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Abstract: A finite group G is called an MSN-group if all maximal subgroups of the Sylow subgroups of G
are subnormal in G. In this article, we investigate the structure of finite groups G such that G is a non-
MSN-group of even order in which every maximal subgroup of even order is an MSN-group. In addition,
we determine the minimal simple groups all of whose second maximal subgroups are MSN-groups.
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1 Introduction

In this article, only finite groups are considered, and our notation is standard.
The study of the structure of groups that have some kind of property has attracted much attention in

group theory, and many meaningful results about this topic have been obtained. Subnormal subgroups
play a key role in the study of the structure of groups. Srinivasan [1] proved that the supersolvability of a
group G has the property that the maximal subgroups of Sylow subgroups are normal, and proved that it
has the Sylow tower property for some ordering of the primes in ( )π G but not necessarily supersolvable if
the maximal subgroups of Sylow subgroups are subnormal. Guo and Guo [2] called groups in which all
maximal subgroups of the Sylow subgroups are subnormal MSN-groups and investigated the structure
of minimal non-MSN-groups (those groups that are not MSN-groups but whose proper subgroups are all
MSN-groups).

Recently, Meng et al. [3] studied the structure of groups all of whose maximal subgroups of even order
are MS-groups. (A group G is called an MS-group if all minimal subgroups of G permute with every Sylow
subgroup of G.) Meng and Lu [4] investigated the structure of groups in which all maximal subgroups of
even order are supersolvable groups and determined the non-abelian simple groups all of whose second
maximal subgroups of even order are supersolvable groups.

The aim of this article is to investigate groups all of whose maximal subgroups of even order are MSN-
groups. Furthermore, we determine the minimal simple groups all of whose second maximal subgroups are
MSN-groups.
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2 Preliminary results

We collect some lemmas that will be frequently used in the sequel.

Lemma 2.1. [1, Theorem 3] Let G be an MSN-group. Then G has the Sylow tower property for some ordering
of the primes in ( )π G , and hence, G is solvable.

Lemma 2.2. A subgroup of an MSN-group must be an MSN-group.

Proof. By the definition of MSN-groups and the property of subnormal subgroups, the lemma is true. □

Lemma 2.3. [5, Theorem 2.7] Let G be a group. Then the following conditions are equivalent:
(i) Maximal subgroups of Sylow subgroups of G are subnormal in G;
(ii) = ⋊G H K ,where (1) H is a nilpotent normal Hall subgroup ofG, and K is a group whose Sylow subgroups

are cyclic and the maximal subgroups of its Sylow subgroups are normal in K ; (2) a generator x of any
Sylow p-subgroup of K induces an automorphism of order 1 or p on H .

Remark 2.4. [2, Remark] In Lemma 2.3, the normality of maximal subgroups of p-Sylow subgroups of K can
be extended to G.

Lemma 2.5. [2, Lemma 2.8] LetG be a solvable minimal non-MSN-group. Then ∣ ∣ =G p qa b, where p and q are
distinct primes and at least one of a and b is more than 1.

Lemma 2.6. [6, Theorem 10.1.4] If a group G has a fixed-point-free automorphism of order 2, then G
is abelian.

Lemma 2.7. [7, Corollary 1] Every minimal simple group is isomorphic to one of the following groups:
(i) PSL( )3, 3 ;
(ii) The Suzuki group Sz( )2q , where q is an odd prime;
(iii) PSL( )p2, , where p is a prime with >p 3 and ( )≢p 1 mod 52 ;
(iv) PSL( )2, 2q , where q is a prime;
(v) PSL( )2, 3q , where q is an odd prime.

3 Main results

In this section, we give the classification of solvable groups all of whose maximal subgroups of even order
are MSN-groups and give the structure of non-abelian simple groups all of whose maximal subgroups of
even order are MSN-groups. Furthermore, we determine minimal simple groups all of whose second max-
imal subgroups are MSN-groups.

Theorem 3.1. Let G be a solvable non-MSN-group of even order. If all maximal subgroups of G of even order
are MSN-groups, then ∣ ( )∣ ≤π G 3.

Proof. Let ( ) { }= …π G p p p, , , s1 2 with =p 21 and { }…P P P, , , s1 2 be a Sylow basis ofG. IfG is a minimal non-
MSN-group, then ∣ ( )∣ =π G 2 by Lemma 2.5. So the conclusion holds.

Now we assume that G is not a minimal non-MSN-group. By hypothesis, G possesses a maximal
subgroup M of odd order which is not an MSN-group. Without loss of generality, let = ⋯M P Ps2 .

Since M is not an MSN-group, then there exist a positive integer j and a maximal subgroup ∗P of Pj

such that ∗P is not subnormal in M . Without loss of generality, we can let =j s. If ≥s 4, then
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( )= … −P PP i s2, , 1i s1 is a proper subgroup ofG of even order, and hence, it is an MSN-group by hypothesis
and Lemma 2.2. If Ps is non-cyclic, then Ps is normal in P PPi s1 by Lemma 2.3, and so Ps is normal
in = ⋯G P P Ps1 2 . Therefore, ∗P is subnormal in G, a contradiction. Hence, Ps is cyclic and ∗P is normal
in P PPi s1 by Remark 2.4. So ∗P is normal in = ⋯G P P Ps1 2 , a contradiction. Thus, ∣ ( )∣ ≤π G 3. □

We first solve the case of the solvable non-MSN-group G having two prime divisors.

Theorem 3.2. Let G be a solvable non-MSN-group with ( ) { }=π G p2, . Then all maximal subgroups of G of even
order are MSN-groups if and only if G is a minimal non-MSN-group.

Proof. Clearly, the maximal subgroup ofG of odd order (if exists) is a Sylow subgroup, and so it is an MSN-
group. By Lemma 2.2, the rest is clear. □

We next solve the case of the solvable non-MSN-group G having three prime divisors.

Theorem 3.3. Let G be a solvable non-MSN-group of even order with ∣ ( )∣ =π G 3, where ( )∈P GSylp ,
( )∈Q GSylq , and ( )∈R GSyl2 with > > =p q r 2. Suppose that all maximal subgroups of G of even order

are MSN-groups. Then one of the following statements holds:
(I) = ×G M R, where M is a minimal non-MSN-group and R is a cyclic group of order 2;

(II) ∣= ⟨ = = = ⟩

−G a b a b b ab a, 1,p q i2 1n
, where ( )≢i p1 modq2 , ( )≡i p1 modq2 2

, ≥n 2, < <i p0 ;
(III) ( )= ⋊ = ⋊ ⋊G M R P Q R with ( )< <C R M1 M , where M is a non-MSN-group with P non-cyclic and

= ⟨ ⟩Q b of order qn, ≥n 2, b induces an automorphism of order q2 on P and R is a cyclic group
of order 2;

(IV) ( )= ⋊ = ⋊ ⋊G M R Q P R with ( )< <C R M1 M , where M is a non-MSN-group with P and Q non-cyclic,
( )P QΦ is nilpotent, and R is a cyclic group of order 2;

(V) ( )= ⋊ = ⋊ ⋊G M R Q P R with ( )< <C R M1 M , where M is a non-MSN-group with Q non-cyclic and
= ⟨ ⟩P a of order pm, ≥m 2, a induces an automorphism of order p2 on Q, and R is a cyclic group

of order 2;
(VI) ( )= ⋊ = ⋊ ⋊G M R P Q R with ( )< <C R M1 M , where M is a non-MSN-group with P and Q non-cyclic,

( )P QΦ is nilpotent, and R is a cyclic group of order 2;
(VII) = ⋊ = ⋊G M R PQ R with ( )< <C R M1 M , where M is a non-MSN-group with P cyclic andQ non-cyclic,

R is a cyclic group of order 2;
(VIII) ( )= ⋊ = ⋊ ⋊G M R P Q R with ( )< <C R M1 M , where M is a non-MSN-group with P of order p and Q

non-cyclic, R is a cyclic group of order 2;

(IX) ( )= ⋊ = ⋊ ⋊G R M R P Q ,where ∣= ⋊ = ⟨ = = = ⟩

−M P Q a b a b b ab a, 1,p q i1n
, ( )≢i p1 modq , ( )≡i p1 modq2

,
≥n 2, < <i p0 , PR is nilpotent and QR is a minimal non-abelian group, and R is elementary abelian

with ∣ ∣ ≥R 4;
(X) ( )= ⋊ = ⋊ ⋊G R M R P Q ,where ∣= ⋊ = ⟨ = = = ⟩

−M P Q a b a b b ab a, 1,p q i1n
, ( )≢i p1 modq , ( )≡i p1 modq2

,
≥n 2, < <i p0 , QR is nilpotent and PR is a minimal non-abelian group, and R is elementary abelian

with ∣ ∣ ≥R 4;
(XI) ( )= ⋊ = ⋊ ⋊G R M R P Q ,where ∣= ⋊ = ⟨ = = = ⟩

−M P Q a b a b b ab a, 1,p q i1n
, ( )≢i p1 modq , ( )≡i p1 modq2

,
≥n 2, < <i p0 , b induces an automorphism of order q on R and PR is non-nilpotent, and R is elementary

abelian with ∣ ∣ ≥R 4;
(XII) = ⋊ = ⋊G R M R PQ, where M is a non-MSN-group with P cyclic and Q non-cyclic, QR is nilpotent and

PR is a minimal non-abelian group, and R is elementary abelian with ∣ ∣ ≥R 4;
(XIII) ( )= ⋊ = ⋊ ⋊G R M R P Q , where M is a non-MSN-group with P non-cyclic and = ⟨ ⟩Q b of order qn,

≥n 2, b induces an automorphism of order q2 on P, PR is nilpotent and QR is a minimal non-abelian
group, and R is elementary abelian with ∣ ∣ ≥R 4.
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Proof. Since ∣ ( )∣ =π G 3, G is not a minimal non-MSN-group by Lemma 2.5. Then there exists a maximal
subgroup M of G of order odd such that M is not an MSN-group by hypothesis. The solvability of G implies
that we can let ( ) { }=π G p q r, , with > > =p q r 2 and { }P Q R, , be a Sylow basis of G. Furthermore, we can
let M be a Hall ′2 -subgroup of G and =G MR, where =M PQ.

By hypothesis and Lemma 2.2, both PR andQR are MSN-groups. We first prove that R is either of order 2
or elementary abelian from two cases as follows.

Case 1 R is cyclic.
Since PR and QR are MSN-groups, then ( )RΦ is normal in PR and QR by Remark 2.4, and so ( )RΦ is

normal inG. If ( ) ≠RΦ 1, then ( )< < =M M R MR GΦ , which contradicts that M is a maximal subgroup ofG,
so ( ) =RΦ 1 and R is of order 2.

Case 2 R is non-cyclic.
Since PR andQR are MSN-groups, then R is normal in PR andQR by Lemma 2.3, and so R is normal inG.

We have that ( )RΦ is normal in G as ( )RΦ char ⊴R G. If ( ) ≠RΦ 1, then ( )< < =M M R MR GΦ , which
contradicts that M is a maximal subgroup of G, so ( ) =RΦ 1 and R is elementary abelian.

We next complete the rest of the proof as follows.
(1) R is of order 2.
Clearly, M is the normal 2-complement.
Suppose ( ) =C R 1M . Then an automorphism of R acting on M is both of order 2 and fixed-point-free.

It follows from Lemma 2.6 that M is abelian, and so M is an MSN-group, a contradiction. Thus, ( ) >C R 1M .
If ( ) =C R MM , then = ×MR M R, and M R1 is an MSN-group by hypothesis for any maximal subgroup M1

of M . By Lemma 2.2, M1 is an MSN-group, and so M is a minimal non-MSN-group. Therefore,G is of type (I).
Now we consider that ( )< <C R M1 M . Let ⊴⋯⊴ ⊴ ⊴K PQ G1 be a chief series ofG. SinceG is solvable,

then one of P and Q is contained in K . If ≤Q K , then KR is an MSN-group by hypothesis, and Q is either
cyclic or normal in K by Lemma 2.3. If Q is normal in K , then Q is normal in G as Q char ⊴K G. Similarly,
if ≤P K , then P is either cyclic or normal in G. Obviously, Q cannot be both cyclic and normal in G, so we
discuss from the five cases as follows.

(1-a) Q is cyclic but not normal in G.
Clearly, ⊴P G. Then ( )P Q RΦ is an MSN-group by hypothesis, and so ( )P QΦ is an MSN-group by

Lemma 2.2. Similarly, since ( )P QRΦ is contained in some maximal subgroup of G of even order, then
( )P QΦ is an MSN-group by Lemma 2.2.

Let = ⟨ ⟩Q z with ∣ ∣ =z qn, ≥n 2. If P is cyclic, then let = ⟨ ⟩P a with ∣ ∣ =a pm. As ( )P QΦ is an MSN-group,
( ) ( )P QΦ Φ is nilpotnet by Remark 2.4. If ( ) ≠PΦ 1, then ( ) ( )≤P PΩ Φ1 , and hence, ( )P QΦ is nilpotnet by a

result in [8]. Therefore, =M PQ is an MSN-group by Lemma 2.3, a contradiction. Thus, ( ) =PΦ 1 and P is
cyclic of order p. Since ( )< <C R M1 M and G is non-abelian with all Sylow subgroups cyclic, we have that

( )= ⋊ ×G P Q R by [9, 10.1.10]. Let × = ⟨ ⟩Q R b and =

−b ab ai1 . It follows that ( ) = ≠

−b ab a aq q i2 1 2 q2
from

⟨ ⟩b q2 is not subnormal in PQ. Therefore, ( )≢i p1 modq2 . Since ( )P QΦ is an MSN-group, ⟨ ⟩b q2 2
is normal in

( )P QΦ by Remark 2.4. Hence,( ) = =

−b ab a aq q i2 1 2 q2 2 2 2
, ( )≡i p1 modq2 2

, andG is of type (II). If P is non-cyclic,
using similar arguments as mentioned earlier, ⟨ ⟩zq2

is normal in ( )P QΦ . Hence, G is of type (III).
(1-b) Q is non-cyclic and ⊴Q G.
Since ( )P Q RΦ is contained in some maximal subgroup of G of even order, ( )P QΦ is an MSN-group by

hypothesis and Lemma 2.2. Similarly, ( )P QΦ is an MSN-group. If P is non-cyclic, then ( )P QΦ is nilpotent by
Lemma 2.3, so G is of type (IV). If P is cyclic, then by Lemma 2.3 let = ⟨ ⟩P a with ∣ ∣ =a pm and ≥m 2. Since

( )P QΦ is an MSN-group, ⟨ ⟩a p2
is normal in ( )P QΦ by Remark 2.4. So G is of type (V).

(1-c) P is non-cyclic and ⊴P G.
IfQ is cyclic, thenG is of type (III) by the same arguments as in (1-a). If Q is non-cyclic, then ( )P QRΦ is

contained in some maximal subgroup of G of even order, so ( )P QΦ is an MSN-group by hypothesis and
Lemma 2.2. Therefore, ( )P QΦ is nilpotent by Lemma 2.3, and G is of type (VI).

(1-d) P is cyclic but not noraml in G.
Clearly, Q is non-cyclic, so G is of type (VII).
(1-e) P is cyclic and ⊴P G.
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If Q is cyclic, then G is of type (II) by the same arguments as in (1-a). If Q is non-cyclic, we have that P
is of order p. Otherwise, ( ) ( )≤P PΩ Φ1 and ( )P QΦ is an MSN-group by hypothesis and Lemma 2.2.
By Lemma 2.3, ( )P QΦ is nilpotent, and so PQ is nilpotent by a result in [8], a contradiction. Thus, G is
of type (VIII).

(2) R is normal in G, and it is elementary abelian.
Assume that neither P nor Q is cyclic. Since PR and QR are MSN-groups, PR and QR are nilpotent by

Lemma 2.3. Therefore, = ×MR M R. By hypothesis and Lemma 2.2, MR1 is an MSN-group, where <R R1 .
By Lemma 2.2 again, M is an MSN-group, a contradiction. Hence, either P or Q is cyclic.

(2-a) Both P and Q are cyclic.
By hypothesis and Lemma 2.2, ( )P QΦ and ( )P QΦ are MSN-groups, and so PQ is a minimal non-MSN-

group. Let = ⟨ ⟩P a and = ⟨ ⟩Q b with ∣ ∣ =a pm and ∣ ∣ =b qn. Then by examining [2, Theorem 3.2], we conclude
that ∣= = ⟨ = = = ⟩

−M PQ a b a b b ab a, 1,p q i1n
, ( )≢i p1 modq , ( )≡i p1 modq2

, ≥n 2, < <i p0 . Clearly, PR
and QR are not all nilpotent. If PR is nilpotent, then there does not exist a non-trivial subgroup R1 of R
such that =R Q QR1 1. Otherwise, if =R Q QR1 1, where <R R1 , we have that R PQ1 is a proper subgroup of G of
even order. Then R PQ1 is an MSN-group by hypothesis and Lemma 2.2, and so PQ is an MSN-group by
Lemma 2.2, a contradiction. SinceQR is an MSN-group, then ( )Q RΦ is nilpotent by Remark 2.4. Thus,QR is a
minimal non-abelian group, and G is of type (IX). If QR is nilpotent, then by a similar argument as earlier,
there does not exist a non-trivial subgroup R1 of R such that =R P PR1 1. Therefore, PR is a minimal non-
abelian group, and G is of type (X). If both PR and QR are non-nilpotent, then b induces an automorphism
of order q on R by Lemma 2.3, and so G is of type (XI).

(2-b) P is cyclic and Q is non-cyclic.
Since PR and QR are MSN-groups, ( )P RΦ and QR are nilpotent by Remark 2.4 and Lemma 2.3, respec-

tively. By the similar arguments as in (2-a), there does not exist a non-trivial subgroup R1 of R such that
=R P PR1 1. Hence, PR is a minimal non-abelian group since ( )P RΦ is nilpotent. Therefore, G is of type (XII).
(2-c) P is non-cyclic and Q is cyclic.
Using similar arguments as in (2-b), ( )Q RΦ and PR are nilpotent, and so P is normal inG. Then ( )P Q RΦ

is an MSN-group by hypothesis, so ( )P QΦ is an MSN-group by Lemma 2.2. Let = ⟨ ⟩Q b with ∣ ∣ =b qn, ≥n 2.
Then ⟨ ⟩bq2

is normal in ( )P QΦ by Remark 2.4. By the similar arguments as in (2-a), there does not exist a
non-trivial subgroup R1 of R such that =R Q QR1 1. We have that QR is a minimal non-abelian group since

( )Q RΦ is nilpotent. Thus, G is of type (XIII). □

Corollary 3.4. Let G be a solvable non-MSN-group of even order and suppose that all maximal subgroups of G
of even order are MSN-groups. If ∣∣ ∣G4 , then G is a minimal non-MSN-group or ∣ ( )∣ =π G 3 and G possesses
a normal Sylow 2-subgroup which is elementary abelian.

Proof. It is obvious by Theorems 3.2 and 3.3. □

Theorem 3.5. Let G be a non-abelian simple group. If all maximal subgroups of G of even order are MSN-
groups, then G is isomorphic to either A5 or PSL( )2, 2q , where A5 is the alternating group of degree 5 and −2 1q

is square-free for an odd prime q.

Proof. Let M be a maximal subgroup ofG. If M is a group of odd order, then M is solvable by Feit-Thompson
Theorem [10] on the solvability of group of odd order. If M is a group of even order, then M is an MSN-group
by hypothesis. By applying Lemma 2.1, M is solvable. So G is a minimal simple group. Using similar
arguments as the proof in [2, Theorem 3.1], the required result holds. □

Theorem 3.6. Let G be a minimal simple group all of whose second maximal subgroups are MSN-groups.
Then G is isomorphic to one of the following types:
(I) A5;
(II) The Suzuki group Sz( )23 ;
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(III) PSL( )p2, , where p is an odd prime with >p 5, ∤ −p5 12 , only one of ( )+ /p 1 4 and ( )− /p 1 4 is an odd
prime if ≥p 13, and ( )− /p 1 2 is square-free or r2 for an odd prime r if ( )+ /p 1 4 is an odd prime;

(IV) PSL( )2, 2q , where q is an odd prime and −2 1q is square-free or r2 for an odd prime r;
(V) PSL( )2, 3q , where q and ( )+ /3 1 4q are odd primes, ( )− /3 1 2q is square-free or r2 for an odd prime r.

Proof. By Lemma 2.7, we have that G is isomorphic to one of the following simple groups.
(i) PSL( )3, 3 ;
(ii) The Suzuki group Sz( )2q , where q is an odd prime;
(iii) PSL( )p2, , where p is a prime with >p 3 and ( )≢p 1 mod 52 ;
(iv) PSL( )2, 2q , where q is a prime;
(v) PSL( )2, 3q , where q is an odd prime.

Case 1 ≇G PSL( )3, 3 .
Suppose ≅G PSL( )3, 3 . ThenG contains a maximal subgroup which is isomorphic to the Hesse group A

of order 2 34 3. By hypothesis, A is either an MSN-group or a minimal non-MSN-group. Clearly, all Sylow
subgroups of A are non-cyclic, so at least one of the Sylow subgroups of A is normal in A by Lemma 2.3 and
a result in [2, Theorem 3.2]. However, the Sylow subgroups of A are all non-normal. Hence ≇G PSL( )3, 3 .

Case 2 ≅G Sz( )23 .
Suppose ≅G Sz( )2q . Then by [11, Theorem 9], G has maximal subgroups: the Frobenius group M with

a cyclic complement H of order −2 1q and kernel K of order 2 q2 ; the dihedral group D of order ( )−2 2 1q and

the Frobenius group F of order ( )± +

+

4 2 2 1q q 1
2 . Clearly, the dihedral group D of order ( )−2 2 1q is an MSN-

group. The Frobenius group M is either an MSN-group or a minimal non-MSN-group by hypothesis. If M is a
minimal non-MSN-group, then −2 1q is pl by Lemma 2.5 for an odd prime p and a positive integer l with >l 1.
Since K is non-abelian, then ( )K HΦ is an MSN-group with ( ) ≠HΦ 1, and so ( ) ( ) ( ) ( )= ×K H K HΦ Φ Φ Φ
by Remark 2.4, which contradicts the fact that M is a Frobenius group. Thus, M must be an MSN-group,
andwe have that −2 1q is square-free. Otherwise, by Remark 2.4, there exists a non-trivialmaximal subgroup
H1 of the Sylow subgroups of H such that = ×KH K H1 1, which contradicts the fact M is a Frobenius group.
By hypothesis, the Frobenius group F is either an MSN-group or a minimal non-MSN-group. Clearly, the
Sylow 2-subgroup of F is neither cyclic nor normal, so F is a minimal non-MSN-group. By the similar

arguments as given earlier, ± +

+

2 2 1q q 1
2 is rt for an odd prime r and a positive integer t . If >t 1, then there

exists a non-trivial subgroup F1 of F such that the Sylow 2-subgroup of F1 is neither cyclic nor normal, which

contradicts that F is a minimal non-MSN-group. Therefore, ± +

+

2 2 1q q 1
2 are odd primes. By the computation,

we easily have that at least one of + +

+

2 2 1q q 1
2 and − +

+

2 2 1q q 1
2 is a multiple of 5 for any odd prime q with

≥q 5, a contradiction. Thus, only odd prime 3 satisfies all of the aforementioned conditions, and so G is of
type (II).

Case 3 ≅G A5 or ≅G PSL( )p2, , where p is an odd prime with >p 5, ∤ −p5 12 , only one of ( )+ /p 1 4 and
( )− /p 1 4 is an odd prime if ≥p 13, and ( )− /p 1 2 is square-free or r2 for an odd prime r if ( )+ /p 1 4 is an
odd prime.

Suppose ≅G PSL( )p2, . By [12, Corollary 2.2], G has maximal subgroups: the alternating group A4 of
degree 4 when ( )≡ ±p 3 mod 8 ; the symmetric group S4 of degree 4 when ( )≡p 1 mod 162 ; the dihedral
groups of order ±p 1; and the Frobenius group M with a cyclic complement H of order ( )− /p 1 2 and kernel
K of order p. ≅G A5 if =p 5, so G is of type (I). Obviously, the prime 7 satisfies the condition, so we only
consider the case when ≥p 13. Furthermore, 4 must divide the order of either

−
Dp 1 or +

Dp 1 if ≥p 13.
Suppose ≥p 13 and ∣∣ ∣

−
D4 p 1 . Clearly, the Sylow 2-subgroup of

−
Dp 1 is non-cyclic. Since −

Dp 1 is not an
MSN-group, we have that

−
Dp 1 is a minimal non-MSN-group by hypothesis. Note ( )∤ − /p2 1 4. Otherwise,

there exists a maximal subgroup M1 of
−

Dp 1 such that the Sylow 2-subgroup of M1 is neither cyclic nor
normal, which contradicts

−
Dp 1 is a minimal non-MSN-group. Then by examining [2, Theorem 3.2], we have

that ( )− /p 1 4 is an odd prime, say q. Then ( )+ = +p q1 2 2 1 , and so
+

Dp 1 is an MSN-group, as desired. And
( )− / =p q1 2 2 , and hence, the Frobenius group M of order ( )− /p p 1 2 is an MSN-group, as desired.
Suppose ≥p 13 and ∣∣ ∣

+
D4 p 1 . By the similar arguments as given earlier,

+
Dp 1 must be a minimal non-
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MSN-group and ( )∤ + /p2 1 4. Then by examining [2, Theorem 3.2], we have that ( )+ /p 1 4 is an odd prime,
say t . Then ( )− = −p t1 2 2 1 , and so

−
Dp 1 is an MSN-group, as desired. And ( )− / = −p t1 2 2 1 is odd, using

similar arguments as in Case 2, ( )− /p 1 2 is square-free if M is an MSN-group. If M is a minimal non-MSN-
group, then ( )− /p 1 2 is rm by Lemma 2.5 for an odd prime r and a positive integer m with >m 1. We have

=m 2, if not, there exists a maximal subgroup H1 of H such that KH1 is an MSN-group with ( ) ≠HΦ 11 , and so
( ) ( )= ×K H K HΦ Φ1 1 by Remark 2.4, which contradicts the fact M is a Frobenius group. Now we have thatG

is of type (III).
Case 4 ≅G A5 or ≅G PSL( )2, 2q , where q is an odd prime and −2 1q is square-free or r2 for an odd

prime r.
If ≅G PSL( )2, 2q , then by [12, Corollary 2.2], G has maximal subgroups: the dihedral groups of order

( )±2 2 1q ; the Frobenius group M with a cyclic complement H of order −2 1q and kernel K is elementary
abelian of order 2q; and the alternating group A4 of degree 4 when =q 2. Clearly, ≅G A5 if =q 2, so G is of
type (I). Now we consider that >q 2. By the similar arguments as in Case 2, −2 1q is square-free if M is an
MSN-group. If M is a minimal non-MSN-group, then −2 1q is rm by Lemma 2.5 for an odd prime r and a
positive integer m with >m 1. We prove that there does not exist a non-trivial subgroup K1 of K such that

⊴K M1 . If not, then K H1 is an MSN-group, and so ( ) ( )= ×K H K HΦ Φ1 1 by Remark 2.4, which contradicts the
fact M is a Frobenius group. Now we prove that =m 2. If not, then by the similar arguments as the proof in
Case 3, there exists a maximal subgroup H1 of H with ( ) ≠HΦ 11 such that ( ) ( )= ×K H K HΦ Φ1 1 , which
contradicts the fact M is a Frobenius group. Hence, G is of type (IV).

Case 5 ≅G PSL( )2, 3q , where q and ( )+ /3 1 4q are odd primes, ( )− /3 1 2q is square-free or r2 for an odd
prime r.

If ≅G PSL( )2, 3q , then by [12, Corollary 2.2], G has maximal subgroups: the dihedral groups of order
±3 1q ; the Frobenius group M with a cyclic complement H of order ( )− /3 1 2q and kernel K is elementary

abelian of order 3q; and the alternating group A4 of degree 4. Clearly, ∣ +4 3 1q , and the dihedral group of
order −3 1q is an MSN-group, so we only consider the Frobenius group M and the dihedral group D of order

+3 1q . Using similar arguments as in Case 4, ( )− /3 1 2q is square-free if M is an MSN-group, and ( )− /3 1 2q

is r2 for an odd prime r if M is a minimal non-MSN-group. Using similar arguments as in Case 3, D must be
a minimal non-MSN-group and ( )∤ + /2 3 1 4q . By examining [2, Theorem 3.2], ( )+ /3 1 4q is an odd prime.
So G is of type (V). □
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