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Abstract: In this paper, we first investigate the relationships between the McCoy module and related
modules based on their relationships in rings. After that, we improve some properties of McCoy modules
and introduce ZPZC modules which extend the notion of McCoy modules. We observe the structure of ZPZC
modules providing a number of examples of problems that arise naturally in the process. Finally, answers
to some open questions related to the ZPZC condition are provided.
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1 Introduction

All rings in this paper are associative with identity, and modules are unitary right modules unless we
specify otherwise. Let R be a ring and M be the right R-module. We denote [ ]R x for the polynomial ring over
R, and [ ]M x for the polynomial module over M .

For a commutative ring R, McCoy [1, Theorem 2] proved that if a polynomial ( )f x is a zero-divisor in
[ ]R x , then ( ) =f x c 0 for some nonzero c in R. This result does not hold for noncommutative rings according

to [2]. Following [3], the rings which meet the above condition are called the right McCoy rings. The left
McCoy rings are defined analogously, and McCoy rings are both left and right McCoy. There are several ways
in which McCoy theorem can be generalized by weakening the commutativity condition. For instance, all
reversible rings (i.e., =ab 0 implies =ba 0 for any ∈a b R, ) are McCoy [4, Theorem 2]. As another class of
examples, according to [5, Theorem 8.2], right duo rings are right McCoy, where a ring is right duo if every
right ideal is also a left ideal. The left duo rings are defined symmetrically, and rings with both conditions
are called the duo rings. There are other natural conditions that imply the McCoy property, not directly
related to commutativity. For instance, reduced rings are reversible; therefore, they are McCoy rings.
Furthermore, reduced rings are Armendariz rings. Here, a ring R is called Armendariz if whenever poly-
nomials ( ) = ∑

=

f x a xi
m

i
i

0 and ( ) = ∑

=

g x b xj
n

j
j

0 in [ ]R x satisfy ( ) ( ) =f x g x 0, we have =a b 0i j for every i and j
[3]. Thus, McCoy rings are shown to be a unifying generalization of reversible, Armendariz, and duo rings.
Recently, the author introduced the class of ZPZC rings which generalizes the class of McCoy rings (ZPZC
is short for “zero-divisor polynomials have zero-divisor coefficients”). An example of a ZPZC ring that is not
a McCoy ring was provided in [6, Example 2.7] and a condition for the right ZPZC rings to be right McCoy
is given in [6, Proposition 2.15].

However, it is natural to extend the notion of rings to one of the modules. For instance, Cui and Chen [7]
introduced the class of McCoy modules, extending the notion of McCoy rings: ( ) ( ) =m x g x 0, where
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( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈ ⧹

=

g x b x R x 0j
q

j
j

0 , implies that there exists a nonzero element ∈r R
such that ( ) =m x r 0. They established some properties of the class of McCoy modules and presented some
equivalent conditions for McCoy modules. Not only the concepts of reduced, reversible, Armendariz, and
right duo rings but also the concepts of rings related to them are also naturally extended to modules.
For instance, the right R-module M is called:
(1) reduced if for any ∈m M and any ∈a R, =ma 0 implies ⋂ =mR Ma 0 [8],
(2) symmetric if =mab 0 implies =mba 0, for any ∈m M and ∈a b R, [9],
(3) Armendariz if whenever polynomials ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ]= ∑ ∈

=

g x b x R xj
q

j
j

0 satisfy ( ) ( ) =m x g x 0,
we have =m b 0i j for every i and j [10],

(4) duo if for any R-submodule N of M and any R-endomorphism f of M , ( ) ⊆f N N [11],
(5) semicommutative if for any ∈m M and any ∈a R, =ma 0 implies =mRa 0 [10].

We note that symmetric modules are the notion of module corresponding to reversible rings, and as
stated in [11], the right R-module R, which is a duo, is a right duo ring. All Armendariz modules are
obviously McCoy modules, and according to [8, Lemma 1.5], reduced modules are McCoy. It follows from
[7, Proposition 2.4] that semicommutative modules over reduced rings are McCoy modules. Recall that a
ring R is semicommutative if =ab 0 entails =aRb 0 for any ∈a b R, . Generally, semicommutative rings are
not McCoy, as stated by [4, Section 3]. For more details on the McCoy condition, the readers can refer to
[4,5,7, 12–20].

The purposes of this paper are as follows:
(1) to complete the implication diagram among modules related to McCoy modules,
(2) to improve some known results of McCoy modules,
(3) to introduce ZPZC modules which extend McCoy modules,
(4) to answer the question [6, Question 2.8(2)] that is “is there a ring which is left McCoy and right ZPZC,

but not right McCoy?”, suggested by the referee of [6].

Thus, the implication diagram and various related examples are provided in Section 2. Among other
things, an unpredictable example for which duo modules may not be McCoy is constructed (Example 2.5).
In Section 3, one improves some known properties of McCoy modules. Precisely, we prove that every right
module over a right π-duo reduced ring is McCoy (Theorem 3.3), which is an extended result of [7,
Proposition 2.4]. It is also proven that if a ring R is right uniform, then the direct sum of ZPZC modules
as a right R-module is McCoy (Theorem 3.9), which makes [7, Proposition 2.9] a corollary. In Section 4, we
observe some properties of ZPZC modules with several examples. In particular, we show that for every cyclic
module M over a right duo ring R, � ( )Mn is a ZPZC right � ( )Rn -module (Theorem 4.12) from which one can
find many examples of ZPZC modules. In Section 5, one can see some counterexamples for answers to
questions of [6]. Especially, we construct a left McCoy and right ZPZC ring but not right McCoy (Example 5.1)
for giving a negative answer of [6, Question 2.8(2)].

For ∈m M , ( )mannR is used for the set of all ∈r R such that =mr 0. For fixed integer ≥n 1, � ( )An and
� ( )An stand for the set of all ×n n full matrices over a set A and the set of all ×n n upper triangular matrices
over a set A, respectively, and Ei j, means the matrix unit which is the matrix with ( )i j, -entry 1 and else-
where 0.

2 McCoy and duo modules

We here study the relationships between McCoy and related modules, as stated in Section 1. We in advance
show the diagram that contains all implications among related modules (with no other implications
holding, except by transitivity). In [5, p. 615], one can see implications immediately in the case of =M R.
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In the above diagram, we cannot find duo modules even though the right duo rings are both semi-
commutative and right McCoy. To explain the reason, we construct several examples in this section.

An R-module M is called abelian if for any ∈m M and ∈a R, any idempotent ∈e R, we have =mae mea
[22]. Recall that a ring R is abelian if every idempotent in R is central. Following [22, Lemma 2.7], semicommu-
tative modules are abelian modules. An R-module M is called Gaussian [12] if for any ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 ,

( ) [ ]= ∑ ∈

=

g x b x R xj
q

j
j

0 and ( ) ( ) = ∑

=

+m x g x c xk
p q

k
k

0 , we have ∑ ∑ = ∑

= = =

+m Rb R c R.i
p

j
q

i j k
p q

k0 0 0 It was shown that

Gaussian modules are Armendariz [12, p. 2594].

Proposition 2.1. If an R-module M is Gaussian, then M is a semicommutative module.

Proof. Let ∈m M and ∈a R such that =ma 0. Since M is Gaussian, { }⊆ = =mRa mRaR maR 0 . Therefore,
M is semicommutative. □

Remark 2.2.
(1) Note that �=R 4 is a local ring with ( ) { }=J R 02 , where ( )J R is the Jacobson radical of R. Thus,

the commutativity of R guarantees that R is Gaussian according to [24, Proposition 1.8]. But R is not
reduced. Hence, Gaussian modules may not be reduced.

(2) As stated in [25, p. 2268], the polynomial ring over �, �[ ]x is not Gaussian since �[ ]x is not Prüfer by
[26, Theorem 7.7]. However, �[ ]x is a reduced module over itself. Thus, reduced modules do not imply
Gaussian in general.

(3) Referring to [25, Example 11], symmetric modules need not be Gaussian modules.
(4) There exists a duo module which is not Gaussian by (2).

According to [24, Lemma 1.4], every right Gaussian ring is a right duo ring. However, this implication
does not hold in modules anymore.

Example 2.3. Let �=R 2 and ⊕=M m R m R1 2 be the free R-module with basis { }m m,1 2 . One can easily
check that M is Gaussian. Consider the R-module endomorphism h of M induced by ( ) =h m m1 2 and

( ) =h m m2 1. Then, ( ) = ⊈h m R m R m R1 2 1 . Thus, M is not duo.

Right duo rings are semicommutative rings and thus abelian rings. However, duo modules need not be
abelian modules.

Example 2.4. Let �= ⟨ ⟩E a b,2 be the free algebra with identity and noncommuting indeterminates a b, over
�2. Set = /R E I where I is the ideal of E generated by the relation =ba 1. We denote = +r r I for simplicity.
Now consider the cyclic free R-module =L mR and the R-submodule =N maR of L. Then, the factor module

= /M L N is isomorphic to /R aR as an R-module. Note that each element ∈r R can be written in the
following form:

( ) ( ) ( ) ( )= + + + + + ⋯r α g a a h b b g a ab g a ab ,0 1 2
2

where �∈α 2 and �( ) ( ) [ ]… ∈g x h x x, ,0 2 . If ( ) = ∑

=

h x β xj
t

j
j

0 with ≠β 0t , then
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( )
⎛

⎝
⎜

⎞

⎠
⎟∑= + + + + ⋯

+ + +

=

−

+ra αa g a a β b ba β .t t t

j

t

j
j t

t
1 1

0
2

0

1
1

Therefore, every R-submodule of /R aR contains 1. Thus, ≅ /M R aR is a simple R-module, which forces that
M is a duo module. Finally, we claim that M is not abelian. Let =e ab in R. Then, =e e2 in R and

( )= =meb ma b 02 in M . But ( )= = ≠mbe m ba b mb 0 in M . Hence, M is not abelian, which implies that
M is not semicommutative by [22, Lemma 2.7].

Camillo and Nielsen proved that all right duo rings are right McCoy in [5, Theorem 8.2]. However the
next example shows that there is a duo module which is not McCoy.

Example 2.5. Let �= ⟨ ⟩E a a a b b c, , , , ,2 0 1 2 0 1 be the free algebra with identity and noncommuting indeter-
minates as labeled above over�2. Set = /R E I where I is the ideal of E generated by the following relations:
for each ≤ ≤i0 2, ≤ ≤j k0 , 1,

= + = + = =

= = = = = =

a b a b a b a b a b a b
a a a a b a b b ca cb

0, 0, 0, 0,
0.i i j i j k i j

0 0 0 1 1 0 1 1 2 0 2 1

0 2

We denote = +r r I for simplicity. Applying Bergman’s diamond lemma [27], we can write each ∈r R in the
following unique reduced form:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

= + + + + + +

+ + + + +

+ + + + + + ⋯

r α f a a f a a f a a f a b f a b g c c
h a a c h a a c h a a c h a b c h a b c

h a a c h a a c h a a c h a b c h a b c ,

0 1 0 1 1 1 2 1 2 3 1 0 4 1 1

0
1

1 0 1
1

1 1 2
1

1 2 3
1

1 0 4
1

1 1

0
2

1 0
2

1
2

1 1
2

2
2

1 2
2

3
2

1 0
2

4
2

1 1
2

where �∈α 2 and �( ) ( ) ( ) ( ) ( ) [ ]( ) ( )
… … ∈f x f x g x h x h x x, , , , , ,p p

0 4 0 4 2 for each �∈p . Note that if ∈rc cR for
some ∈r R, then r must be zero or identity.

Let =L yR be the cyclic free R-module. Set = /M L N , where { }= … =N yc yc ycR0, , ,2 is the R-sub-
module of L generated by the relation =yc 0. Then, we can write each ∈m M uniquely in the fol-
lowing form:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

= + + + + +

+ + + + +

+ + + + + + ⋯

m yα yf a a yf a a yf a a yf a b yf a b
yh a a c yh a a c yh a a c yh a b c yh a b c
yh a a c yh a a c yh a a c yh a b c yh a b c .

0 1 0 1 1 1 2 1 2 3 1 0 4 1 1

0
1

1 0 1
1

1 1 2
1

1 2 3
1

1 0 4
1

1 1

0
2

1 0
2

1
2

1 1
2

2
2

1 2
2

3
2

1 0
2

4
2

1 1
2

First, we claim that an R-module M is not McCoy. Consider the following nonzero polynomials
( ) [ ]= + + ∈m x ya ya x ya x M x0 1 2

2 and ( ) [ ]= + ∈r x b b x R x0 1 . Then, ( ) ( ) =m x r x 0 by the first row in the
relations. But there is no nonzero element ∈r R such that =ya r 01 by the relations. Thus, M is not McCoy.

Finally, we claim that M is a duo R-module. Referring to [11, Lemma 1.1], we will find all R-endomorphism of
M . Since M is still a cycle R-module, for any R-endomorphism, we need to examine the image of y . Consider the
correspondence →h M M: defined by ( ) =h yr ya r0 for any ∈r R. Note that ( ) ( )= = ≠ =h y ya ya c h yc0 0 00 0
despite + = +N yc N0 . Therefore, h is not well-defined. From the fact that if ∈rc cR for some ∈r R, then r must
be zero or identity in R, we can notice that if ′h is an R-endomorphism of M induced by ( )′ = ′h y yr for some
′ ∈r R, then ′r must be zero or identity in R by the well-definedness. This means that if ′h is an R-endomorphism
of M , then ′h must be either the zero or the identity endomorphism. Thus, M must be duo by [11, Lemma 1.1].

Remark 2.6. Based on Example 2.5, one may suspect that every duo module is cyclic. However, the example
in [28, Section 3] eliminates the possibility of the suspicion.

Even though reversible (and so symmetric) rings are McCoy rings [4, Theorem 2], symmetric modules
need not be McCoy modules. We construct a symmetric R-module that is not McCoy.
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Example 2.7. Let �= ⟨ ⟩E a a,2 0 1 be the free algebra with identity and indeterminates a a,0 1 over �2.
Set = /R E I where I is the ideal of E generated by the following relations:

( )= ≤ ≤a a i j0 0 , 1 .i j

We simply identify = +r r I in R. Applying the diamond lemma [27], we can write each element ∈r R in the
following reduced form:

= + +r α α a α a ,0 0 1 1

where �∈α α α, ,0 1 2. Now, let ⊕ ⊕=L m R m R m R0 1 2 be the free R-module with basis { }m m m, ,0 1 2 .
Set = /M L N where N is the submodule of L generated by the following relations:

= + = + = =m a m a m a m a m a m a0, 0, 0, 0.0 0 0 1 1 0 1 1 2 0 2 1

We also denote = +m m N in M for simplicity. Then, we can write each element ∈m M uniquely in the
following form:

= + + + +m m β m β m β m γ a m γ a ,0 0 1 1 2 2 1 0 0 1 1 1

where �∈β β β γ γ, , , ,0 1 2 0 1 2. Since R is commutative, M is symmetric. Next, we claim thatM is notMcCoy. Consider
the nonzero polynomials ( ) [ ]= + + ∈m x m m x m x M x0 1 2

2 and ( ) [ ]= + ∈r x a a x R x0 1 . Then, ( ) ( ) =m x r x 0
by the relations. It suffices to show that ( ) { }=mann 0R 1 . Suppose that =m r 01 for some ∈r R and write

= + +r α α a α a0 0 1 1. Then, ( )= + + =m r m α α a α a 01 1 0 0 1 1 implies that = = =α α α 00 1 , indicating that =r 0 as
required.

Recall that an R-module M is Dedekind finite (or directly finite) if ⊕≅M M N for some R-module N
implies that { }=N 0 . From [29, Exercise 1.8], M is Dedekind finite if and only if the endomorphism ring

( )End M is a Dedekind finite ring (i.e., for any ( )∈f g End M, , =fg 1 implies =gf 1). Both right McCoy and
abelian rings are Dedekind finite rings. However, the implications do not hold for modules.

Example 2.8. Let �=R 2 and let ⊕ ⊕= ⋯M m R m R1 2 be the infinite free module over R. Note that the
R-module M is reduced and Gaussian. However, by [30, Exercise 4.3.3], M is injective. This implies that M
is not a Dedekind finite module by [31, Proposition 5.7].

3 McCoy modules and ZPZC modules

In [6], the class of ZPZC rings that contains all McCoy rings is introduced. In this section, we extend the
notion of (right) ZPZC rings to the one of the modules. Then, we provide new properties of McCoy modules
by improving known results, and offer some conditions for which ZPZC modules are McCoy.

Definition 3.1. Let M be a right module over a ring R and [ ]M x be the corresponding polynomial
module over [ ]R x . M is referred to as ZPZC if ( ( )) { }[ ] ≠m xann 0R x implies ( ) { }≠mann 0R i for each mi, where

( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 .

All McCoy modules are obviously ZPZC modules. But the converse does not hold by [6, Example 2.7].
Here, we construct a nontrivial ZPZC module which is not McCoy.

Example 3.2. Let �= ⟨ ⟩E a a b b b, , , ,2 0 1 0 1 2 be the free algebra over �2 with identity and commuting inde-
terminates a a b b b, , , ,0 1 0 1 2. Set = /R E I where I is the ideal of E generated by the following relations:
for each { }∈i j, 0, 1 and { }ℓ ∈k, 0, 1, 2 ,

= = =
ℓ

a a a b b b 0.i j i k k

We identify = +r r I for simple expression. Then, we can write each element ∈r R uniquely in the following
reduced form:
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= + + + + +r α α a α a β b β b β b ,0 0 1 1 0 0 1 1 2 2

where �∈α α α β β β, , , , ,0 1 0 1 2 2. Now let ⊕ ⊕ ⊕ ⊕=L m R m R n R n R n R0 1 0 1 2 be the free R-module with
basis { }m m n n n, , , ,0 1 0 1 2 . Set = /M L N where N is the R-submodule of L generated by the following
relations:

= = = = =

= = = + =

= + = = = =

+ = =

= = = =

m a m a m b m b m b
m a m a m b m b n b
n a n a n a n b n b n b
n a n a n b
n a n b n b n b

0,
0, 0,

0, 0, 0,
0, 0,

0.

0 0 0 1 0 0 0 1 0 2

1 0 1 1 1 1 1 2 1 2

0 0 0 1 1 0 0 0 0 1 0 2

1 1 2 0 1 0

2 1 2 0 2 1 2 2

For every ∈m M, we also identify = +m m N for simple expression. Then, we can write each element
∈m M uniquely in the following form:

= + + + + + + + + +m m γ m γ m γ b n δ n δ n δ n δ a n δ a n δ b n δ b ,0 0 1 1 1 2 0 0 0 1 1 2 2 1 3 0 1 4 1 1 5 1 1 6 2

where �… ∈γ γ γ δ δ, , , , ,0 1 2 0 6 2. For any ∈m M , we can easily check that m must be annihilated by one of the
elements in { }b b b, ,0 1 2 . Thus, M is ZPZC. Finally, consider the nonzero polynomials ( ) = + + +m x m m x n x0 1 0

2

[ ]+ ∈n x n x M x1
3

2
3 and ( ) [ ]= + ∈r x a a x R x0 1 . Then, ( ) ( ) =m x r x 0. But since ( ) ( ) { }⋂ =m nann ann 0R R1 1 ,

we can conclude that M is not McCoy.

From Example 2.7, we obtain that a module M over a commutative ring may not be ZPZC. Thus, we will
determine some condition that makes a module over a commutative ring implies ZPZC. A ring R is called
right π-duo if for any ∈a R, there is a positive integer n such that ⊆Ra aRn (see [32]). Of course, the notion
of right π-duo rings is an extended notion of semicommutative modules. Thus we extend [7, Proposition
2.4] by the same method.

Theorem 3.3. (cf. [7, Proposition 2.4]). If a ring R is reduced and right π-duo, then every right R-module M
is McCoy.

Proof. Let ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈

=

r x r x R x \ 0j
q

j
j

0 with ( ) ( ) =m x r x 0 and ≠r 00 . Since R
is right π-duo, = ′r r r rn

1 0 0 1 for some �∈n and ′ ∈r R1 . From + =m r m r 00 1 1 0 , we obtain that

+ = ′ + = =

+ + +m r r m r m r r m r m r 0.n n n n
0 1 0 1 0

1
0 0 1 1 0

1
1 0

1

Similarly, from = ′

+ +r r r rn n n
2 0 0

1
2

2
and = ″

+ +r r r rn n n
1 0 0

1
1

2
for some ′ ″ ∈r r R,2 1 , we obtain

+ + = ′ + ″ + = =

+ + + + + + + + + +m r r m r r m r m r r m r r m r m r 0.n n n n n n n n n n n n
0 2 0 1 1 0 2 0

1
0 0

1
2 1 0

1
1 2 0

1
2 0

12 2 2 2 2

Continuing in this manner, we arrive at the conclusion that ( ) =m x r 0k
0 for some �∈k . □

Remark 3.4. According to [32, Proposition 1.9(4)], right π-duo rings are abelian. From the fact that every
reduced ring is abelian, the converse of Theorem 3.3 does not hold true in general by [5, Theorem 7.1].
Moreover, the hypothesis of Theorem 3.3 is not superfluous by the following examples.
(1) In Example 2.7, the R-module M is not McCoy where the ring R is right π-duo but not reduced.
(2) Let �= ⟨ ⟩R a a,2 0 1 be the free algebra with identity and noncommuting indeterminates a a,0 1 over �2.

Clearly, R is a domain and so reduced. Note that R is not right π-duo. Let ⊕ ⊕=L m R m R m R0 1 2 be
the free R-module with basis { }m m m, ,0 1 2 . Set = /M L N where N is the submodule of L generated by the
following relations:

= + = + = =m a m a m a m a m a m a0, 0, 0, 0.0 0 0 1 1 0 1 1 2 0 2 1

After suppressing the bar notation in M , we consider the nonzero polynomials ( ) = + +m x m m x0 1

[ ]∈m x M x2
2 and ( ) [ ]= + ∈r x a a x R x0 1 . Then, ( ) ( ) =m x r x 0 but ( ) { }=mann 0R 1 . Hence, M is not McCoy.
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A ring R is semiprime if the zero ideal is semiprime, and right Gaussian if RR is Gaussian. Recall that
a ring R is called weakly right duo if for each ∈a R, there exists a positive integer n such that a Rn is a two-
sided ideal of R (see [32] or [33]). According to [24, Lemma 1.4], every right Gaussian ring is right duo. It is
clear that every right duo ring is weakly right duo, and every weakly right duo ring is right π-duo but not
conversely in each case. Note that every semiprime right duo ring is reduced. Thus by Theorem 3.3 and [32,
Proposition 2.2(1)], we obtain:

Corollary 3.5. Let ( )J R be the Jacobson radical of a ring R and M be a right module over R. Then, M is McCoy
if one of the following conditions holds:
(1) R is right π-duo with ( ) { }=J R 0 .
(2) R is weakly right duo with ( ) { }=J R 0 .
(3) R is semiprime and right duo.
(4) R is semiprime and right Gaussian.
(5) R is commutative with ( ) { }=J R 0 .
(6) R is commutative semiprime.
(7) R is a commutative domain.

Let R be a commutative ring and S a multiplicative subset of R. We say that an ideal A of R is S-principal
if ⊆ ⊆As aR A for some ∈s S and ∈a A (see [34, Definition 1]). We say that R is an S-principal ideal ring if
each ideal of R is S-principal. Clearly, every commutative principal ideal ring is an S-principal ideal ring for
any S of R. According to [35, Corollary 2.2], every commutative domain D is always an S-principal ideal ring,
where { }= ⧹S D 0 . Based on the fact that every module over a commutative domain or a commutative
principal ideal ring is McCoy (see [7, Proposition 2.15]), one may suspect that every module over a com-
mutative S-principal ideal ring is McCoy or ZPZC. But the following example eliminates the possibility of
suspicion.

Example 3.6. Let �= ⟨ ⟩E a a s, ,2 0 1 be the free algebra with identity and commuting indeterminates a a, ,0 1
s over �2. Set = /R E I where I is the ideal of E generated by the relations:

= = = = = =a a a a a s a s s s0, .0
2

0 1 1
2

0 1
2

We denote = +r r I for simplicity. Then, we can write each ∈r R in the following reduced form:

= + + +r α α a α a βs,0 0 1 1

where �∈α α α β, , ,0 1 2. One can easily show that if an ideal A of R is nonprincipal, then either { }⊆As 0 or
⊆ ⊆As sR A. Therefore, R is a commutative S-principal ideal ring, where { }=S s1, . Now let ⊕=L m R0

⊕m R m R1 2 be the free R-module with basis { }m m m, ,0 1 2 . Set = /M L N where N is the R-submodule of L
generated by the following relations:

= + = + = =m a m a m a m a m a m a0, 0, 0, 0.0 0 0 1 1 0 1 1 2 0 2 1

Consider the following nonzero polynomials ( ) [ ]= + + ∈m x m m x m x M x0 1 2
2 and ( ) [ ]= + ∈r x a a x R x0 1 .

Then, ( ) ( ) =m x r x 0 by the relations. However, ( ) { }=mann 0R 1 . Hence, MR is not ZPZC.

We consider some conditions under which ZPZC modules are McCoy. Recall that a ring R is called right
chain [36] if the lattice of right ideals of R is linearly ordered. Right chain rings can also be referred to as
right uniserial rings.

Proposition 3.7. (see Example 4.4(3)). If R is a right uniserial ring and M is a ZPZC right R-module, then M
is McCoy.

1740  Jongwook Baeck



Proof. Let ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈

=

r x r x R x \ 0j
q

j
j

0 with ( ) ( ) =m x r x 0. Then, the ZPZC condi-
tion guarantees that each ( )mannR i is nonzero. Since R is right uniserial, we can find a nonzero element ck
such that ( ) ( )∈ ⊆c m mann annk R k R i for all i. Hence, =m c 0i k for all i, which implies that M is McCoy. □

From the opposite ring Rop of the ring R in [4, Section 3], one can notice easily that the converse of
Proposition 3.7 does not hold true in general. From Example 3.2, one can also notice that there exists a ZPZC
R-module but not McCoy, when the ring R is not right uniserial. In fact, Proposition 3.7 was started from the
suspicion whether every module over a right uniserial ring is McCoy or not. The suspicion is very reasonable
because every right uniserial ring is McCoy [37, Corollary 6.3]. Thus, it is worthwhile exploring the suspi-
cion. However, we failed to solve it and so leave it as an open question:

Question 3.8. Can we delete the condition that M is ZPZC in Proposition 3.7?

From [29, p. 84], A module is called uniform if the intersection of any two nonzero submodules is
nonzero. Recall that a submodule N of a module M is essential if for every submodule H of M , { }⋂ =H N 0
implies that { }=H 0 . A module M is uniform if and only if every nonzero submodule of M is essential. A ring
is right uniform if it is uniform as a right module over itself. According to [29, p. 506], a module M is finitely
cogenerated if for any family of submodules { ∣ }∈M k Kk in M , { }⋂ =

∈
M 0k K k implies { }⋂ =

′∈ ′ ′
M 0k K k for

some finite subset ′K of K . The following theorem makes [7, Proposition 2.9] as a corollary.

Theorem 3.9. (cf. [7, Proposition 2.9] and see Example 4.2). Let K be an index set and let Mk be a ZPZC right
R-module for each ∈k K .
(1) If R is right uniform, then the direct sum of Mk as a right R-module, ⊕=

∈
M Mk K k is McCoy.

(2) For an infinite index set K , if RR is uniform and finitely cogenerated, then the direct product of Mk as a right
R-module, = ∏

∈

M Mk K k is McCoy.

Proof.
(1) Consider nonzero polynomials ( ) ( ) [ ]= ∑ ∈

=

m x m x M xi
p

ki
i

0 and ( ) [ ]∈r x R x with ( ) ( ) =m x r x 0. Fix ∈k K
and let ( ) [ ]= ∑ ∈

=

m x m x M xk i
p

ki
i

k0 wheremki is the kth component of the coefficient ( )mki of ( )m x for each i.
Note that the set { ∣ ( ) }′ = ∈ ≠K k K m x 0k is finite. From ( ) ( ) =m x r x 0k in [ ]M xk and Mk is ZPZC for each k,
we obtain ( ) { }≠

′
mann 0R k i for each i and ′ ∈ ′k K . The uniform condition guarantees that there exists

a nonzero ( )∈ ⋂
′∈ ′ ≤ ≤ ′

c mannk K i p R k i,0 . Thus, ( ) =m x c 0 which shows that M is McCoy.

(2) Consider nonzero polynomials ( ) ( ) [ ]= ∑ ∈

=

m x m x M xi
p

ki
i

0 and ( ) [ ]∈r x R x with ( ) ( ) =m x r x 0. Fix ∈k K
and let ( ) [ ]= ∑ ∈

=

m x m x M xk i
p

ki
i

k0 wheremki is the kth component of the coefficient ( )mki of ( )m x for each i.
Then, for any finite subset ′K of K , ( ) { }⋂ ≠

′∈ ′ ≤ ≤ ′
mann 0k K i p R k i,0 by the uniform condition and ZPZC

condition. Since R is finitely cogenerated, there exists a nonzero ( ) { }∈ ⋂ ≠
∈ ≤ ≤

c mann 0k K i p R ki,0 . Hence,
c annihilates ( )m x , completing the proof. □

Corollary 3.10. [6, Proposition 2.15] If R is a right uniform and right ZPZC ring, then R is necessarily right
McCoy.

Remark 3.11. The converse of Theorem 3.9(1) does not be true (see Remark 5.2(5)). Additionally, for right
ideals ( )mannR 1 and ( )nannR 1 of the ring R in Example 3.2, ( ) ( ) { }⋂ =m nann ann 0R R1 1 illustrates that R is not
right uniform. Thus, we cannot drop the condition that R is right uniform in Theorem 3.9(1).

4 Properties of ZPZC modules

In this section, we focus on the structure of ZPZC modules. Various examples and practical properties of
ZPZC modules are provided. First, we examine the direct products of ZPZC modules.
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Proposition 4.1. Let Ri be a ring and Mi be an Ri-module for each ∈i Γ. Then, each Mi is ZPZC if and only if the
direct product of Mi, ∏

∈

Mi iΓ is a ZPZC ( )∏

∈

Ri iΓ -module.

Proof. This proof is almost the same as the proof of [6, Proposition 2.6]. □

The ZPZC condition does not pass to direct products of ZPZC R-modules as an R-module.

Example 4.2. (cf. [12, Example 3.3]). We use the ring R and module M in Example 2.7. Note that R is local
with a unique maximal ideal { }= +J a a a a0, , ,0 1 0 1 . Set [ ]= /S R y z K, , where K is the ideal of the poly-
nomial ring [ ]R y z, generated by the following relations:

= = = = = = =a y a z a y a z y yz z0, 0, 0.0 0 1 1
2 2

Then, [ ] [ ]= /M M y z M y z K, , is an S-module. Put = /M M M y1 and = /M M M z2 . Because ( )∈y MannS 1 and
( )∈z MannS 2 , M1 and M2 are McCoy (and so ZPZC) as S-modules. After suppressing the bar notation for

simplicity, we have

( ( ) ( )) ( ) ( ) ( [ ] [ ]) ( )[ ][ ] [ ]⊕ ⊕= ∈ ≅m x m x r x M x M x M M x, 0, 0 ,S x S x1 2 1 2

where ( ) = + +m x m m x m x0 1 2
2 in [ ]M x1 and [ ]M x2 , and ( ) [ ]= + ∈r x a a x S x0 1 . But, (( )) { }=m mann , 0S 1 1 .

Thus, ⊕M M1 2 is not a ZPZC S-module.

Next, we introduce some basic properties of ZPZC modules.

Proposition 4.3. Let R be a ring and M be a right R-module.
(1) (cf. [6, Example 2.11(1)]). Every submodule of a ZPZC module is ZPZC.
(2) (see Example 4.5). R is right ZPZC if and only if every cyclic free right R-module is ZPZC.
(3) (cf. [7, Proposition 2.3(2)]). M is ZPZC if and only if every finitely generated submodule of M is ZPZC.

Proof.
(1) This is obvious.
(2) This follows from = ≅M mR R as a right R-module.
(3) The forward direction is clear by (1) and so we only deal with the reverse direction. Let ( ) =m x

[ ]∑ ∈

=

m x M xi
p

i
i

0 and ( ) [ ] { }∈r x R x \ 0 with ( ) ( ) =m x r x 0. Consider the submodule N of M generated by

all mi. Then, ( ) [ ]∈m x N x . By hypothesis, N is ZPZC. Therefore, for each mi, there exists a nonzero ∈c Ri

such that =m c 0i i , which shows that M is ZPZC. □

We exemplify the results of Proposition 4.3.

Example 4.4.
(1) The author showed that the class of right ZPZC rings is not closed under subrings in [6, Example 2.11(1)].

However Proposition 4.3(1) illuminates that every right ideal of a right ZPZC ring must be right ZPZC
(without identity).

(2) Let � �( )=M m 2 6 be the free right module over � �( )2 6 . Since � �( )2 6 is a right ZPZC ring but not right
McCoy by [5, Proposition 10.2] and [6, Theorem 2.2], M is ZPZC but not McCoy by Proposition 4.3(2).

In view of Proposition 4.3(2), one may suspect that if MR is either cyclic or free over a right ZPZC ring R,
then M is ZPZC. But the following example eliminates the possibility of each suspicion.

Example 4.5.
(1) Let �= ⟨ ⟩R a a a b b, , , ,2 0 1 2 0 1 be the free algebra with identity and noncommuting indeterminates

a a a b b, , , ,0 1 2 0 1 over �2. Obviously, R is a domain and so a right ZPZC ring. Let =L mR be the free
R-module and N be an R-submodule of L generated by the following relations:

= + = + = =ma b ma b ma b ma b ma b ma b0, 0, 0, 0.0 0 0 1 1 0 1 1 2 0 2 1
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Then, = /M L N is a cyclic R-module. After suppressing the bar notation in M , consider the nonzero
polynomials ( ) [ ]= + + ∈m x ma ma x ma x M x0 1 2

2 and ( ) [ ]= + ∈r x b b x R x0 1 . Then ( ) ( ) =m x r x 0 by the
relations. But, ( ) { }=maann 0R 1 . Thus, M is not a ZPZC R-module.

(2) Let � �( )=R 2 6 be the right ZPZC ring and ⊕=M m R m R1 2 be the free R-module with basis { }m m,1 2 .
After suppressing the bar notation in �6, consider the following nonzero polynomials:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟( ) ⎛

⎝

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎛

⎝

⎡

⎣⎢
⎤

⎦⎥
⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎛

⎝

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

[ ]

( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

[ ]

= + + ∈

= + ∈

m x m m m m x m m x M x

r x x R x

0 4
0 0 ,

0 3
0 0

2 1
0 0 ,

3 1
0 0

5 0
0 0 ,

5 0
0 0 ,

0 1
0 0

0 0
0 1 .

1 2 1 2 1 2
2

Then, ( ) ( ) =m x r x 0. However, an easy calculation shows that if ∈r R annihilates the middle coefficient
of ( )m x on the right side, then =r 0. This means that the free R-module M is not ZPZC.

Remark 4.6.
(1) (see Remark 4.23(3)). As well-known results (see [29, p. 21, Proposition 4.3, and p. 127]), the following

irreversible implications hold:

⇒ ⇒ ⇒free projective flat torsionfree.

Thus, Example 4.5(2) shows that a projective or flat or torsionfree module over a right ZPZC ring may not
be ZPZC.

(2) Based on Example 2.8, one may suspect that every injective module over a right ZPZC ring is ZPZC. For a
counterexample, let D be any division ring, � ( )=R D2 , and � ( )=E D2 . Then, D is certainly a semisimple
ring and thus ER is injective by [29, Example 3.43], when R is a right ZPZC ring by [6, Corollary 2.3]. From
[6, Remark 3.9], we can conclude that ER is not a ZPZC R-module.

(3) (cf. [7, Proposition 2.10]). In Example 4.5(2), each cyclic free R-module m R1 and m R2 is ZPZC by
Proposition 4.3(2). Additionally, m R1 is R-isomorphic to m R2 . Thus, a direct sum of copies of a ZPZC
module does not have to be ZPZC.

(4) (cf. [7, Proposition 2.15]). Note that � �( )2 6 is a principal right ideal ring. Thus, Example 4.5(2) shows that
the commutative condition must be required in [7, Proposition 2.15]. Additionally, � �( )2 6 is also an
� ( )S2 -principal right ideal ring for any multiplicative subset S of�6 (see [35, Theorem 2.14]). Hence, there
is a free module that is not a ZPZC module over an S-principal right ideal ring.

Recall that a module is called Bézout if every finitely generated submodule is cyclic. We provide
a sufficient condition under which a right module over a right ZPZC ring is ZPZC.

Proposition 4.7. (cf. [7, Proposition 2.7]). Let R be a right ZPZC ring. If M is a cyclic submodule of a flat right
R-module, then M is ZPZC.

Proof. Let =M mR and consider ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈ ⧹

=

r x r x R x 0j
q

j
j

0 with ( ) ( ) =m x r x 0.
Then for eachmi, we can write =m mai i for some ∈a Ri . By [29, Theorem 4.24], the flat condition guarantees
that ( ) ( ) =a x r x 0 where ( ) [ ]= ∑ ∈

=

a x a x R xi
p

i
i

0 . Hence, = =m c ma c 0i i i i for some nonzero ∈c Ri and each i,
as desired. □

The hypothesis “Bézout and flat” of the following corollary is not superfluous by Example 4.5.

Corollary 4.8. Let R be a right ZPZC ring. If a right R-module M is Bézout and flat, then M is ZPZC.

Generally, although some R-submodule is ZPZC of an R-module M , M may not be ZPZC. We find a type
of R-submodule that the ZPZC condition can be lifted up to R-overmodule.
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Proposition 4.9. (cf. [6, Proposition 2.12]). Let M be a right module over a right ZPZC ring R and e be a
nontrivial central idempotent such that ≠ ≠r er 0 for all nonzero ∈r R with − ≠ ≠e r e1 . If MeR is a ZPZC
eR-module and ( )−M e R1 is a ZPZC ( )− e R1 -module, then MR is ZPZC.

Proof. Let ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈ ⧹

=

r x r x R x 0j
q

j
j

0 with ( ) ( ) =m x r x 0. Then, ( ) ( ) =m x r x e
( ) ( ) =me x er x 0 and ( ) ( )( ) ( )( )( ) ( )− = − − =m x r x e m e x e r x1 1 1 0. Because one of ( )er x and ( ) ( )− e r x1 is

nonzero, there exists a nonzero element ∈ec eRi or ( ) ( )− ∈ −e d e R1 1i such that =m ec 0i i or ( )− =m e d1 0i i
for each i. Thus, ( ) { }≠mann 0R i for each i. □

Question 4.10. Is the converse of Proposition 4.9 true?

Next, we consider matrix modules. According to [7, Proposition 2.6], every cyclic module over a right
duo ring is McCoy. Based on this fact, we can extend [6, Lemma 2.1 and Theorem 2.2] to cyclic modules by
the same arguments.

Lemma 4.11. (cf. [6, Lemma 2.1]). Let R be a right duo ring and =M mR be a cyclic right R-module.
If �[ ] ( )= ∈A m Mi j n, and some ( ) { }≠mann 0R i i, for some ≥i 1, then � ( ) { }( ) ≠Aann 0Rn .

Proof.We first write =m mri j i j, , for some ∈r Ri j, and each i j, . Without loss of generality, we assume that ≥i 1
is the smallest index such that ( ) { }≠mann 0R i i, . Fix { }∈β R\ 0i such that =m β 0i i i, . Consider the matrix

( ) ( ) ( ) ( ) ( )= + + + ⋯+ ⋯ + ⋯
− −

−
− − −

B β E r β E r r β E r r β E r r β E .i i i i i i i i i i i i i1 1, 1,1 2 2, 2,2 1,1 3 3, 2, 2 1,1 1 1, 1, 1 1,1 ,

Then, the upper triangular matrix B is nonzero. We will choose the β’s so that =AB 0. Note that the
equation =AB 0 is equivalent to the set of equations

( ) ( )

( ) ( ) ( )

( ) ( )

( )

= + + ⋯+ ⋯

= + + ⋯+ ⋯

⋮

= ⋯ + ⋯

= ⋯

− −

− −

− − − −
−

− − −

− −

m β m r β m r r β
m r β m r r β m r r β

m r r r β m r r r β
m r r r β

0 ,
0 ,

0 ,
0 .

i i i i

i i i i

i i i i i i i i i i

i i i i i

1,1 1 1,2 1,1 2 1, 1, 1 1,1

2,2 1,1 2 2,3 2,2 1,1 3 2, 1, 1 1,1

1, 1 2, 2 2,2 1,1 1 1, 1, 1 2,2 1,1

, 1, 1 2,2 1,1

Now notice that ( )mannr i i, is a two-sided ideal of R since R is right duo. Therefore,

( )≠ ⋯ ∈
− −

r r r β m0 anni i i R i i1, 1 2,2 1,1 ,

from our choice βi. Thus, the last equation holds. Working upwards, we will recursively choose
⋯ ∈

− −

β β β R, , ,i i1 2 1 such that the equations hold. For each − ≥ ≥i k1 1, we can find βk such that

⎜ ⎟( ) ( )( ) ( )( )
⎛

⎝

⎞

⎠

( )∑ ∏⋯ = − ⋯ + ⋯+ − ⋯ = − ∈ ⋯
+

+
− −

= + = −

r r β r r r β r r r β r r β R r r Rk k k k k k k k k i i i i
s k

i

k s
t s

t t s k k, 1,1 , 1 , 1,1 1 , 1, 1 1,1
1

,
1

1

, , 1,1

from the fact that =aR RaR for every ∈a R. Hence, � ( )( )≠ ∈B A0 ann Rn . □

Theorem 4.12. (cf. [6, Theorem 2.2]). Fix a positive integer n. If R is a right duo ring and M is a cyclic right R-
module, then � ( )Mn is a ZPZC right � ( )Rn -module.

Proof. Let �( ) ( )[ ]∈A x M xn and �( ) ( )[ ] { }∈ ⧹B x R x 0n such that ( ) ( ) =A x B x 0. Since there is the natural
identifications � �( )[ ] ( [ ])=M x M xn n and � �( )[ ] ( [ ])=R x R xn n , we can write ( ) [ ( )]=A x a xi j, and ( ) [ ( )]=B x b xi j,

where ( ) [ ]∈a x M xi j, and ( ) [ ]∈b x R xi j, . Because ( ) ≠B x 0, we have ( ) ≠b x 0i j, for the maximal i, and then the
maximal j. In particular, ( ) ( ) =a x b x 0i i i j, , . Since R is right McCoy by [5, Theorem 8.2], we obtain that for each
coefficient ai i k, , of ( )a xi i, , ( ) { }≠aann 0R i i k, , . Now, the previous lemma applies to show that each right annihilator
set of each coefficient of ( )A x is nonzero in � ( )Rn . □
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From Theorem 4.12, we obtain many examples of ZPZC modules. For instance, if R is a division ring,
then R is clearly (right) duo and so (right)McCoy. Thus, a cyclic module over a division ring is McCoy by [7,
Proposition 2.6]. This implies that if M is a cyclic module over a division ring R, then � ( )Mn is a ZPZC
� ( )Rn -module. Further, from the diagrams in [5] and Section 2, we obtain the following:

Corollary 4.13. Fix an integer ≥n 1, and let M be a cyclic module over a ring R. Then, � ( )Mn is a ZPZC
� ( )Rn -module if one of the following assertions holds true:
(1) R is (right) duo and M is McCoy.
(2) R is (right) Gaussian and M is Gaussian.
(3) R is commutative and M is Armendariz.
(4) (see Remark 5.4). R is a division ring and M is reduced.

In Theorem 4.12, the hypothesis that M is cyclic is not superfluous by the following example or
Example 5.5.

Example 4.14. Let �=R 6 be the right ZPZC ring and ⊕=M m R m R1 2 be the free R-module with basis
{ }m m,1 2 . After suppressing the bar notation in �6, consider the following nonzero polynomials:

�

�

( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

( )[ ]

( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

( )[ ]

=

+

+

+ +

+

+

∈

= + ∈

A x
m m m m m m

x
m m

x M x

B x x R x

0 4 3
0 0

2 3
0 0

5 5 0
0 0 ,

0 1
0 0

0 0
0 1 .

1 2 1 2 1 2 1 2 2
2

2

Then, ( ) ( ) =A x B x 0. However, an easy calculation shows that if � ( )∈C R2 annihilates the middle coefficient
of ( )A x on the right side, then =C 0. Thus, the right � ( )R2 -module � ( )M2 is not ZPZC.

Given an R-module M and ≥n 2, we denote � �( ) {[ ] ( )∣ }= ∈ = ⋯=M m M m mn ij n nn11 and � ( ) =Mn

�{[ ] ( )∣ ( )( )∈ =
+ +

m M m mij n st s t1 1 for = … −s n1, , 2 and }= … −t n2, , 1 . Then, � ( )Mn is a � ( )Rn -module
and � ( )Mn is a � ( )Rn -module.

Proposition 4.15. (cf. [7, Proposition 2.12]). Fix ≥n 1. Then, the following statements are equivalent:
(1) M is a ZPZC R-module.
(2) � ( )Mn is a ZPZC � ( )Rn -module.
(3) � ( )Mn is a ZPZC � ( )Rn -module.

Proof. This proof is nearly identical to the proof of [6, Theorem 3.5]. □

If we consider � ( )Mn , � ( )Mn , � ( )Mn , and � ( )Mn for ≥n 2 as R-modules under the usual scalar multi-
plication, the above equivalences will be broken even when R is commutative.

Example 4.16. We use the ring R and module M in Example 3.2. Take ( ) = +m x m m x0 1 , ( ) = +n x n0

+n x n x1 2
2 in [ ]M x , and ( ) [ ]= + ∈r x a a x R x0 1 . Then ( ) ( ) ( ) ( )= =m x r x n x r x0 . Now consider the nonzero

polynomial � � � �( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

( )[ ] ( )[ ] ( )[ ] ( )[ ]= + + ∈ ⊆ ⊂ ⊂H x
m n

m
m n

m x
n

x M x M x M x M x0 0
0
0 0

0 0

0

1 1

1
2 2

2 2 2 2 .

Then ( ) ( ) =H x r x 0. Since ( ) ( ) { }⋂ =m nann ann 0R R1 1 , ⎡

⎣
⎢

⎤

⎦
⎥

=

m n
m r0 0

1 1

1
implies =r 0. Thus, � ( )M2 , � ( )M2 ,

� ( )M2 , and � ( )M2 are not ZPZC R-modules.

Remark 4.17. If M is a McCoy R-module, then � ( )Mn , � ( )Mn , � ( )Mn , and � ( )Mn are McCoy as R-modules.
Indeed, if ( ) ( ) =m x r x 0 and ( ) ( ) =n x r x 0 for some nonzero polynomials ( ) ( ) [ ]∈m x n x M x, and ( ) [ ]∈r x R x ,
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then ( ( ) ( ) ) ( )+ =m x n x x r x 0k , where ( ( ))= +k m xdeg 1. Therefore, there exists a nonzero ∈r R such that

( ) ( )= =m x r n x r 0. Thus, ⎡

⎣
⎢

( ) ( )

( )
⎤

⎦
⎥ ( ) =

m x n x
m x r x0 0 implies ⎡

⎣
⎢

( ) ( )

( )
⎤

⎦
⎥ =

m x n x
m x r0 0. From this idea, one can easily

show that � ( )Mn , � ( )Mn , � ( )Mn and � ( )Mn are McCoy as R-modules for each positive integer n, when M is
McCoy.

According to [29, Theorem 10.6], a multiplicative subset T of a ring R is a right denominator set if and
only if the right ring of fractions with respect toT , −RT 1 exists. A right R-module M is called T-torsionfree if
for ∈m M and ∈t T , =mt 0 implies =m 0. According to [38, Proposition 10.11(a)], every right −RT 1-module
is T -torsionfree as a right R-module.

Theorem 4.18. Let T be a right denominator set in a ring R. If M is a right −RT 1-module, then M is a right ZPZC
R-module if and only if M is a right ZPZC −RT 1-module.

Proof. (⇒) Let ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈

=

−r x r x RT x \ 0j
q

j
j

0
1 with ( ) ( ) =m x r x 0. Then, we can

write that for each j, =

−r b tj j
1, where ∈t T . Take ( ) [ ] { }= ∑ ∈

=

b x b x R x \ 0j
q

j
j

0 . From the fact that

⎜ ⎟( ) ( ) ( )⎛

⎝

⎞

⎠
= + + ⋯+ =m x r x t m x b

t
b
t

x
b
t

x t
1 1

0,q q0 1

we obtain that ( ) ( ) =m x b x 0. Since MR is ZPZC, there exists a nonzero ∈c Ri such that =m c 0i i for each i.
Therefore, =

−m c 1 0i i
1 for each i. Hence, we can conclude that M is a ZPZC −RT 1-module.

(⇐) Let ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈

=

r x b x R x \ 0j
q

j
j

0 with ( ) ( ) =m x r x 0. If we let ( ) =b x
[ ] { }∑ ∈

=

− −b x RT x1 \ 0j
q

j
j

0
1 1 , then ( ) ( ) =m x b x 0. Since −MRT 1 is ZPZC, there exists a nonzero = ∈

− −c rt RTi i i
1 1

such that =m c 0i i . From the fact that

⎜ ⎟( ) ⎛

⎝

⎞

⎠
= ⋅ = =m c t m r

t
t m r

1 1 1
0,i i

i
i

i

i

i
i

i

for each i, we obtain that =m r 0i i for each i. Hence, we are done. □

According to [29, (10.17)], a ring R is right Ore if and only if the classical right quotient ring of R, ( )Q Rcl
r

exists.

Corollary 4.19. (cf. [7, Theorem 2.17]). Let R be a right Ore ring. If M is a ( )Q Rcl
r -module. then M is a ZPZC

R-module if and only if M is a ZPZC ( )Q Rcl
r -module.

Following the same approach in the proof of Theorem 4.18, we partially extend [6, Theorem 3.12].

Corollary 4.20. If T is a right denominator set in a ring R, then R is right ZPZC if and only if −RT 1 is right ZPZC.

The proof of the next theorem is almost the same as the proof of [6, Theorem 3.15], but we insert it for
the sake of completeness.

Theorem 4.21. (cf. [15, Proposition 2.6(1)]). The class of ZPZC R-modules is closed under direct limits.

Proof. Let = ⟨ ⟩D M α,u u v, be a direct system of right ZPZC R-modules Mu for ∈u U and R-module homo-
morphisms →α M M:u v u v, for each ≤u v and ∈m Mu, satisfying ( ) =α m mu v, , whereU is a directed partially
ordered set. Set =

→

M Mlim u to be the direct limit of D with →ι M M:u u and ∘ =ι α ιv u v u, . Let a and ∈b M .

Then, ( )=a ι au u , ( )=b ι bv v for some ∈u v U, , and there is ∈w U such that ≤u w, ≤v w. Define + =a b
( ( ) ( ))+ι α a α bw uw u vw v and ( ( ))=ar ι α a rw uw u , where ∈r R. Under the above operations, M forms a right
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R-module. Now consider polynomials ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ] { }= ∑ ∈

=

r x r x R x \ 0j
q

j
j

0 with ( ) ( ) =m x r x 0.
Then, there exists ∈w U such that ( ) [ ]∈m x M xw . Therefore, we get ( ) ( ) =m x r x 0 in [ ]M xw . Thus for each nonzero
mi, there exists nonzero ∈c Ri such that =m c 0i i in Mw since Mw is a ZPZC R-module. Hence, for each nonzero mi,

=m c 0i i in M , completing the proof. □

For an index set I of a chain A, a subset J of I is said to be dense in I if between any two distinct
elements ∈x y I, with <x y, there exists at least one element ∈z J with ≤ ≤x z y (see [39, 2.6.6]).

Corollary 4.22. (cf. [15, Proposition 2.6(2)]). Let A be a chain of R-modules Mi and J be a subset of I. If Mj is
ZPZC for all ∈j J and J is dense in I, then = ⋃

∈
M Mi I i is a ZPZC R-module.

Proof. Note that = ⋃
∈

M Mi I i is a direct limit of ZPZC R-modules. Thus, Theorem 4.21 applies. □

Remark 4.23.
(1) In [6, Proposition 3.15], the condition “with injective maps” must be required. However, the condition

does not be required in Theorem 4.21.
(2) By a similar approach as the proof of Theorem 4.21, the class of McCoy R-modules is closed under direct

limits. Of course, the condition “with injective maps” does not be required.
(3) Due to [29, Theorem 4.34], a right R-module M is flat if any only if M is a direct limit of finitely generated

free R-modules. Thus, if a right module M over a right McCoy ring is flat, then M is McCoy by (2). This
fact also follows from [29, Theorem 4.24] and extends [7, Corollary 2.11] by weakening the projective
condition to the flat condition.

In view of Remark 4.6(1) and Remark 4.23(3), it is of interest to provide an explicit example of a right
module M over a right McCoy ring that is torsionfree but not McCoy. However, the author did not find any
clue for this question so far. Thus, we leave it as an open question:

Question 4.24. Over a right McCoy ring, is there a torsionfree module but not McCoy?

We end this section with the following remarks.

Remark 4.25. In the diagram of Section 2, we can add the implication “McCoy ⇒ ZPZC”. The other
implications (except the transitivity) do not hold according to Examples 2.5 and 2.7.

Remark 4.26. Anderson and Chun [12] defined dual McCoy, content McCoy and dual content McCoy
modules. We can extend these concepts to ZPZC modules. A right R-module M is called dual ZPZC if for
nonzero polynomials ( ) [ ]∈m x M x and ( ) [ ]= ∑ ∈

=

r x r x R xj
q

j
j

0 , ( ) ( ) =m x r x 0 implies that there exists a non-
zero ∈n Mj such that =n r 0j j for each j. A right R-module M is said to be content ZPZC (resp., dual-content
ZPZC), if for nonzero polynomials ( ) [ ]= ∑ ∈

=

m x m x M xi
p

i
i

0 and ( ) [ ]= ∑ ∈

=

r x r x R xj
q

j
j

0 , ( ) ( ) =m x r x 0 implies

that there exists a nonzero ( ( ))∈c C r xi (resp., ( ( ))∈n S m xj ) such that =m c 0i i for each i (resp., =n r 0j j for
each j), where ( ( ))C r x is the right ideal of R generated by the coefficients of ( )r x (resp., ( ( ))S m x is the
R-submodule of M generated by the coefficients of ( )m x ).
(1) Even though M is a ZPZC R-module, M need not be dual ZPZC when we consider the opposite ring of the

ring in [4, Section 3]. Conversely, the ring in [4, Section 3] shows that dual ZPZC modules need not
be ZPZC.

(2) ZPZC modules do not imply content ZPZC modules. We use once again the ring R and the R-module M in
Example 3.2. Consider the nonzero polynomials ( ) [ ]= + + ∈n x n n x n x M x0 1 2

2 and ( ) [ ]= + ∈r x a a x R x0 1
with ( ) ( ) =n x r x 0. Note that ( ( )) { }= + = +C r x a R a R a a a a0, , ,0 1 0 1 0 1 and ( ) { }=n bann 0,R 1 0 . Thus, the
ZPZC module M is not content ZPZC.
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(3) There is a ZPZC module but not dual content ZPZC. Let �= ⟨ ⟩R b b b c, , ,2 0 1 2 be the free algebra with
identity and noncommuting indeterminates b b b c, , ,0 1 2 over �2. Then, it is clear that R is a domain.
Let ⊕=L m R m R0 1 be the free R-module with basis { }m m,0 1 . Set = /M L N , where N is the R-sub-
module of L generated by the following relations: for each ∈r R,

= + = + = = = =m b m b m b m b m b m b m rc m rc0, 0, 0, 0, 0.0 0 0 1 1 0 0 2 1 1 1 2 0 1

We simply denote = +m m N . One can easily notice that M is a McCoy R-module since =mc 0 for every
∈m M . Now consider the following nonzero polynomials ( ) [ ]= + ∈m x m m x M x0 1 and ( ) =r x

[ ]+ + ∈b b x b x R x0 1 2
2 . Then, ( ) ( ) =m x r x 0 by the relations. But there is no nonzero element ∈n M

such that =nb 01 . Thus, the ZPZC R-module M is not dual content ZPZC.
(4) To show that there is a dual content ZPZC module but not ZPZC, we use the ring R and the module M in

Example 2.7. Consider nonzero polynomials ( ) [ ]= ∑ ∈

=

u x u x M xi
p

i
i

0 and ( ) [ ]= ∑ ∈

=

v x v x R xj
q

j
j

0 with

( ) ( ) =u x v x 0. Assume that there exists a coefficient
ℓ

v of ( )v x with 1 in its support and ℓ is minimally
chosen. If the element m0 appears in the support of uk and k is minimally chosen, then m0 must appear
in the support of the ( + ℓk )-degree coefficient of ( ) ( )u x v x , which is a contradiction. Therefore, m0 must
not appear in the support of any coefficient of ( )u x . By the same reason, the elementsm1 andm2 must not
appear in the support of any coefficient of ( )u x and thus the elements m a1 0 and m a1 1 must not appear in
the support of any coefficient of ( )u x . This means that ( ) =u x 0 which contradicts to the hypothesis that

( )u x is a nonzero polynomial in [ ]M x . Hence, there is no coefficient of ( )v x with 1 in its support. Now note
that one of the following three elements =m a m a0 1 1 0, =m a m a1 1 2 0, and +m a m a1 0 1 1 must be in the
submodule ( ( ))S u x of M . Since there is no coefficient of ( )v x with 1 in its support, we obtain that

( ) =m a v x 00 1 or ( ) =m a v x 01 1 or ( ) ( )+ =m a m a v x 00 1 1 1 by the relations, which implies that M is a dual
content McCoy module. Consequently, there exists a dual content ZPZC module but not ZPZC.

5 Three solved problems on ZPZC rings

We devote this section to providing answers to some questions raised in [6], which are related to ZPZC rings.
First, a ring that is left McCoy and right ZPZC, but not right McCoy is constructed for giving a negative
answer of [6, Question 2.8(2)].

Example 5.1. Let �= ⟨ ⟩E a a a b b c, , , , ,2 0 1 2 0 1 be the free algebra with identity and six noncommuting inde-
terminates a a a b b c, , , , ,0 1 2 0 1 over �2. Set = /R E I where I is the ideal of E generated by the following
relations:

( )

( ) ( )

( )

= = = = ≤ ≤

= = ≤ ≤ ≤ ≤ = ≤ ≤ = =

= = = = = = ≤ ≤ ≤ ≤

a b a b a b a b a b i
a a a c i j a a a j a c ca c
b a b b b c ca cb c i k j

0, , 0, 0 0 1 ,
0 0 1, 0 2 , 0 2 , ,

0 0 , 1, 0 2 .

i

i j i j j

i j i k i i i

0 0 0 1 1 0 1 1 2

2 2 2
2

One can check, via the diamond lemma [27], that these relations form a reduced system. We identify
= +a a I in R for simplicity. Then, we can write each element ∈r R uniquely in the following form:

( )= + + + + + + +r α α a α a α a β β a b β b γc,0 0 1 1 2 2 0 1 1 0 2 1

where �∈α α α α β β β γ, , , , , , ,0 1 2 0 1 2 2.

Claim 1. The ring R is not right McCoy.

Proof. Let ( ) = + +a x a a x a x0 1 2
2 and ( ) = +b x b b x0 1 in [ ]R x . Then, ( ) ( ) =a x b x 0 by the first row of the

relations. It suffices to show that if ( ) =a x r 0 for some ∈r R, then =r 0. Write r in the unique form. From
=a r 00 , we obtain = =α β 02 . Similarly, =a r 01 implies =β 00 . Finally, since = = =α β β 00 2 , we have that
=a r 02 implies = = = = =α α α β γ 00 1 2 1 . Thus, =r 0, as desired. □
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Claim 2. The ring R is right ZPZC.

Proof. Let ( ) = ∑

=

p x p xi
m

i
i

0 and ( ) = ∑

=

q x q xj
n

j
j

0 be nonzero polynomials with ( ) ( ) =p x q x 0 in [ ]R x . First,
observe that if a nonzero element r in the unique form has zero constant term, then r can be annihilated
by one of the following elements in { }+b b b b, ,0 1 0 1 on the right side. Thus, we may assume that there exists
a coefficient of ( )p x with 1 in its support. Let k be the smallest index such that pk has a nonzero constant
term. Now we will use a similar argument as in the proof of [5, Proposition 3.2]. Assume that

ℓ
q has a

nonzero constant term in its support and ℓ is minimally chosen. If we compute the ( )+ ℓk -degree coefficient
of ( ) ( )p x q x , then, by the minimality of k and ℓ, we can see that the ( )+ ℓk -degree coefficient of ( ) ( )p x q x
must have a nonzero constant term. This contradicts to the fact that ( ) ( ) =p x q x 0. Thus, every nonzero
coefficient of ( )q x must have zero constant term. Under the situation that the nonzero constant element 1
appears in the support of pk with the smallest index k, and 1 does not appear in the support of any
coefficient of ( )q x , we have the following two cases.

Case 1. a2 is not in the support of pk.
Suppose that there exists a coefficient

ℓ
q of ( )q x with a0 in its support and ℓ is minimally chosen. If a2

appears in the support of some coefficient among { }…
−

p p, , k0 1 , then we can find the smallest index
≤ ≤ −s k0 1 such that a2 is in the support of ps and a2 is not in the support of any …

−
p p, , s0 1. Since 1

does not appear in the support of any …
−

p p, , k0 1 and a2 does not appear in the support of any …
−

p p, , s0 1,
we obtain that the nonzero element =a a a2 0 0 must be in the support of the ( + ℓs )-degree coefficient of

( ) ( )p x q x . This is a contradiction. Therefore, a2 must not appear in the support of any coefficient among
{ }…

−
p p, , k0 1 . This implies that a0 must be in the support of the ( + ℓk )-degree coefficient of ( ) ( )p x q x . This is
also a contradiction. Thus, a0 cannot be in the support of any coefficients of ( )q x . Similarly, a a b b, , , ,1 2 0 1
c and so a b1 0 do not appear in the support of any coefficients of ( )q x . Thus, ( ) =q x 0, which is a
contradiction.

Case 2. a2 is in the support of pk.
Since 1 and a2 are in the support of pk, we easily see that =p c 0k by the relations.

Hence, we can reach that if there exists the smallest index k such that 1 is in the support of pk, then 1
must not be in the support of any coefficient of ( )q x and a2 must be in the support of pk. Under this result, we
finally assume that there exists another coefficient of ( )p x with 1 in its support among { }…

+
p p, ,k m1 . Let u be

the smallest index such that pu has a nonzero constant term for + ≤ ≤k u m1 . If a2 is not in the support of
pu, then we can obtain a contradiction by the same argument of Case 1. Thus, a2 must be in the support of
pu. Repeating this argument, we obtain that for each coefficient pi of ( )p x , if 1 appears in the support of pi,
then a2 must be also in the support of pi. Combining the above results, we can conclude that for each i,

⎧

⎨
⎩

( )= = + =

=

p b p b p b b p
p c p

0 or 0 or 0, if 1 does not appear in the support of
0, if 1 appears in the support of ,

i i i i

i i

0 1 0 1

which confirms that the ring R is right ZPZC. □

Claim 3. The ring R is left McCoy.

Proof. Let ( ) = ∑

=

p x p xi
m

i
i

0 and ( ) = ∑

=

q x q xj
n

j
j

0 be nonzero polynomials with ( ) ( ) =p x q x 0 in [ ]R x . If ( )q x has
no coefficient with 1 in its support, then ( ) =b q x 00 . Thus, we may assume that there exists a coefficient with
1 in its support. Let k be the smallest index such that qk has this property. Then, we can show that each
coefficient pi of ( )p x must have zero constant term. Following a similar approach in Case 1 of Claim 2, we
observe that a2 must appear in the support of qk. Following the same method as the last paragraph of Claim
2, we can also observe that a2 must be in the support of qv for each coefficient qv with 1 of ( )q x . Furthermore,
if there is a coefficient qs of ( )q x such that a2 is in the support of qs with zero constant term (under the case
that a2 is in the support of qv for each coefficient qv with 1 of ( )q x ), we can also obtain a contradiction. Thus,
we can reach that a2 must be in the support of each coefficient with 1 of ( )q x , and a2 cannot be in the support
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of each coefficient with zero constant term of ( )q x . Hence, ( ) =cq x 0, leading to the conclusion that R is left
McCoy. □

Capitalizing on Example 5.1, we have some remarks.

Remark 5.2.
(1) From Example 5.1, one may ask that if an ( )S T, -bimodule M is McCoy as an S-module, then M is ZPZC

as a T -module. As mentioned in [6, Example 2.9 and Remark 2.10(1)], the ring R in [4, Section 3]
provides a negative answer.

(2) If we think =M RR in Example 5.1, then Example 5.1 shows that there exists a dual McCoy and ZPZC
module but not McCoy. Further, note that M is both content and dual content ZPZC.

(3) Referring [13], we note that the ring R in Example 5.1 is left outer McCoy. Of course, the ring R is left
Camillo. But there is no nonzero element ∈r R such that ( ) ( )= =rf x rg x 0, for some nonzero polyno-
mials ( ) ( )f x g x, with ( ) ( ) =f x g x 0 in [ ]R x . To show this, consider the two nonzero polynomials

( ) ( )= +p x a1 2 and ( ) =q x a2 with ( ) ( ) =p x q x 0. An easy calculation shows that if ( ) ( )= =rp x rq x 0,
then =r 0.

(4) The ring R in Example 5.1 is not right duo since { } { }= + ⊈ =Rb b a b b a b b R b0, , , 0,0 0 1 0 0 1 0 0 0 (or by [5,
Proposition 8.2]). Thus, there exists a right ZPZC ring which is neither right McCoy nor right duo.

(5) For the ring R in Example 5.1, Rop is not right uniform since { }⋂ =a R b R 0op op
0 0 . Thus, the converse of

Theorem 3.9(1) does not be true in general by Example 5.1.

In [6, Questions 2.5 and 3.10], the author asked whether � ( )Rn is a right ZPZC ring or not, where R is one
of a domain, a reduced, a right ZPZC ring. We provide answers to these questions negatively.

Example 5.3. Let �= ⟨ ⟩E a a a b c c, , , , ,2 0 1 2 1 0 1 be the free algebra with identity and noncommuting indeter-
minates a a a b c c, , , , ,0 1 2 1 0 1 over �2. Set = /R E I where I is the ideal of E generated by the following
relations:

= = +a c b c a c b c a c, .0 1 1 0 1 1 1 1 2 0

We simply denote = +a a I in R. Note that R is a domain (and thus it is both reduced and ZPZC). To show
that � ( )R2 is not right ZPZC, consider the following nonzero polynomials in � ( )[ ]R x2 :

( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

= + + = +A x
a a b

x
a a

x B x c
c
c x

0
0 0 0 0 0 0 and

0 0
0

0
0 .0 1 1 2 2 2

0

1

1

Then, ( ) ( ) =A x B x 0 by the relations. Suppose that⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=

a b p q
r0 0 0

0 0
0 0

1 1
in � ( )R2 . Then, we obtain

= = =p q r 0 in R. Thus,⎡

⎣
⎢

⎤

⎦
⎥

a b
0 0

1 1
is not a left zero-divisor in � ( )R2 , as desired.

Remark 5.4. Let M be an R-module. By Example 5.3, � ( )Mn need not be a ZPZC � ( )Rn -module even when
M is a reduced module over a domain R.

Every division ring is duo. Thus, if R is a division ring, then, � ( )Rn is a right ZPZC ring by [6, Theorem
2.2]. Based on this fact, one may suspect that if M is a module over a division ring R, then � ( )Mn is a ZPZC
� ( )Rn -module for any positive integer n. But the following example eliminates the possibility of the
suspicion.

Example 5.5. We use the ring R and module M in Example 2.3. Then, M is a ZPZC R-module. Consider the
following nonzero polynomials

� �( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

( )[ ] ( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

( )[ ]= + +

+ +

∈ = + ∈A x
m m m

x
m m m m

x M x B x x R x
0

0 0 0 0 0 0 ,
0 0
0 1

0 1
0 1 .2 1 2 1 2 1 2 2

2 2
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Then, ( ) ( ) =A x B x 0. Suppose that⎡
⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=

m m p q
r0 0 0

0 0
0 0

1 2
in � ( )M2 . Then, we obtain = = =p q r 0 in R.

Thus, � ⎜ ⎟
⎛

⎝

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎧

⎨
⎩

⎡

⎣
⎢

⎤

⎦
⎥

⎫

⎬
⎭

( ) =

m m
ann 0 0

0 0
0 0R

1 2
2 , as needed.

Remark 5.6.
(1) Let 	 ( )R2 be the set of all ×2 2 scalar matrices over R in Example 5.5. Then, 	 ( )R2 is a subring of � ( )R2

with the same identity. Clearly, � ( )M2 is a right 	 ( )R2 -module. Since R is (ring) isomorphic to 	 ( )R2 ,
� ( )M2 is a McCoy 	 ( )R2 -module. Thus, we obtain that a McCoy R1-module may not be ZPZC R2-module,
where R1 is a subring of a ring R2 with the same identity.

(2) We consider the rings
� �

�
� �⎡

⎣
⎢

[ ] [ ]⎤

⎦
⎥

( [ ])= =R
x x

R x0 ,1 2 2 , and the nonzero polynomials

( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣⎢
⎤

⎦⎥
⎡

⎣
⎢

⎤

⎦
⎥

( ) ⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

[ ]=

−

+ +

−

= + ∈F y
x x

y y G y y R y
0
0 0

1
0 0

1 0
0 0 ,

0 1
0 0

0 0
0 1

2
1

in [6, Example 2.11(1)]. Then, R1 is a subring of a right ZPZC ring R2 with the same identity. Since the
middle coefficient of ( )F y is a left zero-divisor in R2 but not in R1, =M R2 is a ZPZC R2-module but not a
ZPZC R1-module.
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