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1 Introduction

All groups considered are finite.

For a group G, we denote by ®(G) the intersection of all maximal subgroups of G. Let H be a subgroup of
G. H is said to be supplemented in G provided that there exists a subgroup T of G such that G = HT. The
supplemented subgroups have a significant influence on the structure of finite groups. It was proved by
Kegel in [1,2] that a group G is soluble if every maximal subgroup of G has a cyclic supplement in G or if
some nilpotent subgroup of G has a nilpotent supplement in G. In [3], Wang introduced the concept of c-
normality of subgroups. H is said to be c-normal in G [3] if there exists a normal subgroup T of G such that
G = HT and H n T < Hg. Furthermore, Yu [4] studied the relationship between ®-supplemented subgroups
and the structure of finite groups. We say that H is ®-supplemented in G [4] if there exists a normal
subgroup T of G such that G = HT and H n T < ®(H). By using these special supplemented subgroups,
many authors have obtained a series of interesting results (see [3-9]). We further carried out this study and
obtained some new criteria for the p-nilpotency of finite groups in terms of c-normality and @-supplemen-
tary of the maximal or 2-maximal subgroups of the Sylow p-subgroups.

All other unexplained notions and terminology are standard and the reader is referred to [10].

2 Preliminaries
In this section, we recall some facts, which will be used in this article.

Lemma 2.1. Suppose that H is c-normal in G. Then, the following statements hold:
(1) IfH < M < G, then H is c-normal in M.
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(2 IfN 9Gand N<H, then H/N is c-normalinG/N.
(3) If N < G and (|H|, |N|) = 1, then HN /N is c-normal in G /N.

Proof. See [3, Lemma 2.1]. O

Lemma 2.2. Suppose that H is ®-supplemented in G. Then, the following statements (1)—(3) hold:
(1) If H < M < G, then H is ®-supplemented in M.

(2 If N s Gand N < H, then H/N is ®-supplemented in G /N.

(3) If N < G and (|H|, |N]) = 1, then HN /N is ®-supplemented in G /N.

Proof. See [4]. O

Lemma 2.3. Suppose that N is normal in G and G/N is a p-nilpotent group, where p is a prime divisor of |G| and
(|G|, p = 1) = 1. If|N| = p, then G is p-nilpotent.

Proof. Since |N| = p, |Aut(N)| =p -1 and N < Cs(N). Because N is normal in G and (|G|,p - 1) =1,
(JNg(N)/Cs(N)|, p — 1) = 1. Since N5z(N)/Cs(N) is isomorphic to some subgroup of Aut(N), Ns(N) = Cs(N),
that is, N < Z(G). Hence, G is p-nilpotent by G /N is p-nilpotent. O

Lemma 2.4. Let G be A,-free and p be prime divisor of |G| with (|G|, p — 1) = 1. If p>}|G|, then G is p-nilpotent.
Proof. See [11, Lemma 2.8]. O

Lemma 2.5. If P is a Sylow p-subgroup of G, where p is a prime divisor of |G|, and N < G such that
P N N < ©(P), then N is p-nilpotent.

Proof. See [10, Chapter 4, Theorem 4.7]. O

3 Main results

Theorem 3.1. Suppose that P is a Sylow p-subgroup of a group G, where p is a prime divisor of |G| and
(|G|, p - 1) = 1. If every maximal subgroup of P is c-normal or @-supplemented in G, then G is p-nilpotent.

Proof. Suppose that the statement is not true, and let G be a counterexample of minimal order. Then,
we have the following steps.

(1) There exists a unique minimal normal subgroup N in G. Moreover, G /N is p-nilpotent.

We pick a minimal normal subgroup of G, say N. Since P is a Sylow p-subgroup of G, PN /N is
a Sylow p-subgroup of G/N. Let M/N be a maximal subgroup of PN/N and set H=Mn P.
Then, M = M[\PN = (M n P)N = HN and H < P. Therefore,

P:H =P:Mnp =— Pl _IMPL_INP/N|
IM|[P|/|MP| ~ M| — |M/N]

>

that is, H is a maximal subgroup of P. By the hypotheses, there exists a normal subgroup T of G such that
HnNnT<Hgor Hn T < ®(H). Suppose that N is not a subgroup of T. Then, NN T = 1. Since both N and T
are normal in G, |[NT| = |N||T| and |NT|||G|. Because, |HT /T| = |H/H n T| is a power of p, N is an abelian
subgroup of G and N < P. Thus, M is the maximal subgroup of P. By the hypotheses, M is c-normal or
®-supplemented in G. It follows that M /N is c-normal or @-supplemented in G /N by Lemmas 2.1 and 2.2.
Now, we assume that N < T. Since G = HT and T is normal in G, G/N = HT/N=(M /N)T/N)and T /N
is normal in G/N. If HnT<Hg, then (M/N)n(T/N)=HNNT)/N=HnNT)N/N<HgN/N <
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(HN /N)Gny= M [N)gny. If HNnT <DH), then (M/N)n(T/N)=HNNT)/N=EHNT)N/N <
O(H)N /N < ®(HN /N) = ®(M /N). Therefore, M /N is c-normal or ®-supplemented in G /N. Obviously,
(JG/N|,p - 1) = 1. Hence, G / N satisfies the hypotheses. By the choice of G, G /N is p-nilpotent. Because the
class of all p-nilpotent groups forms a saturated formation, we deduce that N is the only minimal normal
subgroup in G.

(2) N is not p-nilpotent.

Assume that N is p-nilpotent. Let L be the normal p-complement of N. Because L char N and N
is normal in G, L is normal in G. The minimal normality of N shows that L = 1, that is, N is a p-subgroup.
Since G /N is p-nilpotent, ®(G) = 1. Let M be a maximal subgroup of G with G = [N]M. Suppose that K is
a Sylow p-subgroup of M such that P = [N]K. Let A be a maximal subgroup of N and A is normal in P.
Set H = AK. Then, H is a maximal subgroup of P. By the hypotheses, there exists a normal subgroup
T of G such that HN T < Hz or HN T < ®(H). Because N is the unique minimal normal subgroup of G,
N<T.fHNT< ®H),thenH=HnNnP=HNNK=HNN)K<HNT)K < PH)K.SinceH = AK,H =K.
Because P = [N]H and H is a maximal subgroup of P, |N| = p. By (1) and Lemma 2.3, G is p-nilpotent. This
contradiction shows that H N T < Hg and H; # 1. Then, N < Hg by (1). Thus, P = [N]K < H, a contradiction.

(3) The finial contradiction.

If NP < G, then NP satisfies the hypotheses. The choice of G yields that NP is p-nilpotent, and so N is
p-nilpotent, a contradiction by Step (2). Therefore, NP = G. Since G /N = NP/ N is p-subgroup, there exists a
normal subgroup M /N of G /N such that|G : M| = p. Because P is a Sylow p-subgroup of G, G = PM. Then,
|P:Pn M|=|PM: M| = p, that is, P n M is a maximal subgroup of P. Set H = P n M. By the hypotheses,
there exists a normal subgroup T of G suchthat G = HT and HN T < Hgor HNn T < ®(H). Because N is the
unique minimal normal subgroup of G, N < T and N < M. Suppose first that Hn T < ®(H). Since H is
normal in P, ®(H) < ®(P). Then, PON<PnMnT)=PnM)NT=HnT< OH) < O(P). By Lemma
2.5, N is p-nilpotent, a contradiction by Step (2). If Hn T < H; and Hg # 1, then, N < H; by the unique
minimal normality of N. Therefore, N is p-nilpotent. This is the final contradiction and the proof is com-
pleted. O

Corollary 3.1. Assume that P is a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|.
Suppose that every maximal subgroup of P is c-normal or ®-supplemented in G. Then, G is p-nilpotent.

Corollary 3.2. Suppose that every maximal subgroup of any Sylow subgroup of a group is c-normal
or ®-supplemented in G. Then, G is a Sylow tower group of supersolvable type.

Proof. Let p be the smallest prime dividing |G| and P be a Sylow p-subgroup of G. By Corollary 3.1, G is
p-nilpotent. Let K be the normal p-complement of G. By Lemmas 2.1 and 2.2, K satisfies the hypothesis of the
corollary. It follows that K is a Sylow tower group of supersolvable type by induction, which implies that G
is also a Sylow tower group of supersolvable type. O

Corollary 3.3. Assume that P is a Sylow p-subgroup of G, where p is a prime divisor of |G| and (|G|, p - 1) = 1.
Suppose that every maximal subgroup of P is c-normal in G. Then, G is p-nilpotent.

Corollary 3.4. Assume that P is a Sylow p-subgroup of G, where p is a prime divisor of |G| and (|G|, p — 1) = 1.
Suppose that every maximal subgroup of P is ®-supplemented in G. Then, G is p-nilpotent.

Corollary 3.5. Let p be a prime dividing the order of G with (|G|, p — 1) = 1 and E be a normal subgroup of G
such that G / E is p-nilpotent. Suppose that P is a Sylow p-subgroup of E and every maximal subgroup of P is
c-normal or ®-supplemented in G. Then, G is p-nilpotent.

Proof. By Lemmas 2.1 and 2.2, every maximal subgroup of P is c-normal or ®@-supplemented in E.
Obviously, (|E|, p — 1) = 1. By Theorem 3.1, E is p-nilpotent. Let T be the normal p-complement of E,
then T is normal in G. Suppose that T # 1. Then, by Lemmas 2.1 and 2.2, the factor group G/T and its
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normal subgroup E /T satisfy the hypotheses. Thus, by induction, we have that G/T is p-nilpotent.
It follows that G is p-nilpotent, as expected. Now, we suppose that T = 1. Then, P = E. Let K /P be the
normal p-complement of G /P. Then, K is normal in G and G /K is p-group. It is easy to see that K satisfies
the hypotheses of Theorem 3.1. Hence, K is p-nilpotent. Let S be the normal p-complement of K. Because
G /K is p-group, S is the normal p-complement of G, which implies that G is p-nilpotent. O

Theorem 3.2. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G| and (|G|, p — 1) = 1. Suppose
that G is A,-free and every 2-maximal subgroup of P is c-normal or ®-supplemented in G. Then, G is
p-nilpotent.

Proof. Suppose that the assertion is not true, and let G be a counterexample with minimal order. By Lemma
2.4, p?||G|. We proceed via the following steps.

(1) G contains a unique minimal normal subgroup N with G /N p-nilpotent.

Let N be a minimal normal subgroup of G. Since P is a Sylow p-subgroup of G, PN /N is a Sylow
p-subgroup of G/N. Let M/N be a 2-maximal subgroup of PN/N and set H= M n P. Then, M = M n PN =
(M n P)N = HN and H < P. Therefore,

[P:H =|P:MnP|= |P| _ IMP| _ INPN| _
IM||IPUMP| M| |IM/N|

>

that is, H is a 2-maximal subgroup of P. By the hypotheses, there exists a normal subgroup T of G such that
HnNnT<Hzor HN T < ®(H). Since N is a minimal normal subgroup of G, we have that Nn T =1 or N.
Suppose first that N N T = 1. Then, INT| = |N||T| and [NT|||G|. Because, |HT /T| = |H/H n T|is a power of p, N
is an abelian subgroup of G and N < P. Thus, M = H is a 2-maximal subgroup of P and M is c-normal or ®-
supplemented in G. It follows that M /N is c-normal or @-supplemented in G/N by Lemmas 2.1 and 2.2. Now,
we assume that N < T. Since G = HT and T is normal in G, G/N = HT/N = (M/N)(T/N) and T/N is normal in
GN.IfHNT< Hg, then MN)n (T/N)=EHNNTYN=HnT)N/N < HiN/N < (HN/N)iny =(M/N)imn).-
If HNnT< ®(H), then (MN)N(TN)=HNNTYN=(HnNT)N/N < OH)N/N < ®HN/N) = O(M/N).
Therefore, M/N is c-normal or ®@-supplemented in G/N. Obviously, (|G/N|,p — 1) =1 and G/N is A,-free.
Hence, G/N satisfies the hypotheses. By the choice of G, G/N is p-nilpotent. Because all p-nilpotent groups
form a saturated formation, N is unique in G.

(2) 0y(G) # 1.

Suppose that 0,(G) = 1. Let H be a 2-maximal subgroup of P and H is normal in P. Then, ®(H) < ®(P).
By the hypotheses, there exists a normal subgroup T of G such that G=HT and Hn T < H; or
HnT<®H). Since 0,(G)=1 and H is a p-subgroup, H; =1. Therefore, Hn T < ®(H). Since
®(H) < H, T < G. Because G/T = HT/T = H/H n T is p-subgroup, G/T is p-subgroup. We can take a max-
imal normal subgroup M/T of G/T such that|G : M| = p. Set K = M n P and L is a maximal subgroup of K.

Since G =HT andT<M,G =HM. Because p=|K: L =|(MnP):L|= Illl]/z’lllllel = llﬂgllllfll = %, Lisa 2-

maximal subgroup of P. By the hypotheses, L is c-normal or ®-supplemented in G. It follows that L is c-
normal or @-supplemented in M by Lemmas 2.1 and 2.2. Since (|G|, p - 1) =land M < G, ([M|,p - 1) = 1.
The foregoing arguments show that M satisfies the hypotheses. By the choice of G, M is p-nilpotent. Let S be
the normal p-complement of M. Because G/M is p-group, S is the normal p-complement of G. This contra-
diction shows that 0,(G) # 1.

(3) The final contradiction.

By (1) and (2), N is the unique minimal normal subgroup of G and N < 0,(G). Let H be a 2-maximal
subgroup of P. By the hypotheses, there exists a normal subgroup T of G suchthat G = HT and Hn T < Hg
or HN T < ®(H). If T < G, discussing as in Step (2), one can prove that G is p-nilpotent, a contradiction.
Thus, T = G. It follows that H = H n T = H; is normal in G. By (1) and (2), N is the unique minimal normal
subgroup of G, N < 0,(G), and there exists a maximal subgroup M of G such that G = [N]M. Let K be a
Sylow p-subgroup of M such that P = [N]K. Let A be a maximal subgroup of N and A be normal in P. Let B
be a maximal subgroup of K. Thus, AB < P and AB is a 2-maximal subgroup of P. The choice of N shows
that N < AB since AB is normal in G by previous arguments, a final contradiction. O
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Corollary 3.6. Let p be a prime dividing the order of G with (|G|, p — 1) = 1 and E be a normal subgroup of G
such that G/E is p-nilpotent. Suppose that P is a Sylow p-subgroup of E and every 2-maximal subgroup of P is
c-normal or ®-supplemented in G. If G is A4-free, then G is p-nilpotent.

Proof. By arguments similar to those used in the proof of Corollary 3.5, one can prove this result.

Theorem 3.3. Assume that P is a Sylow p-subgroup of G, where p is a prime divisor of |G|. Suppose that N;(P)
is p-nilpotent and every maximal subgroup of P is c-normal or ®-supplemented in G. Then, G is p-nilpotent.

Proof. If p = 2, then by Theorem 3.1, G is p-nilpotent. Now we prove the theorem for the case of odd prime p.
Suppose that the statement is not true, and let G be a counterexample of minimal order. If p34|G|, then P is
abelian. Let K be the normal p-complement of N;(P), then Ng(P) = P x K. Thus, [P, H] = 1. It follows that
Cs(P) = P x K = Ng(P). By the famous theorem of Burnside, G is p-nilpotent. Thus, p3||G|. We proceed via
the following steps.

(1) 0p(G) = 1.

If 0,(G) # 1, by Lemmas 2.1 and 2.2, G/0,/(G) satisfies the hypotheses. The choice of G yields that
G/0,(G) is p-nilpotent. Consequently, G is p-nilpotent, a contradiction. Hence, 0,/(G) = 1.

(2) If M is a proper subgroup of G with P < M, then M is p-nilpotent.

Since Ny(P) = Ng(P) n M and Ng(P) is p-nilpotent, Ny(P) is p-nilpotent. By Lemmas 2.1 and 2.2,
M satisfies the hypotheses. The choice of G yields that M is p-nilpotent.

(3) G is not a non-abelian simple group and G has unique minimal normal subgroup N. Moreover, G/N
is p-nilpotent and ©(G) = 1.

Let H be a maximal subgroup of P. By the hypotheses, there exists a normal subgroup T of G such that
G=HTand HNT<HgorHNT < ®(H).IfT = G, then Hn T = H; is normal in G. Otherwise, H = 1 and
|P| = p, which contradicts the fact that p3||G| by previous argument. If T # G, then T is a proper subgroup of
G and T < G. Therefore, G is not a non-abelian simple group. By arguments similar to those used in the
proof of Theorem 3.1, one can see that the remaining assertions hold.

(4) G = PQ is solvable, where Q is a Sylow g-subgroup of G with q # p.

Since G is not p-nilpotent, by [12, Corollary], there exists a characteristic subgroup L of P such that
N;(L) is not p-nilpotent. By (2), N5(L) = G. This leads to N < L. By (3), G is p-solvable. Then, for any g € 7(G)
and q + p, there exists a Sylow g-subgroup Q of G such that K = PQ is a subgroup of G. If K # G, then by (2),
K is p-nilpotent. By [13, Theorem 9.3.1], Q < C5(0n(G)) < O,(G), a contradiction. Thus, G = K = PQ is
solvable.

(5) The final contradiction.

By (1) and (2), N is the unique minimal normal subgroup of G and N < 0,(G). By Step (3), there exists a
maximal subgroup M of G such that G = MN and M n N = 1. Since N is an elementary abelian p-group,
N < Cs(N) and Cs(N) N M < G. By the uniqueness of N, we have C4(N) N M =1 and N = Cs(N). But
N < 0,(G) < F(G) < Cs(N), hence N = 0,(G) = Cc(N). If PN M =P, then N<P <M, a contradiction.
Thus, we take a maximal subgroup H of P such that PN M < H.If Pn M =1, then P = N. It follows that
Ng(P) = G is p-nilpotent, a contradiction. Therefore, P n M # 1. By the hypotheses, there exists a normal
subgroup T of G such that HNn T < H; or HN T < ®(H). By the uniqueness of N, N < T. We assert
that |[N| = p.

IfHNT< Hg,thenHNN=HNTnN<Hz;nN < Hn N.Consequently, wehavethat HNn N = H; N N
is normal in G, and therefore, HNN=N or HNn N=1. Assume that HNn N=N. Then, N <H.
Since P=PNNM=N(P nNnM) and PN M < H, P=H. This contradiction shows that Hn N = 1. Since
P=PNNM=NPnM)=NHand|N: Hn N|=|NH: H| = |P: H| =p,|N| =p.

fHNT<®H),then H=HnNnP=HNNPnNM)<HNN)PnM)<(HnT)H<DH)H = H. Thus,
PnM=H and |N] = p.

Since |N| = p, Aut(N) is cyclic of order p — 1. If g > p, then HQ is p-nilpotent, and thus Q < C;(N) = N,
a contradiction. On the other hand, if g < p, then M = G/N = Ng(N)Cs(N) is isomorphic to a subgroup of
Aut(N) because N = C5(N). Hence, M and, in particular, Q are cyclic. Since Q is a cyclic group and g < p,
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we know that G is g-nilpotent. It follows that P is normal in G. This implies that N;(P) = G is p-nilpotent,
a final contradiction. O

Corollary 3.7. Let E be a normal subgroup of G such that G/E is p-nilpotent, where p is a prime divisor of |G|.
Suppose that P is a Sylow p-subgroup of E, N;(P) is p-nilpotent, and every maximal subgroup of P is c-normal
or ©®-supplemented in G. Then, G is p-nilpotent.

Proof. Since Nz(P) = E n N3(P) and Ng(P) is p-nilpotent, N;(P) is p-nilpotent. By Lemmas 2.1 and 2.2, every
maximal subgroup of P is c-normal or @-supplemented in E. By Theorem 3.3, E is p-nilpotent. Let T be the
normal p-complement of E. Then, T is normal in G. By using the arguments used in the proof of Corollary
3.5, we may assume that T =1 and E = P is a p-group. In this case, by our hypotheses, N;(P) = G is
p-nilpotent. O
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