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Abstract: This article is devoted to the study of the Bowen topological entropy for nonautonomous dynam-
ical systems, which is an extension of the classical definition of Bowen topological entropy. We show that
the Bowen topological entropy can be determined by the local entropies of measures for nonautonomous
dynamical systems, which extends Ma and Wen’s result.
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1 Introduction

In 1958, Kolmogorov applied the notion of entropy from information theory to ergodic theory. Since then,
the concepts of entropy, in particular the topological entropy and measure-theoretic entropy, were useful
for studying topological and measure-theoretic structures of dynamical systems, that is, topological
entropy (see [1-3]) and measure-theoretic entropy (see [4,5]). In 1973, Bowen [6] introduced the topological
entropy for any set in a topological dynamical system by resembling the Hausdorff dimension. Bowen’s
topological entropy plays a key role in topological dynamics and dimension theory [7]. In 2012, Feng and
Huang [8] defined the measure-theoretic entropy for Borel probability measures from the idea of Brin and
Katok [9] and showed that there is a certain variational principle between Bowen topological entropy
and measure-theoretic entropy for an arbitrary noninvariant compact set. The Hausdorff dimension can
be determined with the help of Billingsley’s theorem [10]. For the Bowen topological entropy of the
autonomous discrete dynamical system, Ma and Wen [11] gave an analog Billingsley’s theorem.

In contrast with the autonomous discrete dynamical systems, Kolyada and Snoha [12] introduced the
topological entropy of nonautonomous discrete dynamical systems. Since then, the topological and mea-
surable theory entropies of the nonautonomous systems were developed by many authors (see [13-22]).
Recently, Xu and Zhou [23] introduced the measure-theoretic entropy for arbitrary Borel probability mea-
sure in nonautonomous dynamical systems (NADS) and gave the variational principles for entropies in
nonautonomous cases. Liu and Zhao [24] studied the Bowen polynomial entropy for NADS and established
a variational principle for polynomial entropy on compact subsets in the context of NADS. In this article, we
extend the result of Ma and Wen [11] and show that the Bowen topological entropy can be determined via
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the local entropies of measures for the NADS, which can be considered as an analog of Billingsley’s theorem
for the Hausdorff dimension.

2 Preliminaries

LetN and N, denote the sets of all nonnegative integers and all positive integers, respectively. We call (X, ¢)
is NADS if (X, d) is a compact metric space and ¢ : [0, +c0) x X — X is a continuous map with ¢(0, x) = x
for every x € X. Given a NADS (X, ¢). For all t € [0, +00), we define

dﬂ&w=ggw@®ﬁxﬂaw» )

Forall t € [0, +00), € > 0, and x € X, we set

BP(x,e) ={y e X : d?(x,y) < €}. 2

Remark 2.1. From (1) and (2), if 6 > t; > 0, we have B;f(x, £)c Bt‘f’(x, ).

Let M(X) denote the set of all Borel probability measures on X. Xu and Zhou [23] give the following
definition from the idea of Brin and Katok [9].

Definition 2.1. [23] Let (X, ¢p) be a NADS and u € M(X). Then we call

(@, x) = lim liminf — %logy(Bt‘p(x, &)

£—-0 t—+o0

the measure-theoretical lower local entropy of u at the point x € X.

Definition 2.2. [23] Let (X, ¢) be a NADS and u € M(X). The measure-theoretical lower entropy of u is
defined by

M@FIM@JMM)

Given a NADS (X, ¢). We denote ¢i(x) = ¢p(i, x) fori ¢ N and x € X. Let ® = {¢p{}°,. For any n € N,
and x, y € X, we define

d?(x, y) = max{d(¢p'(x), $i(y)) : 0 < i < n}. 3)
ForallneN,e>0and x € X, set

BX(x,e) ={y e X: d2(x,y) < &}. (4)

Definition 2.3. [23] Let y € M(X). The measure-theoretical lower entropy of u is defined by
1y(@) = [ 1@, )du00),
where

hy(®, x) = lim liminf - llogy(B,fD(x, ).
n

£—0 n—+oo

Next, we give the definition and some basic properties of Bowen’s topological entropy for NADSs.
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Let (X, ¢) be a NADS and Z ¢ X a subset of X. Fix € >0, we call T = {Bg’(x,-, €)}; a cover of Z
if Z ¢ U,-Bg’(x,-, €). ForT = {Bt‘i”(x,-, €)};i, we denote t(T') = inf{t;}. Given s > 0, N € N, and € > 0, we define

M(Z’ ¢9 s, N, S) = lnfz exp(_Sti))
o

where the infimum is taken over all covers I' of Z with ¢(I') > N. The quantity M(Z, ¢, s, N, €) does not
decrease as N increases, and hence, the following limit exists:

M(Z, ¢, s,€) = lim M(Z, ¢, s, N, ¢).
N—-oo

We can easy to prove that there exists a critical value,

hoo(P, Z, €) = infls : M(Z, ¢, s, €) = 0} = sup{s : M(Z, P, s, &) = +00}.

Definition 2.4. The quantity
htgp((p’ Z) = iln’é htgp((pr Z,¢€)

is called the Bowen topological entropy of Z (with respect to ¢).

Remark 2.2. From the Definition 2.4, we have the following results.
(1) For Z; ¢ Z, < X, we have hj (¢, Z)) < hi3 (¢, Z,).

(2) For Zc|JXZi, s=0, and €>0, we have M(Z, ¢,s,¢) < folM(Zi, ¢,s,e) and htgp((l),Z) <
supis1hip(, Z).

Proof. The first statement follows directly from the definitions of Bowen topological entropy. We shall prove
the second statement. Let Z € | J°,Z;, s > 0 and € > 0. Given § > 0 and i € N, we can take N; € N, and

a cover [} = {Bt‘f’(xj, €)}; of the set Z; with ¢(I3) > N; such that
g
)
M(Zi, P, s, €) - Z exp(—sti].) < 5
j21
Since Z ¢ |JZ;, it follows that the collection T = {B[é’(x,-, €),i>1,j>1} is a cover of Z. Now we take
N = infi{N;}, then ¢(I') > N. Hence, we have
MZ, $,s,N,e) < Y exp(—sti].) <26+ Y M(Z, ¢, s, ©). (5)
i>1,j>1 i=1
Letting N — oo and § is arbitrarily small in (5), we obtain
MZ, ¢,s,8) < Y M(Zi, §, s, €). (6)
i=1

Next, we will prove that h,(¢, Z) < sup;ihgy(P, Z). Let s > 0 and € > 0. Assume that h,(¢p, Z) < s
fori=1,2,.... It follows that M(Z;, ¢, s, €) = 0, and hence, by (6), we have M(Z, ¢, s, &) = 0, which
implies that h3,(¢p, Z, €) < s. Therefore, hj,(¢p, Z) < supiihy(P, Z). O

Let(X, ¢) be a NADS and @ = {¢}°,. For Z< X, s > 0,n € N, and € > 0, we define

M(Z, ®,s,N,¢) =inf ) exp(-sn),
r 5

where the infimum is taken over all covers T = {B,,ql,’(xi, €)}; of Z with n(I') = min;n; > N. The quantity
M(Z, D, s, N, €) does not decrease as N increases, and hence, we let



1718 — Bin Zhang and Lei Liu DE GRUYTER

M(Z,D,s,e) = lim M(Z, D, s, N, ¢).

N-oo

We denote the critical value

hio (@, Z, &) = inf{s : M(Z, @, s, €) = 0} = sup{s : M(Z, D, s, €) = +00}.

Definition 2.5. We call the quantity

hE(®@, Z) = limh (@, Z, ¢)
-0
the Bowen topological entropy of Z (with respect to @).

Remark 2.3. From Definition 2.5, we have the following results.

(1) For Z; € Z, < X, we have hj3 (D, Z)) < h(®, Z,).

(2) For Z<c U2 Z;, s=0, and € >0, we have M(Z,D,s,¢) < Zf:lM(Zi, ®,s,e) and htgp(CD, Z) <
SuPizlhtgp(ch Zy).

3 Main results

In this section, we show in this note that an analogue of the Billingsley’s Theorem does exist for Bowen’s
topological entropy of the NADS.

Lemma 3.1. Let (X, ¢) be a NADS with a metric d. Supposee > 0 and B = {B[‘f(x,-, &)}ics. Then forany F € B,
there exists a finite or countable subfamily G = {Bt‘f’(xi, &)}ier of pairwise disjoint balls in B such that

U B < UBZx, 3¢).
BeF iel’

Proof. Let Q denote the partially ordered (by inclusion) set consisting of all subfamilies w of ¥, which
satisfies the following properties:
(1) w consists of disjoint balls from ¥ .

(2) If a ball Bt‘f’(xi, €) € ¥ meets some ball from w, then there exists B[f(x,-, €) € w such that < ¢

and B[f(x,-, en B;}P(X]‘, £) + O.

If we take t, = min{t : BY(x, €) € 7}, then w, = {Bt‘f(x, €)} € Q. This implies that Q # @. Let C c Q be
a chain. Then | Jyccw belongs to Q and is an upper bound of C. Furthermore, there exists a maximal

element G in Q by Zorn’s lemma.
We claim that each ball in & dose meet some ball in G. Suppose this conclusion is not true. We take

t = min{t; : Bg’(x, )N B =@, forany B € G}. It is easy to verify that the family G U B,"’(x, ) satisfies (1)
and (2), and hence, G U B,‘i’(x, €) € Q. This contradicts the maximality of G. For any Bt‘f(xi, €) € ¥, there
exists t; < t; and B;]P(Xj, €) € G such that Bt‘f(x,-, e)n B,‘},”(x,-, €) + @. Since B[i”(xi, €)c Bg’(x,-, £), we have

Bl (x;, €) < BY(x;, €) < BY(x;, 3¢)
by the triangle inequality. This finishes the proof of the lemma. O

Theorem 3.1. Let (X, ¢) be a NADS, u € M(X), Z < X a Borel subset, and s > 0. If h,(¢p, x) < s forallx € Z,
then hgy(¢, Z) < s.
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Proof. Let Z < X be a Borel subset and let s > 0. For a fixed r > 0, we denote
Zy = {x € Z : liminf - %logy(Btd’(x, g)<s+r forall €€ (0, %)}
t—+00

As hy(¢, x) < s forall x € Z, we have Z = | Ji2,Z.
Now fix ke N, and 0 < € < % For each x € Z, there exists a strictly increasing sequence {t;(x)}j2;
(where tj,1(x) - tj(x) = 1 for j € N,) such that

y(BgEX)(x, £)) > exp(—t(x)(s + r)) forall j e N,.

We take y;(x) € [0, 1) such that ¢;(x) — y;(x) = nj(x) € N*. Hence, {nj(x)}j2, is a strictly increasing sequence
and Bt‘]_lzx)(x, €)c Br‘é’(x)(x, €), and we have
y(Brf(X)(x, e)) > exp(-(nj(x) + 1)(s + r)) forall j e N,.
Next, we use ; and n; instead of t;(x) and nj(x), respectively, for simplicity of notions if there is no confusion
caused.
For any N > 1, the set Z; is contained in the union of the sets in the family:

_ ¢ . .
F = {B[I_ (x,€):xeZ,tj> N}.
Furthermore, the set Z; is contained in the union of the sets in the family
F = {B,%’(x, E):1X€Z,n = N}.

Using Lemma 3.1, there exists a finite or countable subfamily G = {B,‘,’?(xi, &)}ier € F of pairwise disjoint
balls such that

Zc € UB2(x;, 3e).
iel

Note that
y(B,‘f],’(x, e)) > exp(—(s + r))exp(-nj(s + r)) forall j e N,.
Since {B,‘fi’(xi, €)}ies is the family of pairwise disjoint balls, it follows that

MZ, p,s +1,N,3¢) < z exp(-n;(s + r)) < exp(s + r)Zy(B,‘,f(x,-, s)) < exp(s + 1),

iel iel
where

Z’ 5 ’N’ = inf —Sst;),
M(Z, ¢,s,N, &) = in ;exp(sl)

and the infimum is taken over all covers I' of Z with ¢(I') > N. Furthermore, we have
M(Zy, b, s +1,3¢) = lim M(Z, p,s + 1, N, 3¢e) < exp(s + 1) < +00,
N-oo
which implies that hf,p(d), Zi,3e)<s+rforall0<e< Sik Since ¢ is arbitrary, it follows that

hop($, Z) < s + 1 forall k e N,.

Moreover,

ho(P, Z) = htﬁp(¢, UZk) < suphgy(@, Z) < s + 1.
k=1

k>1

Therefore, htﬁp(d), Z) < s for the arbitrariness of r. O
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Theorem 3.2. Let (X, ¢) be a NADS, u € M(X), Z < X a Borel subset, and s > 0. If hy(¢,x) = sforallx € Z
and u(Z) > 0, then h (¢, Z) > s.

Proof. Let Z ¢ X be a Borel subset and let s > 0. Fix an r > 0. For each k € N,, set
P | ® 1
Zy = {x € Z : liminf - ?logy(Bt (x,€)) >s —r forall € € |0, Al
t—+0o

. 1 .
Since -7 log;u(B,‘P(x, €)) increases as € decreases, we have

Zy = {x € Z : liminf - %logy(Bt‘l’(x, £)>s-r,e= %}
t—+oco

Moreover, since h,(¢, x) = s for all x € Z, it follows that Z; < Z,, and Z = [ Ji2,Zk. So by the continuity of
the measure [25], then lim;_, ,u(Zy) = u(Z) > 0. Fix a sufficiently large k > 1 with u(Z) > %p(Z) > 0. Forall
N e N,, set

Zkn = {x € Z : liminf - —logy(B‘p(x €)>s—rforall t>N and € € ( ! ]}
t—+co

= {x € Z : liminf - 1log,u(Bt‘l’(x, g)>s-r, €= l}
t—+co t k

Clearly, Zi,n € Zi,n+1 and | UN-1Zk,n = Zk- Moreover we can take an N € N, such that u(Z ) > y(Zk) > 0.
For simplicity of notation, let Z = Z y and € = - By the choice of Z, we have

UBP(x, €)) < exp(~t(s — 1)) forall x € Z,0 <e < & and t > N. (7)
Fix a sufficiently large N > N. For each cover, ¥ = {Bt‘f’(yi, g)} of Zwith0 < & < £andt; > N > N for each
iel

i € 7. Without the loss of generality, assume that Z n B¢(yl, —) + @ for all i € I'. Thus, there exists
xi€Zn Bd’(yl, —) for alli € 7. Moreover, we have

Bg’(yi, %) C Bt‘f’(xi, €) forall i e 1.

In combination with (7), which implies that

Y exp(—ti(s - 1)) = Zy(Bg’(xi, s)) > u(Z) > 0.

iel iel

Therefore,
M(Z, ¢,s-1,N, g) > u(Z) > 0.
Consequently, we have

(Z(l)s—r,z)—hmM(Ztl)s N,%)zy(Z_)>0,

which implies that hwp(¢> Z, 2) >s —r. Letting € » 0, we have hmp((;b Z) = s —r. Since htop(d), Z) >
htﬁp(gb Z), it follows that hmp(gb, Z) > s — r. This shows that htop(¢, Z) > s because r is arbitrary. O

By using the same method of Theorems 3.1 and 3.2, we can prove the following result.

Theorem 3.3. Let (X, @) be a NADS, ® = {¢p'}2, u € M(X), Z < X a Borel subset, and s > 0.
(1) If hy(®,x) < s forall x € Z, then hmp((D, Z) < s.
(@ If hy(®,x) = s forall x € Z and u(Z) > 0, then htgp((D, Z) = s.
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As application of Theorems 3.1 and 3.2, we give an alternative proof of the following result of Bowen [6],
which generalizes one-half of the well-known variational principle for entropy.

Theorem 3.4. Let (X, ¢) be a NADS and u € M(X). Then h,(¢) < htgp((;b, Z) forall Z ¢ X with u(Z) = 1.

Proof. Since h,(¢) = I hy(¢, x)du(x) and u(Z) = 1, it follows that

Zs={x € Z: hy(p,x) > hy(¢p) - 6}
has positive y-measure for all § > 0, that is, u(Zs) > 0. Moreover, by Theorem 3.2, we have htgp(qb, Zg) =
hy(¢) - 6. Again, Zs ¢ Z for all § > 0, which implies that hg (¢, Z) > hi,(¢, Zs) and higy (¢, Z) > hy(¢) - 6.
Therefore, h,(¢) < htﬁp(qb, Z) for the arbitrariness of § > 0. O

By using the same method of Theorem 3.4, we can prove the next result.

Theorem 3.5. Let (X, ¢) be a NADS, @ = {¢'}° and p € M(X). Then h,(®) < htgp(CD, Z) forall ZcX
with u(Z) = 1.
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