)lIPds
teR
t+K t+K
= maxqsup — _[ 1€(s + T) — &(s)IIPds, sup — I (s + T) - §(s)lIPds ;.
teT te[R\TI

Since 7 € T(g, €), by the same argument of the proof of (3.2), we have

t+%K

sup — I 1&(s + T) - &(s)IIPds
te[R\TI

o(ty) o(tj)+K

N

supA| [+ [ (g o) - sowas

t
v t a(ty)

a(ti) o(t)+K
1 1 “ “
sup — j 1665 + ) - §OIPds + sup - j &G + T) - g(s)IPds
t; G
tij o(ty)

O'(t,'j) U(tij)+‘7(

N

= sup% _[ lg(s + 1) — g(s)IIPAs + sup% _[ lg(s + 1) — g(s)IIPAs

G i o(ty)

t+K t+K
sup — I lg(s + 1) — g(S)IPAs + sup — I lg(s + 1) — g(s)IPAs

teT teT

N

< 2€P,
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Obviously,

t+K t+K
1 . . 1
sup — I 1§(s + 7) — §(s)IPds = sup — I lg(s + 1) — g(s)IPAs < £P.
teT 7< ¢ tel 7< A

Thus,
1§¢+7) - 8OIE < 26,

which means that T(g, €) is relatively dense in II by Lemma 2.1, and then relatively dense in R. Therefore,
we have g € SPAP(R; X). O

The following example shows that the converse of Theorem 3.1 is not true in general.

Example 3.1. Let

sint, t ¢ (nm, (n + Dm);
t =
40 {|n|, t = nm.

T = Unez[2nm, 2n + Dm]. 1t is easy to see that I1 = 277 and

t+2m
sup L _[ lg)IPds < 1, (33)
ter 27 !
t+2m
sup 1 I lg(s + 2km) — g(s)|Pds = 0, (k € Z). (3.4)
teR 2m f

By (3.3), we have g € BSP(R; R), and by (3.4), we can obtain g € SPAP(R; R). Let § = g |y,
t+2m

_ 1
1212, = sup — j lg(s)IPAs
2
t

teT

(2n+2)n
1
ssupo- [ Ig@pas
nezZ
nm
1
> sup — lg(s)IPds + |2n + 1 |Pm
nez 21

[2nm,(2n+2)m]y
[2n + 1 |P
ZSsup—— =+
nez 2

which implies § ¢ BSP(T; R), and then g ¢ SPAP(T; R).

To study the converse of Theorem 3.1, we introduce the concept of minor translation set of T and the
normality on minor translation set of T.

Definition 3.1. Let IT = KZ be the translation set of a time scale T, and we say II; = pKZ (p € N*)
the minor translation sets of T.

Definition 3.2. Let IT; ¢ II be a minor translation set of T. A function g : T — X is said to be normal on IT;
if for any sequence {a,} c II;, and there is a subsequence {a,} c {a,} such that |g(t + a,) — g(t + an)l —
0 (n, m - oo) uniformly fort € T.
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Then we have the following result.

Theorem 3.2. A function g : T — X is normal on Il = KZ if and only if g is normal on I1;, where I} = pKZ
is a minor translation set of T.

Proof. If g is normal on IT and II; c II, it is obvious that g is normal on IT;.

On the other hand, if g is normal on II, for {a,} c II, we have the decomposition of its element
ay =B + 1, with B’ eI, 0 <1, <(p-1DK.Itis easy to see that {r,} is bounded and finite, then there
exists a convergent subsequence {1} satisfying 1, = g, 0 < g < (p — 1). So we can choose such a sub-
sequence {a,} ¢ {a;} satisfying a;, = /3,1 + qK, where /3,1 € II. Since g is normal on IT;, there is a subsequence
B, c {ﬁr’l} such that {g(t + B,)} converges uniformly for t € T. Then we can choose such a subsequence
{an}  {ay} satisfying a, = B, + ¢K, and {g(t + a,)} = {g(t + ¢K + B,)} converges uniformly for ¢ € T. That
is, {g(t + a,)} converges uniformly for ¢t € T, which means that g is normal on II. O

Definition 3.3. (SP-normality on T) Let II; ¢ IT be a minor translation sets of T. A function g € L2 (T; X)
is SP-normal on II; if for any sequence {a,} c II;, there is a subsequence {a,} ¢ {a,} such that

Ig(+an) — g(-+am)lls» — 0 (n, m — oo).
By using the same argument proof of Theorem 3.2, we can prove the corresponding result for SP-almost

periodic function, and we omit the details.

Theorem 3.3. A function g : T — X is SP-normal on 11 if and only if g is SP-normal on IT;, where Il = pKZ
is a minor translation set of T.

For convenience, let T’ = cl{all right-scattered points of T}. Then T’ is a time scale. Let II' = K'Z
be its translation set. Let f € SPAP(R; X) and denote f = f |y, f = fly

Lemma 3.1. IT is a minor translation set of T'.

Proof. By Proposition 2.1, we have Il = KZ c Il' = K'Z, and then K € II'. This implies that K = pK’
for some positive integer p, that is, IT is a minor translation set of T'. O

Now we are in the position to present the following results, where the first part gives a sufficient
condition to ensure the converse of Theorem 3.1.

Theorem 3.4. Let f € SPAP(R; X) and T # R be invariant under translations.
(@) Iff € AP(T'; X), then f € SPAP(T; X).
(if) Suppose [w, w + K)y N T'(w € T) has finite elements. If f € SPAP(T; X), thenf € AP(T'; X).

Proof. (i) Since f € AP(T'; X), f is normal on II' by Lemma 2.2 and is normal on II by Theorem 3.2.
For {a,} ¢ TI, and we can extract {a,}  {a,/} such that
IF(t +al) = f(t+a)] = 0 (n',m" - co) uniformly for ¢t € T'. (3.5)
Since f € SPAP(R; X)), it is normal on I by Lemma 2.4, and we can extract {a,} ¢ {a,} such that
IfC+an) = f(C+am)lsy — 0 (n, m — c0). (3.6)
By (3.5) and (3.6), we have
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t+%

If C+a) = fC+amlBy = Sup— I If (s + an) = f(s + am)IPAs

teT

1
=sup - j If(s + an) — f(s + alPds + > [f(ty + an)
tel (6,641 teT'n[t,t+%]
- f(t + ap)Pu(ty)
t+K
<sup — I If(s + an) = f(s + a)lPds + sup [If(t + ay)
teR teT’
- f(t + ap)l?

= If(-+an) = fC+anllse + supIf (¢ + a) — F(t + an)l?

teT’!
— 0 (n,m - o0).

It shows that f : T — X is SP-normal on II, by Lemma 2.4, we have f € SPAP(T; X).
(ii) Since [w, w + K) N T' (w € T) has finite elements, for these right-scattered point ¢, we have

u(t) > 0 with minimum h > 0. Suppose that f ¢ AP(T'; X). Then f is not normal on II’ and is not normal
on IT by Theorem 3.2. Hence, there is a sequence {8,} ¢ Il and &, > O, for any N > 0, there are ng, mg > N

and t} € T’ such that |f (¢} + Br) - fty+ Byl > €o. Since f € SPAP(T; X), by Lemma 2.4, we can extract
{an} C {B,} such that

If (- +an) = f(+am)ls» — 0 (n, m — co).
Choose N large enough such that forn, m > N,

ebh

”f( +0ty) — f( +am)||sp < — K (3.7

On the other hand, there exist ng, mg > N and ty, € T’ such that
IIf(to + ano) - f(to + amo)ll > €. (3.8)

By (3.8), we have

t+%K

IF (- +an,) = F (- +0tmy ) 12 = sup— _[ IF (s + @ny) = F (s + am,)IPAs

= sup 1 j ILf(s + a,,o) - f(s + amo)llpds + Z I[f(tl-j + ano)

[t,t+ Ky te[t,t+KrnT'
- f(fij + amo)“‘n.u(tij)

>l WG an) A5 ) Pds + 1 (o + @) = F(to + am)IPicto)
[to, to+ Ky

I (to + an) ~ Fto + amp) P2 5 S8, 202

\2

K 2K’
This contradicts (3.7). Thus, f € AP(T'; X). O
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Remark 3.1. The following example shows that the condition “the interval [w, w + K)t N T’ has finite
elements” in Theorem 3.4 is necessary.

Example 3.2. Let g : R — R be defined as follows:

n, te[lO"-l+L,,,1O"~l+L,l
210 210—1

,(lisodd, n = 2);
g(t) = )( )

1, otherwise.

Let T = {k, k + 2—1,,}, (ke Z,neN"), Then Il = Z, T\Z is the set of all right-scattered points of T, and
T=T=cl(T\Z). Let § =g |y and § be the extension of § as (3.1), and one has g(t) = g(¢t), (t € R).
It is easy to see § = g |y = & since T = T'. We will prove that g € S'AP(T; R), but g ¢ AP(T; R) and
g ¢ AP(T'; R).
Indeed, if we have
t+1
Ig(-+m-10™) — g()lst = sup | |g(s + m - 10™) — g(s)|As — O (n — co) (3.9)
teT
uniformly for m € Z, then for any € > 0, there exists N > O such that for anyn > N,
t+1

sup | |g(s + m-10") — g(s)|As < € uniformly for m € Z.
teT

This implies that: for a fixedn > N, {m - 10"}z is relatively dense in Z and T(g, ¢) is relatively dense in II;
thus, g € SIAP(T; R). By Theorem 3.1, we have g € SIAP(R; R). On the other hand, by the construction of
g, we obtain g is unbounded on T and on T’, which means § ¢ AP(T; R) and g ¢ AP(T’; R).

Now we need only to prove that (3.9) holds. Let t € T, if there is not a number 10% - h + # €
2
[t, t + 1], (10+h) for some positive integers k, k; and integer h, we have g(s + m - 10") = g(s) = 1 for all
t+1 t+1
s e[t t+1], and jt+ lg(s + m-10") — g(s)|As = 0. It means that the supremum of Jj lg(s + m-10") —

g(s)|As will be obtained when 10X - h +

21(1),,1 € [t, t + 1] for some positive integers k, n; and integer h.

So we have three cases: t = 10¥ - h, t = 10X - h + %, ort=10%-h - % for some positive integer n; and
integer h.
Case 1: t = 10¥ - h. We have the following cases:

(i) If k > n, we have

10%-h+1

1 1 1
. 101" — — k. 10" &+ —— | = k . .
j lg(s + m - 10™) — g(s)|As ‘g(lo h+m-10" + 210,,) g(lO h + 210") ’ L
10%-h
+ g(lOk-h+m~10"+%)—g(10k~h+%) Lk
210 210 210
o, if h, m are even;
nzl__o"l’ if h isevenand m isodd;
=Jk-1 . . .
= if h isodd and m iseven;
210
n _nl k;kl, if h, m are odd.
210 210

(ii) If k = n, we have the following cases:
(a) There exists k; € N* such that 10%|(h + m), and we have
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10%-h+1
1 1 1
. ny _ — n., — | = n., .
lg(s + m - 10™) g(s)lAs—‘ g(lO (h+m) + 210") g(lo h+ 210") S
10K-h
+ [ gl10"(h+m) + lk -gl10™"-h + 1k Lk
210n+ 1 210"+ 1 2107[+ 1
o, if m, h+_m are even;
10k
n_—"l’ if m is odd and h+m is even;
10 k
wlk_l, if m is even and h+ m is odd;
j10™ 10k
n-1 n+k1—1’ M reodd.
2107! 210n+k1 10k1
(b) If104+(h + m), we have
10%-h+1
1 1 1
. ny _ — n ., — | = n., - S
| e+ m-10m g(s)|As—‘ g(lO (h+m) + zlon) g(lO h+ 210") ‘ 5
10%-h
o, if m isodd;
=<in-1 . .
——, if m iseven.
210

(iii) If k < n, we have
10%-h+1

210k 210k -
10k-h

Ig(s + m-10™) - g(s)|As = ‘g(lok-h+m~10"+%)—g(lOk-h+L)‘ !
2

Case2:t=10X - h + % We have the following cases:

(i) If k > n, we have the following cases:
(a) If ny < 10" < 10X, then

k 1
10 -h+ﬁ+l

|g(s + m-10") - g(s)|As = O,

k 1
10 'h+ﬁ

since g(s + m - 10") = g(s) = 1 for s ¢ [10"~h+%,10"~h+%+1].
(b) If10" < ny < 10%, then

k.opye L
10 h+2n1+1

|g(s + m-10™) - g(s)|As

kope L
10 h+2n1

g(10k~h+m-10"+ ln)—g(lo"-h+ ! )‘ 1n
210 210

210"

0, if m is even;

21—:),,, if m isodd.
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(c) If10" < 10% < ny, then

k 1
10 'h+ﬁ+1

1 1 1
lg(s + m - 10") — g(s)lAS:’ g(lO" “h+m-10" + 210,,) - g(lO" “h+ 210,,) ‘ S0

lO"-h+%
+ g(10k~h+m-10"+%)—g(lok-h+%)‘ Lk
210 210 210
o, if h, m are even;
nzl—_onl, if h isodd and m is even;
=4 k -1 . . .
ot if h isevenand m isodd;
2
nzl—;"l + k17’ if h, m are odd.
2

(ii) If k = n, we have the following cases:
(a) If10* = 10" > ny, then

k. oy L
10 h+2nl+l

'[ lg(s + m-10™) — g(s)|As = O,

k.ope L
10 h+2n1

since g(s + m - 10") = g(s) for s ¢ [10" -h+ %, 10% - h + % + 1],
(b) If10% = 10" = ny, then

10"~h+%+1
1 1 1
. ny _ - n, | = n, I .
lg(s + m - 10™) — g(s)|As ‘ g(lO th+m)+ 210") g(lO h+ 210") ‘ TG
10"<h+%
o, if m is even;
- n_,, , if m isodd.
210

(c) If10k = 10" < n; < 10" or 10¥ = 10" < 10"*! < ny, but 104(h + m), we have

10"-h+%+1
21 1 1 1
Cam _ n. i n., _— .
Ig(s + m - 10™) g(s)|As_’ g(lo (h+m)+ zlon) g(lO h+ zlon) ’ 0"
10"~h+%
0, if m is even;
1252, if misodd.
210

(d) If 10k = 10" < 10"*k < n; < 10"kt and 10%|(h + m), 104 (h + m) for some Kk, ko € N*, kg < ko,

we have
10"~h+%+1
1 1 1
. ny _ = n, — n., .
lg(s + m - 10™) — g(s)|As ‘ g(lO th+m)+ 210,,) g(lO h+ 210") ‘ S0
10k~h+ﬁ
0, if m is even;
=in-1

W, if m isodd.
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(e) If 10K = 10" < 10"k < ny < 10"*k+1 and 10%|(h + m), 10%*1}(h + m) for some Ik, k € N*, kg = ko,
we have

1
A
10"-h+ oni +1

1 1 1
lg(s + m -10™) - g(s)|As =‘ g(IO" (h+m) + zlon) - g(lo" h zlon) ‘ S0

10k-h+ﬁ
1 1 1
+ [ g|10"-th+m)+ —|-8|10" - h+ —= | | —=
210H+ 2 210n+ 2 210n+ 2
. h
0, if m, a+m are even;
10%
n-1 . . h+m .
— if m isoddand " is even;
010 10k2
“n+k-1 o h+m .
n+—2k, if m isevenand " js odd;
210 10%
n-1 n+k-1 m
7 i (zk , m, —— are odd.
210 210 10k

(iii) If k < n, we have
10K R k11

o
lg(s + 10™) - g(s)|As = 0,

k. pe 1
10 h+2n1

since g(s + 10") = g(s) for s ¢ [10" ‘h+ 2,10k h+ 2 + 1].

o’ 2m

Case3:t=10X-h - % We can discuss similarly as Case: 2t = 10X - h + % and we can obtain

t+1
-107) - _n-t, . n_
sup | lg(s +m - 10" - g($)IAs = =G+~

- 0 (n - o0).

Overall, we obtain (3.9) for three cases.
To complete this work, we give the following results for any two time scales T; and T, from Theorem 3.4.

Corollary 3.1. Let T; and T, be two invariant time scales under translations, and IT; = KiZ be translation
set of Ty. Any interval [w, w + KDy, N T} (w € Ty) has finite elements. Suppose T; ¢ T,, f e SPAP(T,; X).
Then f |y, € SPAP(Ty; X) if and only if f |y, € AP(T3; X).

Proof. By Theorem 3.1, we know that there is g € SPAP(R; X) such that g |, = f. Then we have g |y, = f |y,
and g |} = f |y since T; ¢ To.

If gy, = flr, € SPAP(Ty; X), by Theorem 3.4 (i), we have f |y, = g |y € AP(T}; X). On the other hand,
ifgly =flr € AP(T}; X), by Theorem 3.4 (i), we have f |y, = g |y, € SPAP(Ty; X). O
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