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Abstract: In this article, we study the elliptic system:
—Au + pu = x| + A, xe€Q
—Av + v = [x|V3 + Au, x€Q
u,v>0,xeQ,u=v=0,x¢€9Q,

where Q ¢ R3 is the unit ball. By the variational method, we prove that if a is sufficiently small, the ground

state solutions of the system are radial symmetric, and if a > O is sufficiently large, the ground state
solutions are nonradial; however, the solutions are Schwarz symmetry.
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1 Introduction

In this article, we study the following elliptic system:

—Au + pu = x4 + A, xe€Q
-Av + Wy = X%V + Au, xeQ (1.1)
u,v>0,xeQ,u=v=0,x € dQ,

where Q ¢ R3 is the unit ball, M M, > 0, a > 0. The parameter A > O satisfies several conditions.
System (1.1) is the nonautonomous case of the following elliptic system:

—Au + pu =3 + A, xeQ
AV + v =v? + Au, xeQ (1.2)
u,v>0,xeQu=v=0,x € dQ,

where Q ¢ R (N = 2, 3) is an open domain. (1.2) arises in a binary mixture of the Bose-Einstein conden-
sates with a coupled linear part. In recent years, many researchers have been concerned with system (1.2).
They have proved the existence, multiplicity, and limit problems of the solutions of system (1.2), and see
[1-4] and the references therein.
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Gidas et al. [5] studied the elliptic equation:
—Au=f(x|,u), u>0, xeQ, u=0, xeadQ. (1.3)

They proved that if Q is a ball and f(|x|, u) = f(u) € C!, then the solutions are radially symmetric. After that,
many researchers studied the symmetric properties of elliptic equations, and see [6-9] and the references
therein. In [7], they pointed out that if the domain cannot be convex or f(|x|, u) is increasing by |x|, one can
have the nonradial positive solutions. Smets et al. [9] studied the Hénon equation:

—Au = |x|*u’, u>0, xe€Q, u=0 xceadQ, (1.4)
where Q is the unit balland a > 0,1 < p < 2* — 1. They proved that if a > 0 is large enough, the ground state
solutions of (1.4) is nonradial symmetry, and Boheure et al. [6] studied the symmetry-breaking results of the

Hénon-Lane-Emden system, and see also [7] and the references therein.
Following these ideas, we prove the following.

Theorem 1.1. Let A > O be small. Then there exists & > O such that for all « > & the ground state solution
is nonradial. However, the solutions are foliated Schwarz symmetric.

In [8,10,11], Kajikiya obtained the multiple nonradial solutions of equation (1.4) by the group critical
theory. By the unique and nondegenerate results, they proved, if a is sufficiently small, the ground state
solutions of (1.4) is radially symmetric. It is an interesting result; since for the Hénon equation, the moving
plane method cannot be used, one also prove the radial results. In [12,13], the authors also considered the
nonradial solutions. In this article, we first obtain a result of unicity, then we prove the following:

Theorem 1.2. For all A > 0 be sufficiently small, the system (1.2) has a unique positive radial solution. If this
solution is nondegenerate, then for a small, the ground state solution of system (1.1) should be radially
symmetric.

This article is organized as follows. In Section 2, we present several preliminary results, and in Sections
3 and 4, we present the proof of the main results.

2 Some preliminaries and lemmas

Let H}(Q) be the classical Sobolev space and H = H)(Q) x H}(Q) with the norm:

1
2

lu, V| = Iqu|2 + U+ |V + pv2dx
Q

We assume 0 < A < min{y,, },}.
The energy functionals of (1.1) and (1.2) are

L, v) = %nw, VI - %juw(u‘* + vy - Ajuvdx
Q Q

and

I, v) = %u(u, VI - % j W + v9dx - A j wvdx.
Q Q

The Nehari manifolds are
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Na = {(u, v) € H\{(0, 0)} : L(u, v)(u, v) = 0}
and

N ={(u,v) € H\{(0, 0)} : I'(u, v)(u, v) = O}.
Definition 2.1. (i1, V) is the ground state solution of (1.1), if it satisfies
cq = I,(d, v) = inf I(u, v).
Na
If the infimum is obtained from the radial functions, we denote it as c}.

By the moving plane method, one can prove that the solutions of system (1.2), denoted (w, h),
are radial. If

{—A¢ + uyp = 3wp + A, 1)

-AY + wp =307 + AP

has only trivial solutions, in this case (w, h) is nondegenerate. One can check Damascelli and Pacella [14]
and Troy [15] for the radially symmetric results, see also Dancer et al. [16], Sato and Wang [17], and Tavares
and Weth [18]. For unique and nondegenerate results of the elliptic system, one can see [19-21].

3 The Proof of Theorem 1.1

Lemma 3.1. For any (u, v) € H, there exists a unique t > O such that (tu, tv) € Nj.

Proof. For any (u, v) € H, by calculating directly, we have

I, 0v)(tu, tv) = 21, VI - 2t2AIuvdx - t4I|x|“(u4 +vhdx, 6.1
Q Q
and thus,
2 _
O
.[Q [x|*(u* + v*)dx
We have completed the proof. O

Lemma 3.2. ¢, is achieved, and if a > 0 is large enough, we have that
Cq < Ca,
where C is a constant independent of a.

Proof. By the variational method, we can prove that ¢, and c; are achieved, and c, < c;. Now we give the
estimate of c,.

Let ¢, € C5°(Q) and xo = (1 - 1,0, 0), and
0,(x) = pa(x - x0)), P (x) = Plalx — xo)).
When a is large, one can prove suppg, < Q, suppy), < Q. Since C5°(Q) < Hé(Q), then
Ca < L(to, tip),
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where ¢ satisfies (tg, ty) € N,. Then we have

Lltg,, t,) = %t“_[IXI“(cvj‘ + )dx
Q

and

1@ Y - 2| g dx
t2 = i .
[ @ + ghax

By combining these results, we have that

1 (”(gDa’ lpa)nz - ZAJ.Q(Pall)adX)Z
b [ e uhde

Ia(t%, tl.ba) =

Let y = a(x — xo), then dx = %dy. Because of suppg, ¢ Q, then we have y € Q, so x - x4 € Q1, which is

a ball with r = %, and then we have that

gt + gz (1 2) [t + wax
a Q

Q

(-2 o
Q

- (1 - %) I 5@+ P)dy.

Q

On the other hand, we have

J vl + ghax=[asavep + oy
Q Q
=a! J(wzlvfpl2 + a-2p?)dy 3.3)
Q
<ot [P + g2y,
Q

and similarly, we have that

Javup + wdrax < o [avpp + ayay. 34)
Q Q
Combining the previous inequalities (3.2)—(3.4), we have that
Cq < Ca,
where C is a positive constant independent of a. O

Lemma 3.3. Let (uy, V) be a radial ground state solution of (1.1) and c}, is the energy value. Then we have that
¢y = Ca?,

where C is a constant independent of a.

Proof. For convenience, we replace (u, v) of (ug, v,). Define
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Y(x) = (Vu, x)Vu + (Vv, x)Vv — %(|Vu|2 + Vv )x + %|x|"‘(u4 + VX + Auvx — %(ylu2 + V)X,

where x € R3. Let

r= X+ x3+ x4,

then we have

(Vu, X)Vu = u,)?(x, %, %), (Vv, X)Vv = (v))2(x, X%, X3),

and
. S IR
div| (Vu, x)Vu - 5 [Vul*x + —|x|*u*x - Eu X
; , 4 ; (3.5)
+a
= Z|VuP + 7/ |x|*u* - Zu? + ru/(u" + 3)x|* - w),
5 [Vul 4 x| 5 r(Uy x| )
and
. 1 1 1
dlv((Vv, X)Vv — =|Vv2x + —|x|®v* - —vzx) = i|Vv|2 + 3+—0(|x|“v“ - 2v2 + v+ V3xXE - v), (3.6)
2 4 2 2 4 2
and
div(Auvx) = 3Auv + Aruy; + Arvy. (3.7)
By combining the previous equalities, we obtain the following:
3 3+a 3
divY(x) = =(|Vul + |Vv?) + ——|x|*(* + v*) + 3Auv - =(uu? + p,v?)
2 4 27! 2 (3.8)
+ () + 3% = g+ AV) + v+ VR - v+ Aw).
Since (u, v) is a radial solution,
! !
u;'zAu—ﬁ, v;'zAv—ﬁ,
r r
Tes N 3 / 2url 3 / _zurl 2 2
U, + WY - pu + Av) = | Au - — + X[ - pu + Av | = ruy - —— = =2(u,)? = -2 |Vul?,
r r

=2lWP = (v + Vx|® - wv + Aw).

Thus,
. 3+a b 4 1 2 2 3 2 2
divY(x) = T|x| w* + v + 3Auv - 5(|Vu| + |Vv[?) - 5(}11” + 1,v9).
By divergence theorem, we obtain that , i.e.,

IdivY(x)dx _ IY(x)ndS
Q a0Q

j{(Vu, x)Vu-n+ (Vv,x)Vv-n - %(Wulz-x + |VV]-x)- n}dS
30
= I{—B Z a|x|"‘(u4 +v*) + 3A(|Vu)? + |VvP) - %(ylu2 + yzvz)}dx.
Q



DE GRUYTER Symmetric results of a Hénon-type elliptic system with coupled linear part =— 1813

Again since (u, v) is a solution, we have that

I{(Vu,x)a—u + (Y, x)a—v - l(|Vu|2 + |VvP)(x - n)}dS
on on 2

30
a-3

_[|x|a(u4 +vidx + I(qu|2 T WP)dx
Q

(u* + v¥dx.

Since u and v are radial functions, following pp. 72 of [6], we have

(Vu, x)(Vv, x) = (Vu, Vv)|x[? (3.9
and
, 2
”a—“ ds=c —dS ” as=c| [Las
on on
20
Since
= ljlxl“(u“ + vHdx
4
Q
and
2 2
I{(Vu, x)g—z + (Vv, x)g—; - %(|Vu|2 + Vv (x - n)}dS = %J‘ ’ g—z g—z ds,
30 30
and then we obtain
ou I2 2
(a - 3)cy < I ‘ a— ds. (3.10)

By the divergence theorem, we have I Audx = _[ —dS Notice that
-Au + pu = |x|*u3 + Av,
and
I|x|“u3dx j|x|4 fddx
i

I|x|"‘dx I|x|“u4dx
0 Q

W

(3.11)

1 i i
~c [revar| | fixiutax
0

utdx),

and
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1 1 1

I/\V+ pudx | < C Iqulzdx " I|Vv|2dx <2C Iqu|2+|Vv|2dx . (3.12)
Q Q Q Q

Thus, we obtain that

3 1
1 4 2 3 1

IAudx < — lel“u‘*dx +2C Iqu|2 + |VWPdx | < i+ Ccg (3.13)
(a + 3)a (a + 3)4
Q Q Q
and
1 3 1
j Avdx | < i+ C(A)cd. (3.14)
(a + 3)4
Q
We also obtain that
) ) 2 2
j a_u + a_v dS=C J-Audx + J-Avdx s
on on
30 Q Q
and by the previous estimations, one can obtain that
2 2 3 1 2
j( u + ‘ v )dS <C %cf +Ccd} . (3.15)
s\l on on (a+3)

From (3.10), we obtain

3 1)?
(a = 3)c, < %Caz +Ccy
(a + 3)a

and then we have

C 3 1
(a - 3)2c)? < L i + G
a+ 3)a

and

1
(a -3V < G —ci + G.
(a + 3)4

1
. . 3 L.
If @ > 0 is large enough, we obtain as < Cc4, i.e.,

¢y = Cas,
where C, C;, and G, are positive constants independently of a. In conclusion, we complete the proof. [
Now we list the proof of Theorem 1.1.
The proof of Theorem 1.1. By Lemmas 3.2 and 3.3, we can prove that if a > 0 is large enough, the ground
state solutions cannot be radial. Let
A, u, v) = X% + Av,  fo(Ix], u, v) = x|V + A,

then fi(|x|, u, v) and f,(|x|, u, v) are convex with respect to u and v. Since (u, v) is a ground state solution,
then the Morse index M(u,v) <1 < N = 3, and then by [14], we have that (u, v) is foliated Schwarz sym-
metry, and one can also follow the idea of Wang and Willem [23].



DE GRUYTER Symmetric results of a Hénon-type elliptic system with coupled linear part = 1815

4 The Proof of Theorem 1.2

By using the idea of Wei and Yao [20], we obtain the following results.

Lemma 4.1. Let A > O be small enough. Then the positive solution of system (1.2) is radially symmetric,
and it is unique.

Proof. Following the idea of Gidas et al. [5], Damascelli and Pacella [14], or Troy [15], we prove that the
positive solutions are radially symmetric.
Let w; be the unique positive solution of the following scalar equation with the subcritical exponent:

M+ pu=uxeQ, u=0 xedQ,
wherei =1, 2.

Let ®(A, u, v) = I(u, v), one can prove that ®(0, w;, w,) = 0, and we have

@'(0, wy, wr)(9, Y) = IIV¢IZ +u@? + [VYP + Pprdx - 3Iw12¢2 + wyp’dx.
Q Q

By the compact theorem, one can prove that ®'(0, w;, w,) is invertible, and then by implicity function
theorem, if A > 0 is small enough, the solution of system is uniqueness. O

Next we present the proof of Theorem 1.2.

By contradiction, the ground state solutions of (1.1) are nonradial. By the variational method, we prove
that (1.1) has a nontrivial radial solution, one can see [22], denoting (i, V), and another nonradial solution,
denoting (uy, v;). Now we give the L estimate of (ug, V) and (ii,, ), for convenience, we replace (ug, V)
by (u, v). Since (u, v) is a solution of (1.1), let u?3~! be a test function, then we have

I—Auuz‘I*1 + pu?ddx = lel“uzq”dx + Ajuzqflvdx,
Q Q Q

where 2g — 1 > 1. By Green’s formula, we obtain that
LHS = jVuV(uzq‘l) + pu¥dx = (2q - 1)I|Vu|2u2q‘2dx + yIququ = zq—;lIWuqux + ylj|uq|2dx.
q
o Q Q Q o

By Holder’s and Young’s inequality, we have that

2q9-1 3

2q+2 2q+2
2q+2
Ivuzq‘ldx < juz’”zdx Iv 3 dx
Q Q Q
< M u2+2dx + 3 Ivzq;ZdX
2q + 2 2q + 2
Q Q

13 73
< 29-1 u2a+2dx + 3 '[vzq+2 J-ldx
T2 +2 2q + 2

Q 0 Q

< quq*zdx +C<C quq*zdx,
Q Q
where C is a constant independent of g. On the other hand,

a4,2q+2 < 2q+2
[x|*uta*2dx < | u?d+2dx.
Q

Q
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Then we obtain that

2
I|Vu‘1|2 + |udPdx < CLJ‘uz‘ﬁzdx. (4.1)
2q -1 :
Q Q

Again by Holder and Sobolev embedding inequality, we obtain

23 23
j 12942y < ju3qu ubdx)3 < C '[u34dx

Q Q Q
and

1
2

A=

Iu“qu < j|qu|2+|uq|2dx
Q Q

Thus, we obtain that

1

3q

&
S

1
Iu4qu s[ °q’ ]zq Iu3qu
2q -1
Q

Q

Now let g(1) =1and g(n + 1) = %q(n), and one can prove that g(n) — +oco asn — +co. By the proceeding
estimate, we have that

n+1 2 L

q (1) 2q(i)
u < CI | _— u .
" ||4q(n+l) 0 [ 2(](1) — 1] " ||3q(1)

Notice that g(n + 1) = (%)n, and thus, we can prove that

>

n+1 2+ -1 n+1 . .
2@ T % 2Ingl) - In@qG) - 1)
lnn[zqw - 1] - Zz 24(0) <o

i=2

1
2(i i .
and thus, H?j[ zqq(l.g’z ] ]zq(’ < 00, then we complete the L® estimate.

Let A > 0 satisfy the previous conditions, and {a,} satisfy a, — 0 asn — +co. We denote that {(u,, v,)}
is the ground state solutions of system (1) and {(ii,, V,,)} is the radial ground state solutions of system (1).
Following the idea of [8], by contradiction, uy, # i, v, # V, let
U, — an Vn — ]711

a)n ~ ’ n o~
lun — tnlloo Vi = Vllpo

then w, # 0, h, # 0 and wy,, h, € W?{(Q), which is classical Sobolev space, for any 1 < t < +oco. Let

filu,v) = |x|*v® + Av and  fr(u, v) = |x|*V3 + Au,

then
~Awy + Wy = [i(un, Vo) = j?(u,,, V")w,,,
Uy — Ty
S (4.2)
DRy + oy = fo(un, va) —]fz(u,,, v")hn.
Vn — Vn
By the L*® estimate, we have w, — w, h, — h in CY(Q), and w and h satisfy
-Aw + ww = 3uiw + Agh,
M 0 1 “3)
-Ah + ph = 3vgh + Acw,

Vi = Villoo

where g = lim,_, ;oo -
llun = dinllco

andc = Cl are positive constants, and (u,, Vo) is the uniqueness solution of (1.2).
1
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Now let @ = % and h = h, we have that

-A@ + u@ = 3ud@ + Ah,

_ _ _ (4.4)
—Ah + poh = 305k + Ad.

It is a contradiction, then we complete the proof.
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