DE GRUYTER Open Mathematics 2022; 20: 1800-1807 a

Research Article

Wanlin Wang and Pengfei Guo*

Finite groups whose maximal subgroups of
even order are MSN-groups

https://doi.org/10.1515/math-2022-0547
received September 18, 2022; accepted December 9, 2022

Abstract: A finite group G is called an MSN-group if all maximal subgroups of the Sylow subgroups of G
are subnormal in G. In this article, we investigate the structure of finite groups G such that G is a non-
MSN-group of even order in which every maximal subgroup of even order is an MSN-group. In addition,
we determine the minimal simple groups all of whose second maximal subgroups are MSN-groups.
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1 Introduction

In this article, only finite groups are considered, and our notation is standard.

The study of the structure of groups that have some kind of property has attracted much attention in
group theory, and many meaningful results about this topic have been obtained. Subnormal subgroups
play a key role in the study of the structure of groups. Srinivasan [1] proved that the supersolvability of a
group G has the property that the maximal subgroups of Sylow subgroups are normal, and proved that it
has the Sylow tower property for some ordering of the primes in 77(G) but not necessarily supersolvable if
the maximal subgroups of Sylow subgroups are subnormal. Guo and Guo [2] called groups in which all
maximal subgroups of the Sylow subgroups are subnormal MSN-groups and investigated the structure
of minimal non-MSN-groups (those groups that are not MSN-groups but whose proper subgroups are all
MSN-groups).

Recently, Meng et al. [3] studied the structure of groups all of whose maximal subgroups of even order
are MS-groups. (A group G is called an MS-group if all minimal subgroups of G permute with every Sylow
subgroup of G.) Meng and Lu [4] investigated the structure of groups in which all maximal subgroups of
even order are supersolvable groups and determined the non-abelian simple groups all of whose second
maximal subgroups of even order are supersolvable groups.

The aim of this article is to investigate groups all of whose maximal subgroups of even order are MSN-
groups. Furthermore, we determine the minimal simple groups all of whose second maximal subgroups are
MSN-groups.
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2 Preliminary results
We collect some lemmas that will be frequently used in the sequel.

Lemma 2.1. [1, Theorem 3] Let G be an MSN-group. Then G has the Sylow tower property for some ordering
of the primes in n(G), and hence, G is solvable.

Lemma 2.2. A subgroup of an MSN-group must be an MSN-group.
Proof. By the definition of MSN-groups and the property of subnormal subgroups, the lemma is true. [

Lemma 2.3. [5, Theorem 2.7] Let G be a group. Then the following conditions are equivalent:

(i) Maximal subgroups of Sylow subgroups of G are subnormal in G;

(ii) G = H x K, where (1) H is a nilpotent normal Hall subgroup of G, and K is a group whose Sylow subgroups
are cyclic and the maximal subgroups of its Sylow subgroups are normal in K; (2) a generator x of any
Sylow p-subgroup of K induces an automorphism of order 1 or p on H.

Remark 2.4. [2, Remark] In Lemma 2.3, the normality of maximal subgroups of p-Sylow subgroups of K can
be extended to G.

Lemma 2.5. [2, Lemma 2.8] Let G be a solvable minimal non-MSN-group. Then |G| = p®q®, where p and q are
distinct primes and at least one of a and b is more than 1.

Lemma 2.6. [6, Theorem 10.1.4] If a group G has a fixed-point-free automorphism of order 2, then G
is abelian.

Lemma 2.7. [7, Corollary 1] Every minimal simple group is isomorphic to one of the following groups:
(i) PSL@3, 3);
(ii) The Suzuki group Sz(27), where q is an odd prime;
(iii)y PSL(2, p), where p is a prime with p > 3 and p? # 1(mod 5);
(iv) PSL(2, 29), where q is a prime;
(v) PSL(2, 39), where q is an odd prime.

3 Main results

In this section, we give the classification of solvable groups all of whose maximal subgroups of even order
are MSN-groups and give the structure of non-abelian simple groups all of whose maximal subgroups of
even order are MSN-groups. Furthermore, we determine minimal simple groups all of whose second max-
imal subgroups are MSN-groups.

Theorem 3.1. Let G be a solvable non-MSN-group of even order. If all maximal subgroups of G of even order
are MSN-groups, then |n(G)| < 3.

Proof. Let 1(G) = {p1, p2, ...,Ps} With p; = 2 and {P,, P,, ..., B} be a Sylow basis of G. If G is a minimal non-
MSN-group, then |77(G)| = 2 by Lemma 2.5. So the conclusion holds.

Now we assume that G is not a minimal non-MSN-group. By hypothesis, G possesses a maximal
subgroup M of odd order which is not an MSN-group. Without loss of generality, let M = P, --- B..

Since M is not an MSN-group, then there exist a positive integer j and a maximal subgroup P* of B
such that P* is not subnormal in M. Without loss of generality, we can let j=s. If s >4, then
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PPP, (i = 2,...,s — 1) is a proper subgroup of G of even order, and hence, it is an MSN-group by hypothesis
and Lemma 2.2. If P, is non-cyclic, then P, is normal in PPP, by Lemma 2.3, and so P is normal
in G = PP, --- B.. Therefore, P* is subnormal in G, a contradiction. Hence, P is cyclic and P* is normal
in P,PP, by Remark 2.4. So P* is normal in G = P,P; --- B, a contradiction. Thus, |7(G)| < 3. O

We first solve the case of the solvable non-MSN-group G having two prime divisors.

Theorem 3.2. Let G be a solvable non-MSN-group with n(G) = {2, p}. Then all maximal subgroups of G of even
order are MSN-groups if and only if G is a minimal non-MSN-group.

Proof. Clearly, the maximal subgroup of G of odd order (if exists) is a Sylow subgroup, and so it is an MSN-
group. By Lemma 2.2, the rest is clear. O

We next solve the case of the solvable non-MSN-group G having three prime divisors.

Theorem 3.3. Let G be a solvable non-MSN-group of even order with |n(G)| = 3, where P € Syl (G),
Q € Syl,(G), and R € SyL(G) with p > q > r = 2. Suppose that all maximal subgroups of G of even order
are MSN-groups. Then one of the following statements holds:

() G=M x R, where M is a minimal non-MSN-group and R is a cyclic group of order 2;

(I G = (a, bla? = b*" = 1, blab = a'), where i% # 1(mod p), i%" = 1(mod p), n 22,0 < i < p;

(Il G=M xR =(P %xQ)xRwith1< Cy(R) < M, where M is a non-MSN-group with P non-cyclic and
Q = (b) of order q", n > 2, b induces an automorphism of order q*> on P and R is a cyclic group
of order 2;

(IV) G=M xR =(Q x P) x Rwith1 < Cy(R) < M, where M is a non-MSN-group with P and Q non-cyclic,
P®(Q) is nilpotent, and R is a cyclic group of order 2;

(V) G=M xR =(Q xP) xR with1 < Cy(R) < M, where M is a non-MSN-group with Q non-cyclic and
P = {a) of order p™, m > 2, a induces an automorphism of order p?> on Q, and R is a cyclic group
of order 2;

(VI) G=M xR =(P xQ)xRwith1 < Cy(R) < M, where M is a non-MSN-group with P and Q non-cyclic,
®(P)Q is nilpotent, and R is a cyclic group of order 2;

(VII) G=M xR =PQ x Rwith1 < Cy(R) < M, where M is a non-MSN-group with P cyclic and Q non-cyclic,
R is a cyclic group of order 2;

(VIII) G=M xR =(P xQ)xRwith1 < Cy(R) < M, where M is a non-MSN-group with P of order p and Q
non-cyclic, R is a cyclic group of order 2;

(IX) G=RxM=Rx(PxQ),whereM=PxQ=(a, bla?=b?" =1, b-lab = ai),i7 # 1(mod p), i7" = 1(mod p),
n>2,0<1i<p, PR is nilpotent and QR is a minimal non-abelian group, and R is elementary abelian
with|R| > 4;

(X) G=RxM=Rx(PxQ),whereM=PxQ={a, bla?=b? =1, b-lab = ai), 19 # 1(mod p), i’ = 1(mod p),
n=>2,0<1i<p, QR is nilpotent and PR is a minimal non-abelian group, and R is elementary abelian
with|R| > 4;

(XI) G=RxM=Rx(PxQ),whereM=PxQ=(a, bla?=b4" =1, b-lab = a'), 7 # 1(mod p), 7 = 1(mod p),
n > 2,0 < i< p,binduces an automorphism of order q on R and PR is non-nilpotent, and R is elementary
abelian with|R| > 4;

(XII) G =R x M =R x PQ, where M is a non-MSN-group with P cyclic and Q non-cyclic, QR is nilpotent and
PR is a minimal non-abelian group, and R is elementary abelian with |R| > 4;

(XII) G=R XM =R x (P xQ), where M is a non-MSN-group with P non-cyclic and Q = (b) of order q",
n > 2, b induces an automorphism of order g on P, PR is nilpotent and QR is a minimal non-abelian
group, and R is elementary abelian with |R| > 4.
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Proof. Since |7(G)| = 3, G is not a minimal non-MSN-group by Lemma 2.5. Then there exists a maximal
subgroup M of G of order odd such that M is not an MSN-group by hypothesis. The solvability of G implies
that we can let m(G) = {p, q, r} with p > g > r = 2 and {P, Q, R} be a Sylow basis of G. Furthermore, we can
let M be a Hall 2'-subgroup of G and G = MR, where M = PQ.

By hypothesis and Lemma 2.2, both PR and QR are MSN-groups. We first prove that R is either of order 2
or elementary abelian from two cases as follows.

Case 1R is cyclic.

Since PR and QR are MSN-groups, then ®(R) is normal in PR and QR by Remark 2.4, and so ®(R) is
normal in G. If ®(R) # 1, then M < M®(R) < MR = G, which contradicts that M is a maximal subgroup of G,
so ®(R) = 1 and R is of order 2.

Case 2 R is non-cyclic.

Since PR and QR are MSN-groups, then R is normal in PR and QR by Lemma 2.3, and so R is normal in G.
We have that ®(R) is normal in G as ®(R) char R < G. If ®(R) # 1, then M < M®(R) < MR = G, which
contradicts that M is a maximal subgroup of G, so ®(R) = 1 and R is elementary abelian.

We next complete the rest of the proof as follows.

(1) R is of order 2.

Clearly, M is the normal 2-complement.

Suppose Cy(R) = 1. Then an automorphism of R acting on M is both of order 2 and fixed-point-free.
It follows from Lemma 2.6 that M is abelian, and so M is an MSN-group, a contradiction. Thus, Cy(R) > 1.

If Cyy(R) = M, then MR = M x R, and M;R is an MSN-group by hypothesis for any maximal subgroup M;
of M. By Lemma 2.2, M; is an MSN-group, and so M is a minimal non-MSN-group. Therefore, G is of type (I).

Now we consider that1 < Cy(R) < M.Letl <---< K < PQ < G be a chief series of G. Since G is solvable,
then one of P and Q is contained in K. If Q < K, then KR is an MSN-group by hypothesis, and Q is either
cyclic or normal in K by Lemma 2.3. If Q is normal in K, then Q is normal in G as Q char K < G. Similarly,
if P < K, then P is either cyclic or normal in G. Obviously, Q cannot be both cyclic and normal in G, so we
discuss from the five cases as follows.

(1-a) Q is cyclic but not normal in G.

Clearly, P < G. Then P®(Q)R is an MSN-group by hypothesis, and so P®(Q) is an MSN-group by
Lemma 2.2. Similarly, since ®(P)QR is contained in some maximal subgroup of G of even order, then
®(P)Q is an MSN-group by Lemma 2.2.

Let Q = (z) with|z| = ¢", n > 2. If P is cyclic, then let P = (a) with |a] = p™. As ®(P)Q is an MSN-group,
O(P)D(Q) is nilpotnet by Remark 2.4. If ®(P) + 1, then Q;(P) < ®(P), and hence, PO(Q) is nilpotnet by a
result in [8]. Therefore, M = PQ is an MSN-group by Lemma 2.3, a contradiction. Thus, ®(P) = 1 and P is
cyclic of order p. Since 1 < Cy(R) < M and G is non-abelian with all Sylow subgroups cyclic, we have that

G =P x(QxR) by [9, 10.1.10]. Let Q x R = (b) and blab = d'. It follows that (b%)'ab® = a' + a from
(b¥) is not subnormal in PQ. Therefore, i%4 # 1(mod p). Since P®(Q) is an MSN-group, (b*?’) is normal in
)

P®(Q) by Remark 2.4. Hence, (192‘12)‘1abz‘12 =a™ = a,i%" = 1(mod p), and G is of type (II). If P is non-cyclic,
using similar arguments as mentioned earlier, (zqz) is normal in P®(Q). Hence, G is of type (III).

(1-b) Q is non-cyclic and Q < G.

Since P®(Q)R is contained in some maximal subgroup of G of even order, P®(Q) is an MSN-group by
hypothesis and Lemma 2.2. Similarly, ®(P)Q is an MSN-group. If P is non-cyclic, then P®(Q) is nilpotent by
Lemma 2.3, so G is of type (IV). If P is cyclic, then by Lemma 2.3 let P = (a) with |a] = p™ and m > 2. Since

®(P)Q is an MSN-group, (al’z) is normal in ®(P)Q by Remark 2.4. So G is of type (V).

(1-c) P is non-cyclic and P < G.

If Q is cyclic, then G is of type (III) by the same arguments as in (1-a). If Q is non-cyclic, then ®(P)QR is
contained in some maximal subgroup of G of even order, so ®(P)Q is an MSN-group by hypothesis and
Lemma 2.2. Therefore, ®(P)Q is nilpotent by Lemma 2.3, and G is of type (VI).

(1-d) P is cyclic but not noraml in G.

Clearly, Q is non-cyclic, so G is of type (VII).

(1-e) P is cyclic and P < G.
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If Q is cyclic, then G is of type (II) by the same arguments as in (1-a). If Q is non-cyclic, we have that P
is of order p. Otherwise, Qi(P) < ®(P) and ®(P)Q is an MSN-group by hypothesis and Lemma 2.2.
By Lemma 2.3, ®(P)Q is nilpotent, and so PQ is nilpotent by a result in [8], a contradiction. Thus, G is
of type (VIII).

(2) R is normal in G, and it is elementary abelian.

Assume that neither P nor Q is cyclic. Since PR and QR are MSN-groups, PR and QR are nilpotent by
Lemma 2.3. Therefore, MR = M x R. By hypothesis and Lemma 2.2, MR, is an MSN-group, where R; < R.
By Lemma 2.2 again, M is an MSN-group, a contradiction. Hence, either P or Q is cyclic.

(2-a) Both P and Q are cyclic.

By hypothesis and Lemma 2.2, P®(Q) and ®(P)Q are MSN-groups, and so PQ is a minimal non-MSN-
group. Let P = (a) and Q = (b) with|a| = p™ and |b| = ¢". Then by examining [2, Theorem 3.2], we conclude
that M = PQ = (a, bla? = b?" =1, blab = a'), i9 # 1(mod p), it = 1(mod p), n = 2, 0 < i < p. Clearly, PR
and QR are not all nilpotent. If PR is nilpotent, then there does not exist a non-trivial subgroup Ry of R
such that RQ = QR;. Otherwise, if RjQ = QR,, where R, < R, we have that RPQ is a proper subgroup of G of
even order. Then RPQ is an MSN-group by hypothesis and Lemma 2.2, and so PQ is an MSN-group by
Lemma 2.2, a contradiction. Since QR is an MSN-group, then ®(Q)R is nilpotent by Remark 2.4. Thus, QR is a
minimal non-abelian group, and G is of type (IX). If QR is nilpotent, then by a similar argument as earlier,
there does not exist a non-trivial subgroup R; of R such that RiP = PR,. Therefore, PR is a minimal non-
abelian group, and G is of type (X). If both PR and QR are non-nilpotent, then b induces an automorphism
of order g on R by Lemma 2.3, and so G is of type (XI).

(2-b) P is cyclic and Q is non-cyclic.

Since PR and QR are MSN-groups, ®(P)R and QR are nilpotent by Remark 2.4 and Lemma 2.3, respec-
tively. By the similar arguments as in (2-a), there does not exist a non-trivial subgroup R; of R such that
R,P = PRy. Hence, PR is a minimal non-abelian group since ®(P)R is nilpotent. Therefore, G is of type (XII).

(2-c) P is non-cyclic and Q is cyclic.

Using similar arguments as in (2-b), ®(Q)R and PR are nilpotent, and so P is normal in G. Then P®(Q)R
is an MSN-group by hypothesis, so P®(Q) is an MSN-group by Lemma 2.2. Let Q = (b) with |b| = g", n > 2.
Then (qu) is normal in P®(Q) by Remark 2.4. By the similar arguments as in (2-a), there does not exist a
non-trivial subgroup R; of R such that RQ = QR;. We have that QR is a minimal non-abelian group since
®(Q)R is nilpotent. Thus, G is of type (XIII). O

Corollary 3.4. Let G be a solvable non-MSN-group of even order and suppose that all maximal subgroups of G
of even order are MSN-groups. If 4||G|, then G is a minimal non-MSN-group or |n(G)| = 3 and G possesses
a normal Sylow 2-subgroup which is elementary abelian.

Proof. It is obvious by Theorems 3.2 and 3.3. O

Theorem 3.5. Let G be a non-abelian simple group. If all maximal subgroups of G of even order are MSN-
groups, then G is isomorphic to either As or PSL(2, 29), where As is the alternating group of degree 5 and 29 — 1
is square-free for an odd prime q.

Proof. Let M be a maximal subgroup of G. If M is a group of odd order, then M is solvable by Feit-Thompson
Theorem [10] on the solvability of group of odd order. If M is a group of even order, then M is an MSN-group
by hypothesis. By applying Lemma 2.1, M is solvable. So G is a minimal simple group. Using similar
arguments as the proof in [2, Theorem 3.1], the required result holds. O

Theorem 3.6. Let G be a minimal simple group all of whose second maximal subgroups are MSN-groups.
Then G is isomorphic to one of the following types:

() As;

(I The Suzuki group Sz(23);
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(IIl)y PSL(2, p), where p is an odd prime with p > 5, 5tp?> — 1, only one of (p + 1)/ 4 and (p - 1)/ 4 is an odd
prime if p = 13, and (p - 1)/2 is square-free or r? for an odd prime r if (p + 1)/4 is an odd prime;

(IV) PSL(2, 29), where q is an odd prime and 29 — 1 is square-free or r? for an odd prime r;

(V) PSL(2, 39), where q and (37 + 1)/ 4 are odd primes, (37 - 1)/2 is square-free or r? for an odd primer.

Proof. By Lemma 2.7, we have that G is isomorphic to one of the following simple groups.
(i) PSL(3, 3);
(ii) The Suzuki group Sz(29), where g is an odd prime;
(iii)y PSL(2, p), where p is a prime with p > 3 and p? # 1(mod 5);
(iv) PSL(2, 29), where q is a prime;
(v) PSL(2, 39), where g is an odd prime.

Case 1G # PSL(3, 3).

Suppose G = PSL(3, 3). Then G contains a maximal subgroup which is isomorphic to the Hesse group A
of order 2433, By hypothesis, A is either an MSN-group or a minimal non-MSN-group. Clearly, all Sylow
subgroups of A are non-cyclic, so at least one of the Sylow subgroups of A is normal in A by Lemma 2.3 and
a result in [2, Theorem 3.2]. However, the Sylow subgroups of A are all non-normal. Hence G # PSL(3, 3).

Case 2 G = Sz(23).

Suppose G = Sz(29). Then by [11, Theorem 9], G has maximal subgroups: the Frobenius group M with
a cyclic complement H of order 29 - 1 and kernel K of order 2%; the dihedral group D of order 2(29 - 1) and
the Frobenius group F of order 4(29 + 2%+ 1). Clearly, the dihedral group D of order 2(27 — 1) is an MSN-
group. The Frobenius group M is either an MSN-group or a minimal non-MSN-group by hypothesis. If M is a
minimal non-MSN-group, then 29 — 1is p! by Lemma 2.5 for an odd prime p and a positive integer with1 > 1.
Since K is non-abelian, then ®(K)H is an MSN-group with ®(H) # 1, and so ®(K)D(H) = ®(K) x O(H)
by Remark 2.4, which contradicts the fact that M is a Frobenius group. Thus, M must be an MSN-group,
and we have that 29 — 1is square-free. Otherwise, by Remark 2.4, there exists a non-trivial maximal subgroup
H; of the Sylow subgroups of H such that KH; = K x H;, which contradicts the fact M is a Frobenius group.
By hypothesis, the Frobenius group F is either an MSN-group or a minimal non-MSN-group. Clearly, the
Sylow 2-subgroup of F is neither cyclic nor normal, so F is a minimal non-MSN-group. By the similar

arguments as given earlier, 29 + 2 + 1is rt for an odd prime r and a positive integer t. If t > 1, then there
exists a non-trivial subgroup F; of F such that the Sylow 2-subgroup of F, is neither cyclic nor normal, which

contradicts that F is a minimal non-MSN-group. Therefore, 29 + 2% + 1areodd primes. By the computation,

we easily have that at least one of 29 + 2% +1and29 - 2% +1isa multiple of 5 for any odd prime g with
q > 5, a contradiction. Thus, only odd prime 3 satisfies all of the aforementioned conditions, and so G is of
type (II).

Case3G = A; or G = PSL(2, p), where p is an odd prime with p > 5, 54p?> — 1, only one of (p + 1)/4 and
(p - 1)/4 is an odd prime if p > 13, and (p — 1)/2 is square-free or r? for an odd prime r if (p + 1)/4 is an
odd prime.

Suppose G = PSL(2, p). By [12, Corollary 2.2], G has maximal subgroups: the alternating group A, of
degree 4 when p = +3(mod 8); the symmetric group S, of degree 4 when p? = 1(mod 16); the dihedral
groups of order p + 1; and the Frobenius group M with a cyclic complement H of order (p — 1)/2 and kernel
K of order p. G = As if p = 5, so G is of type (I). Obviously, the prime 7 satisfies the condition, so we only
consider the case when p > 13. Furthermore, 4 must divide the order of either D,_; or D, if p > 13.

Suppose p > 13 and 4||D,_4|. Clearly, the Sylow 2-subgroup of D,_; is non-cyclic. Since D,_, is not an
MSN-group, we have that D,_; is a minimal non-MSN-group by hypothesis. Note 2+(p — 1)/4. Otherwise,
there exists a maximal subgroup M; of D,_; such that the Sylow 2-subgroup of M; is neither cyclic nor
normal, which contradicts D,,_; is a minimal non-MSN-group. Then by examining [2, Theorem 3.2], we have
that (p — 1)/4 is an odd prime, say g. Then p + 1 = 2(2q + 1), and so D, is an MSN-group, as desired. And
(p -1)/2 =2q, and hence, the Frobenius group M of order p(p — 1)/2 is an MSN-group, as desired.
Suppose p > 13 and 4||D,.4|. By the similar arguments as given eatlier, D,,; must be a minimal non-
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MSN-group and 24(p + 1)/4. Then by examining [2, Theorem 3.2], we have that (p + 1)/4 is an odd prime,
sayt.Then p - 1 =2(2t - 1), and so D,,_; is an MSN-group, as desired. And (p — 1)/2 = 2t - 1is odd, using
similar arguments as in Case 2, (p — 1)/2 is square-free if M is an MSN-group. If M is a minimal non-MSN-
group, then (p — 1)/2 is r™ by Lemma 2.5 for an odd prime r and a positive integer m with m > 1. We have
m = 2, if not, there exists a maximal subgroup H; of H such that KH; is an MSN-group with ®(H;) # 1, and so
K®(H)) = K x ®(H,) by Remark 2.4, which contradicts the fact M is a Frobenius group. Now we have that G
is of type (III).

Case 4 G = A; or G = PSL(2, 29), where g is an odd prime and 29 - 1 is square-free or r? for an odd
prime r.

If G = PSL(2, 29), then by [12, Corollary 2.2], G has maximal subgroups: the dihedral groups of order
2(27 + 1); the Frobenius group M with a cyclic complement H of order 27 — 1 and kernel K is elementary
abelian of order 27; and the alternating group A, of degree 4 when q = 2. Clearly, G = As if g = 2, so G is of
type (I). Now we consider that g > 2. By the similar arguments as in Case 2, 27 — 1 is square-free if M is an
MSN-group. If M is a minimal non-MSN-group, then 27 — 1 is r™ by Lemma 2.5 for an odd prime r and a
positive integer m with m > 1. We prove that there does not exist a non-trivial subgroup K; of K such that
K; < M. If not, then KiH is an MSN-group, and so Ki®(H) = K; x ®(H) by Remark 2.4, which contradicts the
fact M is a Frobenius group. Now we prove that m = 2. If not, then by the similar arguments as the proof in
Case 3, there exists a maximal subgroup H; of H with ®(H,) # 1 such that K®(H;) = K x ®(H,;), which
contradicts the fact M is a Frobenius group. Hence, G is of type (IV).

Case 5 G = PSL(2, 39), where g and (37 + 1) /4 are odd primes, (3¢ — 1)/2 is square-free or r? for an odd
prime r.

If G = PSL(2, 39), then by [12, Corollary 2.2], G has maximal subgroups: the dihedral groups of order
39 + 1; the Frobenius group M with a cyclic complement H of order (3¢ — 1) /2 and kernel K is elementary
abelian of order 34; and the alternating group A, of degree 4. Clearly, 4|37 + 1, and the dihedral group of
order 37 — 1is an MSN-group, so we only consider the Frobenius group M and the dihedral group D of order
39 + 1. Using similar arguments as in Case 4, (37 — 1) /2 is square-free if M is an MSN-group, and (37 — 1)/2
is r? for an odd prime r if M is a minimal non-MSN-group. Using similar arguments as in Case 3, D must be
a minimal non-MSN-group and 2(37 + 1)/4. By examining [2, Theorem 3.2], (37 + 1)/4 is an odd prime.
So G is of type (V). O
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