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Abstract: This article is devoted to studying the averaging principle for two-time-scale stochastic differ-
ential equations with correlated noise. By the technique of multiscale expansion of the solution to the
backward Kolmogorov equation and consequent elimination of variables, we obtain the Kolmogorov equa-
tion corresponding to the reduced simplified system. The approximation of the slow component of the
original system to the solution of the corresponding averaged equation is in the weak sense. An example is
also provided to illustrate our result.
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1 Introduction

Almost all dynamical systems in sciences, such as materials science, fluid dynamics, climate dynamics,
celestial mechanics, and radiophysics, have a time hierarchy where the components evolve at quite dif-
ferent rates. In other words, some components evolve rapidly, while others vary slowly. Moreover, all
important and interesting systems are essentially nonlinear and disturbed by inner and outer noises.
Thus, to explore the interactions between multiscale, nonlinearity and uncertainty, many authors propose
a lot of different methods in which the theory of averaging principle stands out. The averaging principle
provides an effective tool to explore the asymptotic behavior of the multiscale dynamical systems.

The primary target of the averaging principle is to find the averaged equation, when the scale parameter
€ tends to 0, for the slow component x of original multiscale system, and then to demonstrate the approx-
imation between x and the solution of this averaged equation.

The averaging principle was initiated by Bogoliubov and Mitropolsky [1] for ordinary differential
equations and then this theory is developed to deal with partial differential equations (PDEs). It is well
known that realistic models incorporate uncertainty as an indispensable ingredient. The first result in
this direction for stochastic differential equations (SDEs) was obtained by Khasminskii [2], which demon-
strated the correctness of averaging principle in a weak sense. Now, the averaging principle for stochastic
systems is attracting more and more interest and has a wide range of applications, see, e.g., [3-9] and
references therein for the SDEs and [10-22] and references therein for stochastic partial differential equa-
tions (SPDEs).
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However, as far as we know, all these works assume that the noises driving fast and slow components
are independent. No result has been obtained for stochastic dynamical systems with two timescales as the
noises are correlated. In order to fill the gap in this field of research, we consider a stochastic slow-fast
dynamical system where the noise driving the fast components is correlated with the noise driving the slow
components. More exactly, we consider the following SDEs driven by correlated noises on Z:

% - ~fitey) + hxy) + ax y)% + a(x, y)%, x(0) = X0, (11)
dy 1 1 1 dB
5~ S+ o806 y) + B y)d—tz, y(0) =y, (1.2)

where the small parameter € > 0 is the ratio between the fast component y and the slow component x.
B, and B, are independent standard Brownian motions. We take Z = R, thus x ¢ R,y ¢ R4 or x ¢ T!,
y € T4, then we have Z = T4 T4 denotes the d-dimensional unit torus.

This article is organized as follows. In Section 2, some notations, hypotheses, and useful results
we need in later sections are introduced. We present the main result of this article in Section 3, and the
proof of this article is given in Section 4. An example is given to illustrate our result in Section 5.

2 Preliminaries

For the convenience of the following description, we first introduce some notations. For two d x d matrices
A = (ay), B = (by) denote the inner productby A : B = tr(ATB) = 2.;,;aiby. Note thatS : T = ST:T= %(S + STy:
T, if matrix T is symmetric. For vectors a, b, ¢ € RY, define the outer product, which is a matrix, of a and b by
(a® b)c=(b-c)a.

The drift and diffusion coefficients should satisfy some appropriate conditions to derive the existence
and uniqueness of the solution to the SDEs (1.1) and (1.2), as is stated in the following result (Theorem 6.1
in [23]):

Lemma 2.1. Assume that fi, fo, &1, a2, &, and g, are all globally Lipschitz on Z. zo = (Xo, ¥,) is independent
of the Brownian motions B, and B,, and

E|zo* < co.

Then the SDEs (1.1) and (1.2) have a unique solution z = (x, y) € C(R*; Z).

The backward Kolmogorov equation for equations (1.1) and (1.2) is

a_v = i.Eov + l.Elv + Ly, for (x,y,t) e X x Y xR", (2.1)
ot &2 €
v=g¢kx), for (x,y,t) e X xY x{0}, 2.2
where

1

Lo=g 'V + EB(X, ¥) 1 ViV, (2.3)
1 1

Li=fi Ve+8 -V, + EaZBT VAV EBO(ZT HAVAVAS (2.4)

1
L :=f2 Vi + EA(X, Y) HAVAVR (2.5)

with
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AX,y) = aal + aal, (2.6)
B(x,y) = Bp". @.7)

The significance of the backward Kolmogorov equation above is displayed in the proof of the main result of
this work in Section 4. Roughly speaking, we first write the solution to the backward Kolmogorov equation
above in multiple-scale expansion. Then we identify the PDE satisfied by the main term of the expansion.
Through the correspondence between the SDE and its backward Kolmogorov equation, we can finally derive
a simplified equation to approximate the dynamics of x.
The adjoint operator of £ is denoted by L. We impose the following assumptions:

A1: B(x, y) is a strictly and uniformly positive-definite matrix;

A2: [, satisfies the Fredholm alternative. To be exact, let £, : H — H be an operator in H. Then

(i) Either

Lou =y, (2.8)
LU =T, (2.9)

have unique solutions for every y, I' € H;
or
(ii) the corresponding homogeneous equations

Lol =0, (2.10)
LBVO = O, (211)
satisfy
1 < dim(N(Ly)) = dim(N(Lp)) < oo,
where N(Lo) and N(L(;) denote the null spaces of Ly and Lj, respectively. In the latter case, then
equations (2.8) and (2.9) have a solution iff
VVO € N(L8)5 (Y, VO) =0
and
VW € N(Lo)T, V) = 0;
A3 (Centering condition): nyl(x, y)p>X(y; x)dy =0, Vxe X.
With the help of the assumption (A1), the following result (Theorem 6.16 in [23]) holds:

Lemma 2.2. Suppose Lo, L on T4 are equipped with periodic boundary conditions and B(x, y) is a strictly
positive-definite matrix, uniformly in z = (x, y) € T4. Then the following hold
* N(Lo) = span{l};
o N(Lp) = span{p™}, inf,.;4p™(2) > 0.
1 stands for all functions that are independent of y.

Remark 2.1. Here we explain the significance of the result above. £ is viewed as a differential operator in
y, with x being a parameter. For variable elimination in Section 4, the natural ergodicity assumption to make
is that

Lol(y) =0, 2.12)
Lp®(y; x) = 0. (213)

Thus, Lemma 2.2 validates this ergodicity assumption.
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3 Main result
As preparation for the main result of this article, we define the cell problem as follows:

~Lo®00y) = fix ) [ O ype(r x0dy = . 1)
Y

This is a PDE in y, with x as a parameter. The solution ®(x, y) will be crucial to the derivation in the next
section. By assumptions (A2) and (A3), the existence and uniqueness of the solution to the cell problem (3.1)
is guaranteed.

Remark 3.1. The existence and uniqueness for solutions to equation (3.1) is more complicated, in the case
the matrix B(x, y) is degenerate or Y = R4. Analogous results are still possible, however, in function space

settings with appropriate decay properties. See [24-26].

Then define p by

p(x) = jp“’(y; X)L, y) + VDX, ¥)- ilx, y) + &, ¥)-VO(x, y) + ax(x, Y)BT(X, ¥) : LV, D(x, y))dy
Y

(3.2)
= F(x) + R(x)

and o(x) by

SEG)T = M) + %(Al(x) + A7), (3.3)
where
A0 = 2 P2 XLl ) © Dlx, ) + ad (G0 Iy, (34)
Y

A(x) = jp‘*’(y; X)A(x, y)dy. 3.5)

Y

Now we state our main result, the derivation of which is in the next section.

Theorem 3.1. For t in scale of O(1), the solution x(t) of (1.1) can be approximated by the solution X(t) of the
following SDE,

dx dw
— =pX) + 0o(X)—, X(0) = xo, 3.6
T pX) + a(X) i (0) = xo (3.6)
as € — 0, where p(X), 0(X) are defined before, and W(t) stands for a standard Wiener process, i.e.,
a standard Brownian motion which is independent of U and V.

Note that p and ¢ in equation (3.6) for X both depend on f; in the x equation.

Remark 3.2. The big-oh notation O in the theorem above is defined as follows: f(x) = O(g(x)) as x — xg
if there exists a constant C such that |f(x)| < C|g(x)| for all x sufficiently close to xq. Thus, the phrase
“t in scale of O(1)” means that the aforementioned theorem holds in finite time interval.

Remark 3.3. Note that merely from the knowledge of 0(X)o”(X), we cannot determine the diffusion matrix
0(X) uniquely. Therefore, the limiting equation (3.6) can neither be uniquely determined by equation (3.3),
a consequence of the well-known fact that different SDEs can have the same generator. As a result,
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the approximation of the solution of (1.1) by the solution of (3.6) is in the sense of weak convergence
of probability measures.

4 Derivation
In this section, we give the derivation of Theorem 3.1. By multiscale expansion, we seek the solution of (2.1)
with the form

V(X’ Y, t) = VO(X’ Y, t) + £V1(X’ y’ t) + SZVZ(X’ y’ t) toeee . (4'1)

Substitute this expansion into (2.1) and equate the coefficients of equal powers in €. The first three of the
hierarchy of equations are

O(%) : _-L()VO =0, (4'2)
)
1
0(2) FLon=Liv, (4.3)
aVO
O(l) 1 =Lovy = —g + Livi + L. (4.4)

By (2.12), we can deduce, from equation (4.2), vo(x, y, t) is independent of y, i.e., vo = vy(x, t). As for
equation (4.3), the solvability condition is satisfied by assumption (A3). From the expression of (2.4),
we have

Lvo = filx, ¥)-Vevo(x, ).
Equation (4.3) becomes
-Lov1 = filx, y)-Vewo(x, t). (4.5)
The general solution of (4.5) has the form
vi(x, y, ) = O(x, y)-Vvo(x, t) + Ou(x, 1), (4.6)
since Lo can be viewed as a differential operator in y with x being a parameter.
We set the function @, to 0 because it plays no role in what follows. Thus, solution v; is represented as a
linear operator acting on vq. This form for v; is a useful representation since we aim to find a closed equation
for vy. Substituting for v; in (4.5) indicates that @ is the solution to the cell problem (3.1). The assumptions

(A2) and (A3) ensure the existence of the solution to the cell problem and the normalization condition,
the second equation in (3.1), makes it unique. The right-hand side equation (4.4) becomes

IV
—(—O - Lovg — Ly(D 'VxVo))'
ot
Hence for each fixed x, solvability of (4.4) leads to
MV
a_to = ILZVO(X, tpedy + I(y; )LD -Vivo(x, ))p*(y; x)dy = I + L. (4.7)
Yy Y

Using the symbols we introduce, the first term on the right-hand side of the equation above is

L= j(fzvx + %A(x, Y) : GV, Hp(y; x)dy
v (4.8)
= B00-Vavno(x, £) + %Az(X) : VViro(x, ©).
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As for the term L, note that

1 1
Li=fi Ve + & 'Vy + EazﬂT : Vny + EBaZT : vay

(4.9)
=fi e+ 8-V, + Bl : Y,
The last equality is from the definition of the inner product between matrices.
By direct calculation, we have
fi V(@ -Vivp) = fi ® @ : V, Vg + (Ve @f)- Vivo, (4.10)
£ 'Vy(CD “Vivo) = (qu)gz)‘VxVO’ (4.11)
and

:BaZT : vay(cD “Vivo) = :BaZT : [(VxVy‘D)'VxVo] + BaZT : [(qu))TVxVxVO] (4.12)

= (Ba] : Vi,%D)-Vyvo + [Bad (V,D)T] : ViViwo.

The last equality holds when Ba; is symmetric. The first term of the right-hand side of the last equality is
from the property A : (B - ¢) = (A : B)- c. The second term of the right-hand side of the last equality is from
the property A : (BC) = (AB) : C while A, C are both symmetric matrices.

Hence, I, = ; + I, where

b= [[90f + %08, + (Baf : VF,0)]-Tnlx, 0p(ys x)dy 4.13)
Y
and
L= [1fi 8 ® + B (0] : V¥o(x, 0p (3 X)dy. (4.14)
Y
Thus,
b = F0O-Vew(x, £) + %Al(x) Y Vvo(x, ). (4.15)

By equations (4.7), (4.8), and (4.15), we obtain the following equation:

M

Y PO Vv + %U(X)O‘(X)T : ViVilo. (4.16)

This is exactly the backward Kolmogorov equation corresponding to the reduced dynamics given in (3.5).
This completes the proof.

Remark 4.1. We note that equation (1.2) for the fast component y contains only one noise term, but the
method we exploit still applies in the case that the fast component is driven by two independent Gaussian
white noises. To be more exact, consider the following SDEs:

dx 1 dB; dB,
= = ~fix, )+ w0 Y= + G y) =2, (417
it N6 y) + L6 y) + alx, y) a ey @D
dy 1 1 1 dB, 1 dB,
— = =gx,y)+ =gk, y) + =B, y)— + =B,(x, y)—=. (4.18
i - 2%y + &) e[ﬁ( 0y 8.82( g 418
The operators £; in (2.4) should be replaced by
1 1
Li=fiVe+8V,+ EazﬂzT t VY + E,BzazT : VY. (4.19)

Meanwhile, B(x, y) in (2.3) is replaced by

B(x,y) = BB + BB, - (4.20)
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Consequently, (3.2) and (3.4) are replaced by

px) = _[(fz(x, ) + V@0, y)- fix, ¥) + &6 ¥)- %X, y) + (aa(x, yIB] (X, ¥) + (X, y)B) (x, ¥))
Yy

(4.21)
: iV D(x, y))pe(y; x)dy
= F00) + F(x)

and

Ax) = Zf[fl(x, ) ® @, y) + B + Bas ) (V@) 1o (y; x)dy. 4.22)
Yy

After all these changes, the simplified equation has the same form as (3.6).

5 Example

To illustrate our result, consider the following system in T? :

dx 1 dB dB

— =01 - 2 —1 —2, 0) = ] 5'1
it 8( y)X+Xy+th+ydt x(0) = xo, (5.1)
d 1 1 dB

—yz—ay+— 20 —2, y(0) =y, (5.2)

dt &2 € det

Hence, we have the corresponding functions fi(x,y) = (1 — y2x, (x,y) = xy, ay(x, ¥) = x, (X, ¥) = ¥,
g y) = ay, &0 y) = 0, B(x, y) = V2a.
In this case, £, = —ay% + ozaa—yz2 and the cell problem becomes

2
ay—aq) _ o220 q; =(1 - ydx.
ay )%

This equation has a unique centered solution
1
D(y, x) = —(1 - y)x.
2a

It is well known that the second and fourth moments take values 1 and 3, respectively, under the standard
normal distribution, by which we obtain

201 _ 12)2
lAl:-[pm(y; X) M_\/nyz dy:lXZ_\/zX’
2 5 2a a a a

A= Ip“’(y; X)X+ y)dy = x* + 1,

Y
x(1 - y?)? 2 1 2
F1=J.p°°(y; X)[i( my) - \/;yz]dw PRl \/;
Y

F= Ixyp‘”(y; x)dy = 0.
Y

Thus, we derive the simplified equation as follows to approximate the slow component x(t):

%:E_\/Z+\/(1+E)X2_\/§X+ld_w’ (5-3)
dt o a a o dt

where W(t) is a standard Brownian motion.
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6 Conclusion

In this article, we study the averaging principle for systems of SDEs with two widely separated time scales,
which is driven by correlated noises. By means of perturbation expansion of the solution to the backward
Kolmogorov equation and consequent elimination of variables, we obtain the backward equation corre-
sponding to the reduced simplified system. The solution to reduced SDE (3.6) approximates the slow
variable x(t) of the initial systems (1.1) and (1.2) in the weak sense.
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