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Abstract: It is well known that a sufficient and necessary condition for a continuous function g to be almost
periodic on time scale � is the existence of an almost periodic function f on � such that f is an extension of
g . The purpose of this article is to extend these results to Sp-almost periodic functions. We prove that the
necessity is true, that is, an Sp-almost periodic function on � can be extended to an Sp-almost periodic
function on � . However, a counterexample is given to show that the sufficiency is not true in general.
By introducing a concept of minor translation set and characterizing the almost periodicity on � in terms of
this new concept, we obtain a condition to ensure the sufficiency. Moreover, we show the necessity of this
condition by a counterexample.
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1 Introduction

Periodic functions and almost periodic functions have numerous applications in the study of qualitative
theory of differential equations, difference equations, and dynamic equations on time scales (see, e.g.,
[1–5]), and the papers for more details (see, e.g., [6,7]). The theory of time scales was initiated by Hilger in
his Ph.D. thesis [8] in 1988 to unify continuous and discrete problems. The theory gives an effective
mathematical technique to economics, biomathematics, quantum physics, etc. In 2011, Li and Wang intro-
duced the almost periodic functions on time scales [9,10]. Since then, many concepts of almost periodic
functions were introduced on time scales, such as pseudo almost periodicity, almost automorphy,
Sp-almost periodicity, and others. Recently, Lizama and Mesquita have studied the connection between
almost periodic functions defined on time scales and on the real line and obtained the following result.

Proposition 1.1. [11] If � is invariant under translations, a necessary and sufficient condition for a continuous
function � �→g : n to be almost periodic on � is the existence of an almost periodic function � �→f : n such
that ( ) ( )=f t g t for every �∈t , where �n denotes the Euclidian space �n or �n.

Then Tang and Li extended this result to pseudo almost periodic functions and obtained the following
results.
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Proposition 1.2. [12]
(i) If � is invariant under translations and � �( )∈f PAP ; n , then there exists � �( )∈g PAP ; n such that

( ) ( )=g t f t for �∈t ;
(ii) If � is invariant under translations and � �( )∈f PAP ; n is uniformly continuous, then the restriction

function � ��∣= →g f : n is in � �( )PAP ; ,n

where �n denotes the Euclidian space �n or �n.

The main purpose of this article is to extend these results to Sp-almost periodic functions on time scales.
We prove that the necessity is true, that is, an Sp-almost periodic function on � can be extended to an
Sp-almost periodic function on � (Theorem 3.1). However, a counterexample (Example 3.1) is given to show
that the sufficiency is not true in general. Meanwhile, by introducing a concept of minor translation set of
� and characterizing the almost periodicity on � in terms of this new concept (Theorems 3.2 and 3.3),
we obtain a condition to ensure the sufficiency (Theorem 3.4). Moreover, under the condition “the interval

��[ )+ ∩ ′�ω ω, has finite elements,”we obtain a sufficient and necessary condition for � ��∣ ( )∈g S AP ;p .
Then we give a counterexample to show that this condition is necessary (Example 3.2). Furthermore, we
present a result on the connection between Sp-almost periodic functions defined on �1 and �2 from Theorem
3.4 (Corollary 3.1).

2 Preliminaries

The following concepts and results can be found in [8,13]. From now on, � � � �+, , , , and �+ indicate the
sets of nature numbers, positive integers, integers, real numbers, and nonnegative numbers, respectively.
Let �n be the Euclidian space �n or �n with Euclidian norm ∣ ∣⋅ , and let �( )‖⋅‖, be a Banach space.

2.1 Time scale

Let � �⊂ be a time scale, that is, � ≠ ∅ is closed. The forward and backward jump operators � �→σ ρ, :
and the graininess � �→

+μ : are defined, respectively, by

� �( ) { } ( ) { } ( ) ( )= ∈ > = ∈ < = −σ t s s t ρ t s s t μ t σ t tinf : , sup : , .

If ( ) >σ t t, we say that t is right-scattered; otherwise, t is right-dense. Similarly, if ( ) <ρ t t, we say that t
is left-scattered; otherwise t is left-dense.

Definition 2.1. A time scale � is called invariant under translations if

� � �{ } { }≔ ∈ ± ∈ ∈ ≠τ t τ tΠ : , 0

and define

� �

� �

⎧

⎨
⎩

{∣ ∣ }
=

∈ ≠ ≠

=

�
τ τ τinf : Π, 0 , if ;

1, if .

In fact, if � �≠ , then we have >� 0, and one can show that �= �Π , and we sayΠ the translation set of �

(see, e.g., [12]).
In this article, we always assume that � is invariant under translations.

Definition 2.2. [8]
(i) A function � �→f : is continuous on � if f is continuous at every right-dense point and at every left-

dense point.

1820  Hao Yang and Hong-Xu Li



(ii) A function � �→f : is uniformly continuouson� if for >ε 0, there is a >δ 0 such that ( ) ( )‖ − ‖ <f x f x ε1 2
for �∈x x,1 2 with ∣ ∣− <x x δ.1 2

Denote by � �( )C ; the set of all continuous functions � �→g : .

For �∈ <t s t s, , , denote ( ) [ ] ( ] [ )t s t s t s t s, , , , , , , the standard intervals in �, and use the following
symbols:

� � � �� � � �( ) ( ) [ ] [ ] ( ] ( ] [ ) [ )= ∩ = ∩ = ∩ = ∩t s t s t s t s t s t s t s t s, , , , , , , , , , , .

Proposition 2.1. [13] Fix a point �∈ω and an interval �[ )+ �ω ω, , there are at most countably many right-
scattered points �{ } ⊆

∈
t I,i i I in this interval. If we denote �= + ∈ ∈�t t j i I j, , ,ij i we obtain all the right-

scattered points, and we have ( ) ( )=μ t μ t .ij i

Let ��{[ ) }= ∈ ⩽� t s t s t s, : , with .1 Define a countably additive measure m1 on �1 by assigning
to every �[ ) ∈ �t s, 1 its lengths, i.e.,

�([ ) ) = −m t s s t, .1

By using m ,1 we can generate the outer measure ∗m1 on the power set �( )� of � : for �( )∈ �E :

�
( )

⎧

⎨

⎪

⎩
⎪

⎧

⎨
⎩

( )
⎫

⎬
⎭

∑

=

− ∈ ∉

+∞ ∈

∗

∈

+

�
�

m E
s t β E

β E

inf , ;

, ,
i I

i i
1

where �=β sup and

� �{{[ ) } [ ) }= ∈ ⊂ ⊂ ⋃
∈

∈

� � ��

�

t s I E t s, : , , .i i i I
i I

i i1

A set �⊂A is called Δ-measurable if for �⊂E , and we have

�( ) ( ) ( ( ))= ∩ + ∩ ⧹
∗ ∗ ∗m E m E A m E A .1 1 1

Let �( ) { }= −
∗

� m A A: is a Δ measurable subset in .1 Restricting ∗m1 to ( )∗

� m1 , we obtain the Lebesgue
Δ-measure, which is denoted by μΔ.

Definition 2.3. [13]
(i) A function � �−� : is said to be simple if � takes a finite number of values ⋯c c c, , , .N1 2

Let �{ ( ) }= ∈ =�E s s c:j j . Then

∑=

=

� c χ ,
j

N

j E
1

j

where χEj
is the characteristic function of E ,j i.e.,

�
( )

⎧

⎨
⎩

=

∈

∈ ⧹

χ s
s E
s E

1, if ;
0, if .E

j

j
j

(ii) Assume that E is a Δ-measurable subset of � and � �→� : is a Δ-measurable simple function.
Then the Lebesgue Δ-integral of � on E is defined as follows:

( ) ( )∫ ∑= ∩

=

� s s c μ E EΔ .
E j

N

j j
1

Δ

(iii) A function � �→g : is a Δ-integrable function if there exists a simple function sequence �{ }∈g k:k
such that ( ) ( )→g s g sk a.e. in � , then the integral of g is defined as follows:
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� �

( ) ( )∫ ∫=

→∞

g s g s slim Δ .
k k

(iv) For � �⩾ →p g1, : is called locally L Δp -integrable if g is Δ-measurable and for any compact Δ-mea-
surable set �⊂E , the Δ-integral

( )∫‖ ‖ < ∞g s sΔ .
E

p

The set of all L Δp -integrable functions is denoted by � �( )L ;p
loc .

Definition 2.4. [14] Define � � �( )‖⋅‖ →
+L: ;S

p
locp as follows:

�

⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟
∫‖ ‖ ≔ ‖ ‖

∈

+

�

�

g g r rsup 1 Δ ,S
s

s

s

pp

p
1

where � is defined in Definition 2.1. A function � �( )∈g L ;p
loc is called Sp-bounded if ‖ ‖ < ∞g .S p The space

of all Sp-bounded functions is denoted by � �( )BS ; ;p if � �= , denote it by �( )BSp .

Lemma 2.1. [15] The norm ‖⋅‖S p and ‖⋅‖Sl
p in ( )BS Xp given below are equivalent.

�

⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟
∫‖ ‖ = ‖ ‖

∈

+

g g s ssup d ,S
t

t

t

p

1

p

p
1

�

⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟
∫‖ ‖ = ‖ ‖

∈

+

g
l

g s ssup 1 d .S
t

t

t l

p
l
p

p
1

In fact, we have

( ) ( )‖ ‖ ⩽ ‖ ‖ ⩽ ‖ ‖
− −l l g g l l gmin , max , .S S Sp p p

l
p p p p

1 1 1 1

Remark 2.1. The almost periodic properties will be kept for equivalent norm of a Banach space.

2.2 Sp-almost periodic functions

Definition 2.5. [16] A set �⊂A is called relatively dense in � if there exists an >l 0 such that
��[ ]+ ∩ ≠ ∅ ∈s s l A s, , , and we call l the inclusion length.

Definition 2.6. [9] A function � �( )∈g C ; is almost periodic on � if for >ε 0,

�( ) { ( ) ( ) }= ∈ ‖ + − ‖ < ∈T g ε τ g s τ g s ε s, Π : for

is a relatively dense set in Π. We call ( )T g ε, the ε-translation set of g and τ the ε-translation period of g ,
and the set of all almost periodic functions on � is denoted by � �( )AP ; .

Definition 2.7. [10] A function � �→g : is said to be normal onΠ if for any sequence { }′ ⊂α Πn , and there is
a subsequence { } { }⊂ ′α αn n such that { ( )}+g t αn converges uniformly for �∈t .

Lemma 2.2. [10] A function � �→g : is almost periodic on � if and only if it is normal on Π.
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Definition 2.8. [17,18]
(i) A function � �( )∈g L ;p

loc is said to be Sp-almost periodic if for >ε 0,

�
�

( )

⎧

⎨

⎪

⎩
⎪

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

⎫

⎬

⎪

⎭
⎪

∫= ∈ ‖ + − ‖ <

∈

+

T g ε τ g s τ g s s ε, : sup d
t

t

t

p

1 p
1

is relatively dense in �.
(ii) (Sp-normality) A function � �( )∈g L ;p

loc is said Sp-normal if for any sequence �{ }′ ⊂αn , and there is

a subsequence { } { }⊂ ′α αn n such that

�

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟
( )∫ ‖ + − + ‖ → → ∞

∈

+

g s α g s α s n msup d 0 , .
t

t

t

n m
p

1 p
1

Lemma 2.3. [15] A function g is Sp-almost periodic on � if and only if g is Sp-normal on �.

Definition 2.9. [14,19]
(i) A function � �( )∈g L ;p

loc is Sp-almost periodic on � if given >ε 0, the ε-translation set of g

( ) ( ) ( ){ }= ∈ ‖ ⋅+ − ⋅ ‖ <T g ε τ g τ g ε, Π : S p

is a relatively dense set inΠ. The space of all these functions is denoted by � �( )S AP ;p with norm‖⋅‖ .S p

(ii) (Sp-normality on � ) Let Π be the translation set of � . A function � �( )∈g L ;p
loc is Sp-normal on Π if for

any sequence { }′ ⊂α Πn , there is a subsequence { } { }⊂ ′α αn n such that

( ) ( ) ( )‖ ⋅+ − ⋅+ ‖ → → ∞g α g α n m0 , .n m S p

Lemma 2.4. [14] A function � �→g : is Sp-almost periodic on � if and only if g is Sp-normal on Π.

3 Main results

We first extend the necessity of Proposition 1.1 to Sp-almost periodic functions.

Theorem 3.1. For any � �( )∈g S AP ;p , there is � �( )∈g Sˆ AP ;p such that �∣ =g gˆ .

Proof. Let

�
( )

⎧

⎨
⎩

( )

( ) ( ( ))
=

∈

∈

g t
g t t
g t t t σ t

ˆ
,
, , ,ij ij ij

(3.1)

where tij is given for � in Proposition 2.1. For � �∈ ⧹t , there is a right-scattered point tij such that
( )< <t t σ tij ij , and notice that ( ) ⩽ + �σ t tij ij , then we have

� �

( ) ( )

⎧

⎨

⎪

⎩
⎪

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )

⎫

⎬

⎪

⎭
⎪

( )

( )

( )

( )

∫ ∫

∫ ∫

‖ ‖ ⩽ ‖ ‖

= + ‖ ‖

∈ ⧹

+ +

+

� �

�

� �

�

g s s g s s

g s s

sup 1 ˆ d sup 1 ˆ d

sup 1 ˆ d

t
t

t

p

t
t

σ t

p

t
t

σ t

σ t

σ t

p

ij
ij

ij

ij
ij

ij

ij

ij
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� �

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( )

∫ ∫

∫ ∫

∫ ∫

⩽ ‖ ‖ + ‖ ‖

= ‖ ‖ + ‖ ‖

⩽ ‖ ‖ + ‖ ‖

= ‖ ‖ < ∞

+

+

∈

+

∈

+

� �

� �

� �

�

�

� �

g s s g s s

g s s g s s

g s s g s s

g

sup 1 ˆ d sup 1 ˆ d

sup 1 Δ sup 1 Δ

sup 1 Δ sup 1 Δ

2 .

t
t

σ t

p

t
σ t

σ t

p

t
t

σ t

p

t
σ t

σ t

p

t
t

t

p

t
t

t

p

S
p

ij
ij

ij

ij
ij

ij

ij
ij

ij

ij
ij

ij

p

Obviously,

� �

( ) ( )∫ ∫‖ ‖ = ‖ ‖ = ‖ ‖ < ∞

∈

+

∈

+

� �

� �

g s s g s s gsup 1 ˆ d sup 1 Δ .
t

t

t

p

t
t

t

p
S
p

p

Since

� � � �

( )
⎧

⎨
⎩

( ) ( )
⎫

⎬
⎭

∫ ∫ ∫‖ ‖ = ‖ ‖ = ‖ ‖ ‖ ‖

∈

+

∈

+

∈ ⧹

+

� � �

� � �

�

g g s s g s s g s sˆ sup 1 ˆ d max sup 1 ˆ d , sup 1 ˆ d ,S
p

t
t

t

p

t
t

t

p

t
t

t

p
p

we obtain

‖ ‖ ⩽ ‖ ‖

�

g gˆ 2 .S
p

S
p

p p (3.2)

Thus, �( )∈g BSˆ p . Next we will show � �( )∈g Sˆ AP ;p . For >ε 0, letting ( )∈τ T g ε, , we derive

�

� � �

( ) ( ) ( ) ( )

⎧

⎨
⎩

( ) ( ) ( ) ( )
⎫

⎬
⎭

∫

∫ ∫

‖ ⋅+ − ⋅ ‖ = ‖ + − ‖

= ‖ + − ‖ ‖ + − ‖

∈

+

∈

+

∈ ⧹

+

�

� �

�

� �

�

g τ g g s τ g s s

g s τ g s s g s τ g s s

ˆ ˆ sup 1 ˆ ˆ d

max sup 1 ˆ ˆ d , sup 1 ˆ ˆ d .

S
p

t
t

t

p

t
t

t

p

t
t

t

p

p

Since ( )∈τ T g ε, , by the same argument of the proof of (3.2), we have

� �

� �

( ) ( )

⎧

⎨

⎪

⎩
⎪

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( ) ( )

⎫

⎬

⎪

⎭
⎪

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

‖ + − ‖

⩽ + ‖ + − ‖

⩽ ‖ + − ‖ + ‖ + − ‖

= ‖ + − ‖ + ‖ + − ‖

⩽ ‖ + − ‖ + ‖ + − ‖

<

∈ ⧹

+

+

+

+

∈

+

∈

+

�

�

� �

� �

� �

�

�

�

�

� �

g s τ g s s

g s τ g s s

g s τ g s s g s τ g s s

g s τ g s s g s τ g s s

g s τ g s s g s τ g s s

ε

sup 1 ˆ ˆ d

sup 1 ˆ ˆ d

sup 1 ˆ ˆ d sup 1 ˆ ˆ d

sup 1 Δ sup 1 Δ

sup 1 Δ sup 1 Δ

2 .

t
t

t

p

t
t

σ t

σ t

σ t

p

t
t

σ t

p

t
σ t

σ t

p

t
t

σ t

p

t
σ t

σ t

p

t
t

t

p

t
t

t

p

p

ij
ij

ij

ij

ij

ij
ij

ij

ij
ij

ij

ij
ij

ij

ij
ij

ij
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Obviously,

� �

( ) ( ) ( ) ( )∫ ∫‖ + − ‖ = ‖ + − ‖ <

∈

+

∈

+

� �

� �

g s τ g s s g s τ g s s εsup 1 ˆ ˆ d sup 1 Δ .
t

t

t

p

t
t

t

p p

Thus,

( ) ( )‖ ⋅+ − ⋅ ‖ <

�

g τ g εˆ ˆ 2 ,S
p p

p

which means that ( )T g εˆ , is relatively dense in Π by Lemma 2.1, and then relatively dense in � . Therefore,
we have � �( )∈g Sˆ AP ; .p □

The following example shows that the converse of Theorem 3.1 is not true in general.

Example 3.1. Let

( )
⎧

⎨
⎩

( ( ) )

∣ ∣
=

∈ +

=

g t t t nπ n π
n t nπ
sin , , 1 ;

, .

� �[ ( ) ]= ⋃ +
∈

nπ n π2 , 2 1n . It is easy to see that �= πΠ 2 and

�

( )∫ ‖ ‖ ⩽

∈

+

π
g s ssup 1

2
d 1,

t
t

t π

p

2

(3.3)

�
�

( ) ( ) ( )∫ ‖ + − ‖ = ∈

∈

+

π
g s kπ g s s ksup 1

2
2 d 0, .

t
t

t π

p

2

(3.4)

By (3.3), we have � �( )∈g BS ;p , and by (3.4), we can obtain � �( )∈g S AP ;p . Let �∣=g g¯ ,

�

�

�

�

�

( )

( )

⎛

⎝

⎜
⎜

( ) ∣ ∣
⎞

⎠

⎟
⎟

∣ ∣

( )

[ ( ) ]

∫

∫

∫

‖ ‖ = ‖ ‖

⩾ ‖ ‖

⩾ ‖ ‖ + +

⩾

+

= +∞

∈

+

∈

+

∈

+

∈

g
π

g s s

π
g s s

π
g s s n π

n

¯ sup 1
2

Δ

sup 1
2

Δ

sup 1
2

d 2 1

sup 2 1
2

,

S
p

t
t

t π

p

n
nπ

n π

p

n
nπ n π

p p

n

p

2

2

2 2

2 , 2 2

p

which implies � �( )∉g BS¯ ;p , and then � �( )∉g S¯ AP ; .p

To study the converse of Theorem 3.1, we introduce the concept of minor translation set of � and the
normality on minor translation set of � .

Definition 3.1. Let �= �Π be the translation set of a time scale � , and we say � �( )= ∈
+�p pΠ1

the minor translation sets of � .

Definition 3.2. Let ⊂Π Π1 be a minor translation set of � . A function � �→g : is said to be normal on Π1

if for any sequence { }′ ⊂α Πn 1, and there is a subsequence { } { }⊂ ′α αn n such that ( ) ( )‖ + − + ‖ →g t α g t αn m
( )→ ∞n m0 , uniformly for �∈t .
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Then we have the following result.

Theorem 3.2. A function � �→g : is normal on �= �Π if and only if g is normal on Π1, where �= �pΠ1

is a minor translation set of � .

Proof. If g is normal on Π and ⊂Π Π1 , it is obvious that g is normal on Π1.
On the other hand, if g is normal on Π1, for { }″ ⊂α Πn , we have the decomposition of its element

″ = ″ + ″α β τn n n with ( )″ ∈ ⩽ ″ ⩽ − �β τ pΠ , 0 1n n1 . It is easy to see that { }″τn is bounded and finite, then there

exists a convergent subsequence { }τn satisfying ( )= ⩽ ⩽ −�τ q q p, 0 1n . So we can choose such a sub-
sequence { } { }′ ⊂ ″α αn n satisfying ′ = ′ + �α β qn n , where ′ ∈β Πn 1. Since g is normal onΠ1, there is a subsequence

{ } { }⊂ ′β βn n such that { ( )}+g t βn converges uniformly for �∈t . Then we can choose such a subsequence

{ } { }⊂ ′α αn n satisfying = + �α β qn n , and { ( )} { ( )}+ = + +�g t α g t q βn n converges uniformly for �∈t . That
is, { ( )}+g t αn converges uniformly for �∈t , which means that g is normal on Π. □

Definition 3.3. (Sp-normality on � ) Let ⊂Π Π1 be a minor translation sets of � . A function � �( )∈g L ;p
loc

is Sp-normal on Π1 if for any sequence { }′ ⊂α Πn 1, there is a subsequence { } { }⊂ ′α αn n such that

( ) ( ) ( )‖ ⋅+ − ⋅+ ‖ → → ∞g α g α n m0 , .n m S p

By using the same argument proof of Theorem 3.2, we can prove the corresponding result for Sp-almost
periodic function, and we omit the details.

Theorem 3.3. A function � �→g : is Sp-normal on Π if and only if g is Sp-normal on Π1, where �= �pΠ1
is a minor translation set of � .

For convenience, let � �{ }′ = -cl all right scattered points of . Then � ′ is a time scale. Let �′ = ′�Π
be its translation set. Let � �( )∈f S AP ;p and denote �∣=f f¯ , �∣=

′
f fˇ .

Lemma 3.1. Π is a minor translation set of � ′.

Proof. By Proposition 2.1, we have � �= ⊂ ′ = ′� �Π Π , and then ∈ ′� Π . This implies that = ′� �p
for some positive integer p, that is, Π is a minor translation set of � ′. □

Now we are in the position to present the following results, where the first part gives a sufficient
condition to ensure the converse of Theorem 3.1.

Theorem 3.4. Let � �( )∈f S AP ;p and � �≠ be invariant under translations.

(i) If � �( )∈ ′f̌ AP ; , then � �( )∈f S¯ AP ;p .

(ii) Suppose � ��[ ) ( )+ ∩ ′ ∈�ω ω ω, has finite elements. If � �( )∈f S¯ AP ;p , then � �( )∈ ′f̌ AP ; .

Proof. (i) Since � �( )∈ ′f̌ AP ; , f̌ is normal on ′Π by Lemma 2.2 and is normal on Π by Theorem 3.2.
For { }″ ⊂α Πn , and we can extract { } { }′ ⊂ ″α αn n such that

�( ) ( ) ( )‖ + ′ − + ′ ‖ → ′ ′ → ∞ ∈ ′f t α f t α n m tˇ ˇ 0 , uniformly for .n (3.5)

Since � �( )∈f S AP ;p , it is normal on Π by Lemma 2.4, and we can extract { } { }⊂ ′α αn n such that

( ) ( ) ( )‖ ⋅+ − ⋅+ ‖ → → ∞f α f α n m0 , .n m S p (3.6)

By (3.5) and (3.6), we have
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�

� �

� �

�

�

( ) ( ) ( ) ( )

⎛

⎝

⎜
⎜

( ) ( ) ( )

( ) ( )
⎞

⎠

⎟
⎟

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

[ ]
[ ]

∫

∫

∫

∑

‖ ⋅+ − ⋅+ ‖ = ‖ + − + ‖

= ‖ + − + ‖ + ‖ +

− + ‖

⩽ ‖ + − + ‖ + ‖ +

− + ‖

= ‖ ⋅+ − ⋅+ ‖ + ‖ + − + ‖

→ → ∞

∈

+

∈

+

∈ ′∩ +

∈

+

∈ ′

∈ ′

�

�

�

�

�
�

�

f α f α f s α f s α s

f s α f s α s f t α

f t α μ t

f s α f s α s f t α

f t α
f α f α f t α f t α

n m

¯ ¯ sup 1 ¯ ¯ Δ

sup 1 d

sup 1 d sup

sup ˇ ˇ

0 , .

n m S
p

t
t

t

n m
p

t
t t

n m
p

t t t
ij n

ij m
p

ij

t
t

t

n m
p

t
n

m
p

n m S
t

n m
p

, ,

p

ij

p

It shows that � �→f̄ : is Sp-normal on Π, by Lemma 2.4, we have � �( )∈f S¯ AP ; .p

(ii) Since � �[ ) ( )+ ∩ ′ ∈�ω ω ω, has finite elements, for these right-scattered point ti, we have

( ) >μ t 0i with minimum >h 0. Suppose that � �( )∉ ′f̌ AP ; . Then f̌ is not normal on ′Π and is not normal
on Π by Theorem 3.2. Hence, there is a sequence { } ⊂β Πn and >ε 00 , for any >N 0, there are ′ ′ >n m N,0 0

and �′ ∈ ′t0 such that ( ) ( )‖ ′ + − ′ + ‖ >
′ ′

f t β f t β εˇ ˇ
n m0 0 00 0

. Since � �( )∈f S¯ AP ;p , by Lemma 2.4, we can extract

{ } { }⊂α βn n such that

( ) ( ) ( )‖ ⋅+ − ⋅+ ‖ → → ∞f α f α n m¯ ¯ 0 , .n m S p

Choose N large enough such that for >n m N, ,

( ) ( )‖ ⋅+ − ⋅+ ‖ <

�
f α f α

ε h¯ ¯
2

.n m S
p

p
0

p (3.7)

On the other hand, there exist >n m N,0 0 and �∈ ′t0 such that

( ) ( )‖ + − + ‖ >f t α f t α εˇ ˇ .n m0 0 00 0 (3.8)

By (3.8), we have

�

� �
�

�

�

⎛

⎝

⎜
⎜

( )
⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

( )
⎞

⎠

⎟
⎟

( )

[ ]
[ ]

[ ]

( ) ( ) ∫ ( ) ( )

∫ ( ) ( ) ( )

( )

∫ ( ) ( ) ( ) ( )

( ) ( )

∑

‖ ⋅+ − ⋅+ ‖ = ‖ + − + ‖

= ‖ + − + ‖ + ‖ +

− + ‖

⩾ ‖ + − + ‖ + ‖ + − + ‖

⩾ ‖ + − + ‖ ⩾ >

∈

+

∈

+

∈ + ∩ ′

+

�

�

�

� � �

�

�
�

�

f α f α f s α f s α s

f s α f s α s f t α

f t α μ t

f s α f s α s f t α f t α μ t

f t α f t α μ t ε h ε h

¯ ¯ sup 1 ¯ ¯ Δ

sup 1 d

1 d ˇ ˇ

ˇ ˇ
2

.

n m S
p

t
t

t

n m
p

t
t t

n m
p

t t t
ij n

ij m
p

ij

t t

n m
p

n m
p

n m
p

p p

, ,

,

0 0 0

0 0
0 0 0

p

ij

0 0 0 0

0 0 0

0

0 0

0 0 0 0

0 0

This contradicts (3.7). Thus, � �( )∈ ′f̌ AP ; . □
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Remark 3.1. The following example shows that the condition “the interval ��[ )+ ∩ ′�ω ω, has finite
elements” in Theorem 3.4 is necessary.

Example 3.2. Let � �→g : be defined as follows:

( )
⎧

⎨
⎩

⎡
⎣

⎞
⎠

( )
=

∈ ⋅ + ⋅ + ⩾

−g t n t l l l n, 10 1
2

, 10 1
2

, is odd , 2 ;

1, otherwise .

n n
10 10 1n n

Let � � �( ){ }= + ∈ ∈
+k k k n, , ,1

2n . Then �=Π , � �⧹ is the set of all right-scattered points of � , and

� � � �( )= ′ = ⧹cl . Let �∣=g g¯ and ĝ be the extension of ḡ as (3.1), and one has �( ) ( ) ( )= ∈g t g t tˆ , .
It is easy to see �∣= =

′
g g g¯ ˇ since � �= ′. We will prove that � �( )∈g S¯ AP ;1 , but � �( )∉ḡ AP ; and

� �( )∉ ′ǧ AP ; .
Indeed, if we have

�

( ) ( ) ∣ ( ) ( )∣ ( )∫‖ ⋅+ ⋅ − ⋅ ‖ = + ⋅ − → → ∞

∈

+

g m g g s m g s s n¯ 10 ¯ sup 10 Δ 0n
S

t
t

t

n

1

1 (3.9)

uniformly for �∈m , then for any >ε 0, there exists >N 0 such that for any >n N ,

�
�

∣ ( ) ( )∣∫ + ⋅ − < ∈

∈

+

g s m g s s ε msup 10 Δ uniformly for .
t

t

t

n

1

This implies that: for a fixed >n N , �{ }⋅
∈

m 10n
m is relatively dense in � and ( )T g ε¯ , is relatively dense in Π;

thus, � �( )∈g S¯ AP ; .1 By Theorem 3.1, we have � �( )∈g S AP ;1 . On the other hand, by the construction of
g , we obtain g is unbounded on � and on � ′, which means � �( )∉ḡ AP ; and � �( )∉ ′ǧ AP ; .

Now we need only to prove that (3.9) holds. Let �∈t , if there is not a number ⋅ + ∈h10k 1

2 k10 1

[ ] ( )+ ∤t t h, 1 , 10 for some positive integers k k, 1 and integer h, we have ( ) ( )+ ⋅ = =g s m g s10 1n for all

[ ]∈ +s t t, 1 , and ∣ ( ) ( )∣∫ + ⋅ − =

+

g s m g s s10 Δ 0
t

t n1
. It means that the supremum of ∣ ( )∫ + ⋅ −

+

g s m 10
t

t n1

( )∣g s sΔ will be obtained when [ ]⋅ + ∈ +h t t10 , 1k 1
2 n10 1 for some positive integers k n, 1 and integer h.

So we have three cases: = ⋅t h10k , = ⋅ +t h10k 1
2n1 , or = ⋅ −t h10k 1

2n1 for some positive integer n1 and

integer h.
Case 1: = ⋅t h10k . We have the following cases:

(i) If >k n, we have

⎜ ⎟ ⎜ ⎟

∣ ( ) ( )∣ ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

∫ + ⋅ − = ⋅ + ⋅ + − ⋅ + ⋅

+ ⋅ + ⋅ + − ⋅ + ⋅

=

−

−

−

+

−

⋅

⋅ +

g s m g s s g h m g h

g h m g h

h m
n h m

k h m

n k h m

10 Δ 10 10 1
2

10 1
2

1
2

10 10 1
2

10 1
2

1
2

0, if , are even ;
1

2
, if is even and is odd ;

1
2

, if is odd and is even ;

1
2

1
2

, if , are odd .

h

h

n k n k

k n k

10

10 1

10 10 10

10 10 10

10

10

10 10

k

k

n n n

k k k

n

k

n k

(ii) If =k n, we have the following cases:
(a) There exists �∈

+k1 such that ∣( )+h m10k1 , and we have
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⎜ ⎟ ⎜ ⎟

∣ ( ) ( )∣ ⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
( ) ⎞

⎠

⎛

⎝

⎞

⎠

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

∫ + ⋅ − = ⋅ + + − ⋅ + ⋅

+ ⋅ + + − ⋅ + ⋅

=

+

− +

+ − +

−

+

+ − +

⋅

⋅ +

+ + +

+

+

g s m g s s g h m g h

g h m g h

m h m

n m h m

n k m h m

n n k m h m

10 Δ 10 1
2

10 1
2

1
2

10 1
2

10 1
2

1
2

0, if ,
10

are even ;

1
2

, if is odd and
10

is even ;

1
2

, if is even and
10

is odd ;

1
2

1
2

, if ,
10

are odd .

h

h

n n n

n n

k

k

k

k

10

10 1

10 10 10

10 10 10

10

1
10

10
1

10

k

k

n n n

n k n k n k

n

n k

n n k

1 1 1

1

1

1 1

1 1

(b) If ( )∤ +h m10 , we have

∣ ( ) ( )∣ ⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

⎧

⎨
⎩

∫ + ⋅ − = ⋅ + + − ⋅ + ⋅

= −

⋅

⋅ +

g s m g s s g h m g h

m
n m

10 Δ 10 1
2

10 1
2

1
2

0, if is odd ;
1

2
, if is even .

h

h

n n n

10

10 1

10 10 10

10

k

k

n n n

n

(iii) If <k n, we have

⎜ ⎟ ⎜ ⎟∣ ( ) ( )∣ ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
∫ + ⋅ − = ⋅ + ⋅ + − ⋅ + ⋅ =

⋅

⋅ +

g s m g s s g h m g h10 Δ 10 10 1
2

10 1
2

1
2

0.
h

h

n k n k

10

10 1

10 10 10
k

k

k k k

Case 2: = ⋅ +t h10k 1
2n1 . We have the following cases:

(i) If >k n, we have the following cases:
(a) If < <n 10 10n k

1 , then

∣ ( ) ( )∣∫ + ⋅ − =

⋅ +

⋅ + +

g s m g s s10 Δ 0,
h

h

n

10 1
2

10 1
2 1

k
n

k
n

1

1

since ( ) ( )+ ⋅ = =g s m g s10 1n for ⎡⎣ ⎤⎦
∈ ⋅ + ⋅ + +s h h10 , 10 1k k1

2
1

2n n1 1 .
(b) If ⩽ <n10 10n k

1 , then

∣ ( ) ( )∣

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎧

⎨
⎩

∫ + ⋅ −

= ⋅ + ⋅ + − ⋅ + ⋅

= −

⋅ +

⋅ + +

g s m g s s

g h m g h

m
n m

10 Δ

10 10 1
2

10 1
2

1
2

0, if is even ;
1

2
, if is odd .

h

h

n

k n k

10 1
2

10 1
2 1

10 10 10

10

k
n

k
n

n n n

n

1

1

Sp-almost periodic function  1829



(c) If < ⩽ n10 10n k
1, then

⎜ ⎟ ⎜ ⎟

∣ ( ) ( )∣ ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

∫ + ⋅ − = ⋅ + ⋅ + − ⋅ + ⋅

+ ⋅ + ⋅ + − ⋅ + ⋅

=

−

−

−

+

−

⋅ +

⋅ + +

g s m g s s g h m g h

g h m g h

h m
n h m

k h m

n k h m

10 Δ 10 10 1
2

10 1
2

1
2

10 10 1
2

10 1
2

1
2

0, if , are even ;
1

2
, if is odd and is even ;

1
2

, if is even and is odd ;

1
2

1
2

, if , are odd .

h

h

n k n k

k n k

10 1
2

10 1
2 1

10 10 10

10 10 10

10

10

10 10

k
n

k
n

n n n

k k k

n

k

n k

1

1

(ii) If =k n, we have the following cases:
(a) If = > n10 10k n

1, then

∣ ( ) ( )∣∫ + ⋅ − =

⋅ +

⋅ + +

g s m g s s10 Δ 0,
h

h

n

10 1
2

10 1
2 1

k
n

k
n

1

1

since ( ) ( )+ ⋅ =g s m g s10n for ⎡⎣ ⎤⎦
∈ ⋅ + ⋅ + +s h h10 , 10 1k k1

2
1

2n n1 1 .
(b) If = = n10 10k n

1, then

∣ ( ) ( )∣ ⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

⎧

⎨
⎩

∫ + ⋅ − = ⋅ + + − ⋅ + ⋅

= −

⋅ +

⋅ + +

g s m g s s g h m g h

m
n m

10 Δ 10 1
2

10 1
2

1
2

0, if is even ;
1

2
, if is odd .

h

h

n n n

10 1
2

10 1
2 1

10 10 10

10

k
n

k
n

n n n

n

1

1

(c) If = < <
+n10 10 10k n n

1
1 or = < ⩽

+ n10 10 10k n n 1
1, but ( )∤ +h m10 , we have

∣ ( ) ( )∣ ⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

⎧

⎨
⎩

∫ + ⋅ − = ⋅ + + − ⋅ + ⋅

= −

⋅ +

⋅ + +

g s m g s s g h m g h

m
n m

10 Δ 10 1
2

10 1
2

1
2

0, if is even ;
1

2
, if is odd .

h

h

n n n

10 1
2

10 1
2 1

10 10 10

10

n
n

n
n

n n n

n

1

1

(d) If = < ⩽ <
+ + +n10 10 10 10k n n k n k

1
11 1 and ∣( ) ( )+ ∤ +

+h m h m10 , 10k k 12 2 for some �∈ <
+k k k k, ,1 2 1 2,

we have

∣ ( ) ( )∣ ⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

⎧

⎨
⎩

∫ + ⋅ − = ⋅ + + − ⋅ + ⋅

= −

⋅ +

⋅ + +

g s m g s s g h m g h

m
n m

10 Δ 10 1
2

10 1
2

1
2

0, if is even;
1

2
, if is odd .

h

h

n n n

10 1
2

10 1
2 1

10 10 10

10

k
n

n
n

n n n

n

1

1
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(e) If = < ⩽ <
+ + +n10 10 10 10k n n k n k

1
11 1 and ∣( ) ( )+ ∤ +

+h m h m10 , 10k k 12 2 for some �∈ ⩾
+k k k k, ,1 2 1 2,

we have

⎜ ⎟ ⎜ ⎟

∣ ( ) ( )∣ ⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
( ) ⎞

⎠

⎛

⎝

⎞

⎠

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

∫ + ⋅ − = ⋅ + + − ⋅ + ⋅

+ ⋅ + + − ⋅ + ⋅

=

+

− +

+ − +

−

+

+ − +

⋅ +

⋅ + +

+ + +

+

+

g s m g s s g h m g h

g h m g h

m h m

n m h m

n k m h m

n n k m h m

10 Δ 10 1
2

10 1
2

1
2

10 1
2

10 1
2

1
2

0, if ,
10

are even ;

1
2

, if is odd and
10

is even ;

1
2

, if is even and
10

is odd ;

1
2

1
2

, if ,
10

are odd .

h

h

n n n

n n

k

k

k

k

10 1
2

10 1
2 1

10 10 10

10 10 10

10

2
10

10
2

10

k
n

n
n

n n n

n k n k n k

n

n k

n n k

1

1

2 2 2

2

2

2 2

2 2

(iii) If <k n, we have

∣ ( ) ( )∣∫ + − =

⋅ +

⋅ + +

g s g s s10 Δ 0,
h

h

n

10 1
2

10 1
2 1

k
n

k
n

1

1

since ( ) ( )+ =g s g s10n for ⎡⎣ ⎤⎦
∈ ⋅ + ⋅ + +s h h10 , 10 1k k1

2
1

2n n1 1 .

Case 3: = ⋅ −t h10k 1
2n1 . We can discuss similarly as Case: 2 = ⋅ +t h10k 1

2n1 and we can obtain

�

∣ ( ) ( )∣ ( )∫ + ⋅ − =

−

+ → → ∞

∈

+

+

g s m g s s n n nsup 10 Δ 1
2 2

0 .
t

t

t

n

1

10 10n n 1

Overall, we obtain (3.9) for three cases.

To complete this work, we give the following results for any two time scales �1 and �2 from Theorem 3.4.

Corollary 3.1. Let �1 and �2 be two invariant time scales under translations, and �= �Π1 1 be translation
set of �1. Any interval � ��[ ) ( )+ ∩ ′ ∈�ω ω ω, 1 1 11 has finite elements. Suppose � �⊂1 2, � �( )∈f S AP ;p

2 .

Then � ��∣ ( )∈f S AP ;p
11 if and only if � ��∣ ( )∈ ′

′f AP ;11 .

Proof. By Theorem 3.1, we know that there is � �( )∈g S AP ;p such that �∣ =g f2 . Then we have � �∣ ∣=g f1 1

and � �∣ ∣=′ ′g f1 1 since � �⊂1 2.

If � �� �∣ ∣ ( )= ∈g f S AP ;p
11 1 , by Theorem 3.4 (ii), we have � �� �∣ ∣ ( )= ∈ ′

′ ′f g AP ;11 1 . On the other hand,

if � �� �∣ ∣ ( )= ∈ ′
′ ′g f AP ;11 1 , by Theorem 3.4 (i), we have � �� �∣ ∣ ( )= ∈f g S AP ;p

11 1 . □
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