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Abstract: In a real Banach space, let the VI indicate a variational inclusion for two accretive operators and
let the CFPP denote a common fixed point problem of countably many nonexpansive mappings. In this
article, we introduce a generalized extragradient implicit method for solving a general system of variational
inequalities (GSVI) with the VI and CFPP constraints. Strong convergence of the suggested method to
a solution of the GSVI with the VI and CFPP constraints under some suitable assumptions is established.
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1 Introduction

Let H be a real Hilbert space, in which the inner product and induced norm are denoted by the notations
(-,-) and |-|, respectively. Given a nonempty, closed, and convex subset C c H. Let P; be the metric
projection of H onto C. Given a mapping A : C — H. Consider the classical variational inequality problem
(VIP) of finding a point u* € C s.t. (Au*, v — u*) >0, Vv € C. The solution set of the VIP is denoted by
VI(C, A). In 1976, Korpelevich [1] first designed an extragradient method, i.e., for any initial ug € C,
the sequence {u,,} is generated by

(1.1)

Vm = PC(um - EAum),
U1 = Po(uy — CAvy), Vm >0,

with € € (O, %), which has been one of the most popular approaches for solving the VIP till now. In the case
of VI(C, A) # @, the sequence {u,} has only weak convergence. Indeed, the convergence of {u,} only
requires that the mapping A is monotone and Lipschitz continuous. To the best of our knowledge,

Korpelevich’s extragradient method has received great attention from many authors, who have improved
and modified it in various ways, see e.g., [2-12] and references therein.
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Recently, to solve the variational inclusion (VI) of finding v* € H s.t. 0 € (A + B)v*, Takahashi et al. [13]
suggested a Halpern-type iterative method, i.e., for any given vy, u € H, {v,;} is the sequence generated by

Vit = ByVim + (1 = Bp) (it + (1 = @n)IF (Vin — AnAvin)),  ¥m 20, 1.2)

where A is an a-inverse-strongly monotone operator on H and B is a maximal monotone operator on H.
They proved the strong convergence of {v;;} to a solution v* € (A + B)'0 of the VI. Subsequently, Pholasa
et al. [14] extended the result in [13] to the setting of Banach spaces, and proved the strong convergence of
{Viu} to a point of (A + B)™0.

In 2010, Takahashi et al. [15] invented a Mann-type Halpern iterative scheme for solving the fixed point
problem (FPP) of a nonexpansive mapping S : C — C and the VI for an a-inverse-strongly monotone
mapping A : C —» H and a maximal monotone operator B : D(B) ¢ C — H, i.e., for any given y, =y € C,
{¥} is the sequence generated by

ym+1 = ﬁmYm + (1 - Bm)s(amy + (1 - am)]/{}m(ym - AmAym))’ vym > 1’ (1'3)

where {A,,} ¢ (0, 2a) and {an}, {B,,} ¢ (0, 1) are such that (i) limp_,c.an = 0 and anozlam =o00; (ii)0<ac<
An < b < 2a and limp,_,oo(A — Amy1) = 0 and (iii) 0 < ¢ < B,, < d < 1. They proved the strong convergence
of {y,,} to a point of Fix(S) n (4 + B)™0.

Since the VI is important and interesting, many researchers have presented and developed a great
number of iterative methods for solving the VI in several approaches, see e.g., [7,13-25] and references
therein. Meanwhile, we consider the FPP of finding a point u* € C such that u* = Su*, where S: C — C is
a nonlinear mapping. The solution set of the FPP is denoted by Fix(S). In the practical life, many mathemat-
ical models have been formulated to solve this problem. At present, many mathematicians are interested in
finding a common solution to the VI and FPP, i.e., find a point u* s.t. u* € Fix(S) n (A + B)™0.

Assume that A : C — H is an inverse-strongly monotone mapping, B : D(B) ¢ C — 2! is a maximal
monotone operator, and S : C — C is a nonexpansive mapping. In 2011, Manaka and Takahashi [22] sug-
gested an iterative process, i.e., for any given uq € C, {u,} is the sequence generated by

Uns1 = Al + (1 = am)sjfm(um - AnAty), Vm 20, (1.4)

where {an,} ¢ (0,1) and {A,;} ¢ (0, 00). They proved the weak convergence of {u,} to a point of Fix(S) n
(A + B)™'0 under some appropriate conditions.

Furthermore, suppose that g € (1, 2] and E is a real Banach space. Let f : E — E be a p-contraction and
S : E — E be a nonexpansive mapping. Let A : E — E be an a-inverse-strongly accretive mapping of order
q and B : E — 2F be an m-accretive operator. Recently, to solve the FPP of S and the VI of finding u* € E s.t.
0 € (A + B)u*, Sunthrayuth and Cholamjiak [7] suggested a modified viscosity-type extragradient method
in the setting of uniformly convex and g-uniformly smooth Banach space E with g-uniform smoothness
coefficient kg, i.e., for any given ug € E, {up} is the sequence generated by

Ymn = ]fm(um = AnAu),
Zm = I{ (tm = AnAYp + Tn(Y = Um), (1.5)
Un1 = O f(Um) + Bplim + VSZm, YM 20,

where ]fm = I+ AnB) L {am}, B}y ks {1m} € (0, 1), and {A,} € (0, o) are such that: (i) am + B, + ¥ = 15
(i) limy -, oo = Oand Y, &y, = 00 (iii) {8,,} € [a, b] € (0, 1);and (iv) 0 < A < Ay < A/t < U < (@q /i) 4D
and O < r < ry, < 1. They proved strong convergence of {u,,} to a point of Fix(S) n (4 + B)"'0, which solves
a certain hierarchical variational inequality (HVI).

On the other hand, let J: E — 2E" be the normalized duality mapping from E into 2" defined by
JX) ={¢ € E*: {x, d) = |x|? = |P|*}, Vx € E, where (-,-) denotes the generalized duality pairing between
E and E*. Recall that if E is smooth, then ] is single-valued. Let By, B, : C — E be two nonlinear mappings
in a smooth Banach space E. The general system of variational inequalities (GSVI) is to find (x*, y*) € C x C
such that
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(1.6)

UBy* +x* -y, J(x -x*)) 20, VxeC,
(WBx* +y* —x*,J(x -y*)) =20, VxeC,

where y; is a positive constant fori = 1, 2. In particular, if E = H a real Hilbert space, it is easy to see that the
GSVI (1.6) reduces to the GSVI considered in [3] as follows:

By*+x* -y, x—x* >0, VxeC,
{(ul v y ) )

(WBx* +y* —x*,x -y =20, VxeC.
In [3], problem (1.7) is transformed into a fixed point problem in the following way.

Lemma 1.1. [3] For given x*, y* € C, (x*, y*) is a solution of problem (1.7) if and only if x* € GSVI(C, By, B,),
where GSVI(C, By, B,) is the fixed point set of the mapping G = Pc(I — u,By)Pc(I - ,B,), andy* = Pc(I - p,Bo)x*.

Recently, using Lemma 1.1, Cai et al. [2] proposed a viscosity implicit rule for solving the GSVI (1.7) with
the FPP constraint of an asymptotically nonexpansive mapping T with a sequence {6}, i.e., for any given
Xo € C, the sequence {x,} is generated as follows:

Un = SpXn + (1 = S)Ys

2y = Pe(uy - ]lszun),

Yo = Pe(zn - HlBlzn),

Xn+1 = PC[anf(Xn) + (I - aon)Tn n]’ vn = 0,

(1.8)

where {a,}, {sn} (0, 1] are such that (i) lim,_.&, = 0, Y &y = 00, and Y7 [@n,1 — Ayl < 00; (ii) limp_.o
On/0ty = 05 (iii) O < € < 5, <1, Y17 ISne1 — Sul < 003 and (iv) Y2 IT"*ly, — T",|l < co. They proved that the
sequence constructed by (1.8) converges strongly to a point of GSVI(C, A;, A,) n Fix(T), which solves
a certain HVI.

In a real Banach space E, let the VI indicate a variational inclusion for two accretive operators and let
the CFPP denote a common fixed point problem of countably many nonexpansive mappings. In this article,
we introduce a generalized extragradient implicit method for solving the GSVI (1.6) with the VI and CFPP
constraints. We then prove the strong convergence of the suggested method to a solution of the GSVI (1.6)
with the VI and CFPP constraints under some suitable assumptions. Our results improve and extend the
corresponding results in Manaka and Takahashi [22], Sunthrayuth and Cholamjiak [7], and Cai et al. [2] to
a certain extent.

2 Preliminaries

Let C be a nonempty, closed, and convex subset of a real Banach space E with the dual E*. For simplicity, we
shall use the following notations: x,, — x indicates the strong convergence of the sequence {x,} to x and
x, — x denotes the weak convergence of the sequence {x,} to x. Given a self-mapping T on C. We use the
notations R and Fix(T) to stand for the set of all real numbers and the fixed point set of T, respectively.
Recall that T is said to be nonexpansive if |Tu — Tv| < ||lu — v||, Vu, v € C. A mapping f: C — C is called
a contraction if 36 € [0, 1) s.t. [f(w) — f(v)| < 6|lu — V||, Yu, v € C. In addition, recall that the normalized
duality mapping J defined by

JO) ={p € E*: (x, ) = IxI’ = |$I*}, VxeE, 21

is the one from E into the family of nonempty (by Hahn-Banach’s theorem), weak*, and compact subsets
of E*, satisfying J(tu) = 1J(w) and J(-u) = —J(u) forallT > 0 and u € E.
The modulus of convexity of E is the function 6 : (0, 2] — [0, 1] defined as follows:
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8x(e) = inf{l - w cu,veE Jul =Vl =1, Ju-v| > e}.

The modulus of smoothness of E is the function p; : R, := [0, co) — R, defined as follows:

lu + v + |lu - 7v|
2

pe(T) = sup{ -1:u,vekE,|ul=I|vl= 1}-

A Banach space E is said to be uniformly convex if 6g(¢) > 0, Ve € (0, 2]. It is said to be uniformly smooth if
lim,_ o:px(t)r = 0. In addition, it is said to be g-uniformly smooth with g > 1if3c > 0 s.t. p(t) < ct9,vt > 0.
If E is g-uniformly smooth, then g < 2 and E is also uniformly smooth, and if E is uniformly convex, then E
is also reflexive and strictly convex. It is known that Hilbert space H is 2-uniformly smooth. Furthermore,
sequence space £, and Lebesgue space L, are min{p, 2}-uniformly smooth for every p > 1 [26].

Let g > 1. The generalized duality mapping J, : E — 2F is defined as follows:

J,00) ={¢ € E* = (x, p) = |xI9, Ipll = lIx]*~'3, (2.2)

where (-,-) denotes the generalized duality pairing between E and E*. In particular, if g = 2, then J, = J is
the normalized duality mapping of E. It is known that J;(x) = IxI2-2J (x), Vx # 0, and that Jg is the sub-
differential of the functional 3||~||q . If E is uniformly smooth, the generalized duality mapping J; is one-to-
one and single-valued. Furthermore, J; satisfies J; = ];,1, where J,, is the generalized duality mapping of E*
with % + % = 1. Note that no Banach space is g-uniformly smooth for g > 2, see [8] for more details.

The following lemma is an immediate consequence of the subdifferential inequality of the func-
tional - .
q
Lemma 2.1. Let g > 1 and E be a real normed space with the generalized duality mapping J,. Then,
Ix + yI? < IxI9 + gy, j,(x +y)), X,y € E, j,(x +y) € Jp(x +y). (23)

The following lemma can be obtained from the result in [26].

Lemma 2.2. Let ¢ > 1 and r > 0 be two fixed real numbers, and let E be uniformly convex. Then, there exist
strictly increasing, continuous, and convex functions g, h : R, — R, with g(0) = 0 and h(0) = 0 such that
(@ lpu + (1= vl < plul? + (1 - lvi? - pQ@ - wg(lu - vi) with p € [0, 1];

(b) h(llu = vl) < ull - g{u, j;(v)) + (g - DIvl

for allu,v € B, and j,(v) € J;(v), where B, :={y € E : |ly|l < r}.
The following lemma is an analogue of Lemma 2.2(a).

Lemma 2.3. Let q > 1 and r > 0 be two fixed real numbers, and let E be uniformly convex. Then, there exists
a strictly increasing, continuous, and convex function g : R, — R, with g(0) = O such that

Au + pv + vwl? < Allull? + plvi? + viwl? - Aug(llu - vi)
forallu,v,w e B, and A, y,v € [0, 1] withA + p +v =1.
Proposition 2.1. [27] Let {S,.}52, be a sequence of self-mappings on C such that Zﬁil SupxeclSwx — Sp_x|| < oo.

Then, for each y € C, {S,y} converges strongly to some point of C. Moreover, let S be a self-mapping on C
defined by Sy = lim,_,,Syy for all y € C. Then, lim,,_,, SupxecllSpxx — Sx|| = 0.

Proposition 2.2. [26] Let q € (1,2] be a fixed real number and let E be q-uniformly smooth. Then,
Ix + yl? < X2 + q{y, J(X)) + k4llyl? Vx,y € E, where x, is the g-uniform smoothness coefficient of E.
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Let D be a subset of C and let II be a mapping of C into D. Then II is said to be sunny if
I[II(x) + t(x - TI(x))] = I(x), whenever II(x) + t(x — II(x)) € C for x € C and t > 0. A mapping II of C
into itself is called a retraction if II> = II. If a mapping II of C into itself is a retraction, then Il(z) = z for
each z € R(IT), where R(II) is the range of II. A subset D of C is called a sunny nonexpansive retract of C if
there exists a sunny nonexpansive retraction from C onto D. In terms of [28], we know that if E is smooth
and II is a retraction of C onto D, then the following statements are equivalent:

(i) II is sunny and nonexpansive;
(i) I - OWIP < x -y, JAx) - I(y))), Vx,y € C;
(iii) (x - O(x), J(y - (x))) < 0,¥x e C,y € D.

Let B : C — 2F be a set-valued operator with Bx # @, Vx € C.Letq > 1. An operator B is said to be accretive
ifforeachx,y € C,3j,(x - y) € Jy(x - y)s.t.(u — v, j,(x - y)) > 0, Vu € Bx, v € By. An accretive operator B is
said to be a-inverse-strongly accretive of order g if foreach x, y € C,3j,(x - y) € J(x = y)st{u — v, j,(x - y)) 2
allu — v||9, Yu € Bx,v € By forsomea > 0. If E = H a Hilbert space, then B is called a-inverse-strongly mono-
tone. An accretive operator B is said to be m-accretive if (I + AB)C = E forall A > 0. For an accretive operator B,
we define the mapping J¥ : (I + AB)C — C by J& = (I + AB)! for each A > 0. Such J? is called the resolvent of
Bfor A > 0.

Lemma 2.4. [21] Let B : C — 2E be an m-accretive operator. Then, the following statements hold:
(i) the resolvent identity: JEx = ]5(%}( + (1 - %)]}fx), VA, u > 0,x € E;

(i) if J? is a resolvent of B for A > 0, then J is a firmly nonexpansive mapping with Fix(J¥) = B0,
where B'0 = {x ¢ C: 0 € Bx};
(iii) if E = H a Hilbert space, B is a maximal monotone.

Let A : C — E be an a-inverse-strongly accretive mapping of order g and B : C — 2F be an m-accretive
operator. In the sequel, we will use the notation Ty := J2(I - A4) = (I + AB)"(I - A4), VA > 0.

Proposition 2.3. [21] The following statements hold:
(i) Fix(Th) = (A + B)''0, VA > 0;
@) ly - Tyl <2lly - Tyl forO<A<randy € C.

Proposition 2.4. [29] Let E be uniformly smooth, T : C — C be a nonexpansive mapping with Fix(T) + &, and
f: C — C be a fixed contraction. For each t € (0, 1), let z; € C be the unique fixed point of the contraction
Cz0tf(z2)+(A-t)Tz on C, i.e., z; = tf(z;) + (1 — t)Tz;. Then, {z;} converges strongly to a fixed point
x* € Fix(T), which solves HVI: {(I — f)x*, J(x* — x)) < 0, Vx € Fix(T).

Proposition 2.5. [21] Let E be g-uniformly smooth with q € (1, 2]. Suppose that A : C — E is an a-inverse-
strongly accretive mapping of order q. Then, for any given A > 0,

I - AB)u — (I - AAV]? < [lu - v|[9 - A(aq — kAT D[ Au - Av|[?,  Vu,v e C,

1
where kg > 0 is the g-uniform smoothness coefficient of E. In particular, if 0 <A < (‘i—a)q_l, then I - AA
q

is nonexpansive.

Proposition 2.6. [30] Let E be q-uniformly smooth with q € (1, 2]. Let II¢ be a sunny nonexpansive retraction
from E onto C. Suppose that B; and B, : C — E are a-inverse-strongly accretive mapping of order q and
B-inverse-strongly accretive mapping of order q, respectively. Let G : C — C be a mapping defined by
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1

G = Tiel - wBOTIC - uB;) and GSVIC, By, By) denote the fixed point set of G. If 0 <y < (%)

Kq

1
and 0 < u, < (i—ﬁ)'ﬂ, then G is nonexpansive.
q

Lemma 2.5. [30] Let E be g-uniformly smooth with q € (1, 2]. Let I1; be a sunny nonexpansive retraction from
E onto C. Suppose that By, B, : C — E are two nonlinear mappings. For given x*, y* € C, (x*, y*) is a solution of
problem (1.6) if and only if x* € GSVI(C, By, B,), where GSV I(C, By, B,) is the fixed point set of the mapping
G = e ~ B — yBy), and y* = Te(I — iBo)x".

Lemma 2.6. [31] Let E be smooth, A : C — E be accretive, and I1; be a sunny nonexpansive retraction from E
onto C. Then, VI(C, A) = Fix(Il¢(I - AA)), VA > 0, where VI(C, A) is the solution set of the VIP of finding z € C
s.t.(Az,J(z-y)) <0, VyeC.

Recall that if E = H a Hilbert space, then the sunny nonexpansive retraction Il from E onto C coincides
with the metric projection P; from H onto C. Moreover, if E is uniformly smooth and T is a nonexpansive
self-mapping on C with Fix(T) + &, then Fix(T) is a sunny nonexpansive retract from E onto C [32].
By Lemma 2.6, we know that x* € Fix(T) solves the HVI in Proposition 2.4 if and only if x* solves the fixed
point equation x* = Tlpixr)f (x*).

Lemma 2.7. [33] Let {I;;} be a sequence of real numbers that does not decrease at infinity in the sense that
there exists a subsequence {I,,} of {I,;} that satisfies T, < T,,.;1 for each integer i > 1. Define the sequence
{T(M}n=n, of integers as follows:

7(n) = max{k < n: I < Dl

where integer ng > 1 such that {k < nq : Iy < I}.1} # @. Then, the following statements hold:
(i) t(ng) < 7(ng + D<--- and t(n) — oo;
(ii) I‘T(n) < FT(,,)+1 and T, < I‘T(n)+1 vn > np.

Lemma 2.8. [34] Let E be strictly convex, and {T,}52, be a sequence of nonexpansive mappings on C. Suppose
that (;2oFix(T,) is nonempty. Let {A,} be a sequence of positive numbers with > A, = 1. Then, a mapping
S on C defined by Sx = }° AyThx, Vx € C, is defined well, nonexpansive operator and Fix(S) = (52oFix(T,)
holds.

Lemma 2.9. [29] Let {a,} be a sequence in [0, co) such that a,,; < (1 — sp)a, + SyVu, ¥Yn > 0, where {s,} and
{va} satisfy the conditions: (i) {s.} c [0, 1] and )’ s, = co; and (ii) limsupp_,eVa < 0 01 Y [SxVl < 00.
Then, lim,,_,.,a, = O.

3 Main results

Throughout this article, we assume that E is a g-uniformly smooth and uniformly convex Banach space
with g € (1, 2]. Let C be a nonempty, closed, and convex subset of E and Il be a sunny nonexpansive
retraction from E onto C. Let f : C — C be a §-contraction with constant § € [0, 1) and {S,};2, be a countable
family of nonexpansive self-mappingsonC.Let A : C — E and B : C — 2F be a g-inverse-strongly accretive
mapping of order ¢ and an m-accretive operator, respectively. Suppose that B; and B, : C — E are
a-inverse-strongly accretive mapping of order g and f-inverse-strongly accretive mapping of order g,
respectively. Assume that Q = % Fix(S,) N GSVI(C, B, B,) N (A + B)™10 + @.
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Algorithm 3.1. Generalized extragradient implicit method for the GSVI (1.6) with the VI and CFPP con-
straints. Given x € C arbitrarily. Given the current iterate x,, compute x,,; as follows:
Step 1. Calculate

Wn = SpXn + (1 - sn)uny
Vo = Ilc(wy — VzBZWn)a
Uy = Ie(v, - V1Blvn)-
Step 2. Calculate y, = J{ (un — AnAuy).
Step 3. Calculate z, = ],ﬁ (un — A4y, + n(y, — un)).
Step 4. Calculate Xn.1 = anf(Xn) + B Xn + ¥,SnZn, Where {1}, {Su}, {an}, {B,}, ¥} € (0, 1] with ay + B, + y, =1
and {A,} ¢ (0, c0).
Setn:=n+ 1and go to Step 1.

Lemma 3.1. Let {x,,} be the sequence generated by Algorithm 3.1. Then, {x,} is bounded.

Proof. Let p € Q = 82, Fix(S,) n GSVI(C, By, B;) n (A + B)10. Then, we observe that

A
p=Gp=S5p= ]/{3,1(17 - Aip) = ]/ﬁ((l — )P + rn(p - r_nAp))-
n

By Propositions 2.5 and 2.6, we know that I — By, I — u,B,, and G = II¢(I — u,B)Ilc(I — u,B,) are nonex-
pansive mappings. Then, we obtain that

lun = pll = 1G(Swtn + (1 = sputy) = pll < 1520 = P) + (1 = sy — P < SullXy = plIl + (1 = spllun - pl,
which hence yields
lu, - pll < lIx, - pll.

Using Lemma 2.4 (ii) and Proposition 2.5, we have

Y = PI9 = W = ArAn) = IR (P = LAY < I = Aty = (I = AP < Iy - pll?

(3.1)
- An(aq - KqAr?il)”Aun - Ap"q,
which hence leads to
Iy, = pll < llu, - pl-
By the convexity of ||-|| for all g € (1, 2] and (3.1), we deduce that
A A
Iz, = pl9 = Ilfﬁ((l = Iun + rn(yn - r—"Ayn)) - Iﬁ((l - hp + rn(p - r—"Ap))llq
n n
A A
< (1 = rllup - pl? + rnII(I - —"A)yn - (I - —"A)pllq
rl’l rn
An KA
< (= m)lun = Pl + 1af ly, = pI* — = 0g ~ a1 |14 — Apll (3.2)
n n

B A kAI!
< (1= mlun - pll? + rn["”n = Pl = Au(0g — kAT DAy — Apl? - r—”(oq - iqfl 14y, - Apl
n n
g-1 Kq/\r;rl
= ltn =PI = 1An(0g = koA Dl Aun = Apl = Anf 09 = — 5 [l Ay, - ApI.

n

This ensures that
lzn = Pl < llun - pl.

Hence, we have
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%21 = Pl = lan(f Oa) = P) + By = D) + Vo(Snzn — D)
< anllf () = pll + B, Ixn = Pl + V,lISuzn — Pl
< an(Ilf ) = F(I + lIp = F(PID) + B,lIxn = Pl + Y lISuzn — P
< ay(8lx, = pll + lIp = fF(PID) + B,lIxn = DIl + Yllxn — Pl
=(1 - an(1 = 8)lxy, - pll + anllp - F(P)I

Ip - f(p)I
< maxi ||x, - pll, —————4.
{n 0Pl
By induction, we obtain ||x, — p|| < max{llxo -pl, W}, vn > 0. Consequently, {x,} is bounded, and so
are {unH{va}, {3} {2n}, {Snzn}, {Aun}, {Ay,}. This completes the proof. |

We now state and prove the main result of this article.

Theorem 3.1. Let {x,,} be the sequence generated by Algorithm 3.1. Suppose that the following conditions
hold:
(C1): limy_eo@y = 0 and Y @ty = 00;
(C2): 0<as<B,<b<1,0<c<s, <1
1
q-1

(C3): O<rsrn<1and0</ls/ln<%sy<(ﬂ) ;

Kq
i a
(C4): 0 <y, < (%)q and 0 <y, < (?)q .

a
Assume that Z;“;O SUPxeplISn+1Xx — Suxll < co for any bounded subset D of C. Let S : C —» C be a mapping
defined by Sx = lim,_,,,Syx, Vx € C, and suppose that Fix(S) = (2o Fix(S,). Then, x, — x* € Q, which is
the unique solution to the HVI: {((I — f)x*, J(x* — p)) < 0, Vp € Q, i.e., the fixed point equation x* = g f (x*).
Proof. First of all, let x* € Q and y* = Il¢(x* — u,B,x*). Using Proposition 2.5, we obtain

Ve = y*I7 = ITe(Wn — p,Bawn) — Tle(x* = pBox )| < o = X*19 = uy(Bq — Kgits )| Bawn — Box*|
and

e = X719 = ITc(Ve = pyBivi) = Te(y™ = By < v = y7I - py(ag — kg HlIBavy = Biy”l4.
Combining the last two inequalities, we have

lun = X9 < flw = X*19 = p(Bg — Kgutd DIBawy — Box*9 = py(aq — kg |Byvy — By*[9.
Using Lemmas 2.1, 2.3, and (3.2), we obtain
IXns1 = X9 < Natn(f On) = FO)) + By = X*) + Yo(Spzn = XD + qan(f (X*) = X*, Jg(Xns1 — X))
< allf O6) = FOONT + Byllxn = x*17 + YllSnzn = X*17 = By (IXn = Snznl))

+ qanU(X*) - X*, ]q(Xn+1 - X*»
< apbllxn = XM + Blxn — x*19 + Ylllun — X*19 - rAn(0g — kAT D Au, — Ax*|4

qg-1
- An(oq - K;ﬁ: )HA)/,. - AX*"q:| - Bnyng(”Xn - SnZn") + qarI(f(X*) - X*, ]q(XrHl - X*»

(3.3)
< Abllxn — X9 + Bylxa — x*17 + yllIxn — X*17 = py(Bq — Kgud DIIBawy — Box*[4

~ y(aq — xgu B — Byl — rd(0q — kA8 DAy, — Al
KAS!
- ofoq - L2 Niay, - axtF | - gl - Sl
n

+ qon(f (X*) = x*, Jg(ns1 — X))



1778 =— Lu-Chuan Ceng et al. DE GRUYTER

=(1 = an(1 = )Xy — x*I7 = ¥ [(Bg — K DIBawn — Box*[9 + py(aq — kgu ™ H||Bvy — Bry*|l9

g-1 " kAd !
+ 1An(0g — kAT )IAu, — AxH[9 + Ap| 0g - e
n

)IlAyn - AX*II”] = BoYu& (IXn = Snznll)

+ qan(f(X*) - X*) ]q(XrH-] - X*)>.
For each n > 0’ we set r" = ”X" - X*”q3 En = an(l - 6); 671 = qan«f_ I)X*’ ]q(XnH - X*)>’ and

M = Yl1o(Bq — Kgus ™ DIBawn — Bx*19 + py(aq — kgt )IBive = Biy™l9 + 1Aa(0q — kAT DAty — Ax|

KA1
* ""("q ) rq—"l)nAyn - Ax*uq] + Baig (e = Suzal).
n
Then, (3.3) can be rewritten as follows:
Li<Q-e)lh-n,+6, Vnz=0, (3.4)
and hence,
Lii<Q-g),+6, Vn=O0. (3.5)

We next show the strong convergence of {I};} by the following two cases:
Case 1. Suppose that there exists an integer ny > 1 such that {I,;} is nonincreasing. Then,

I = [y — O.
From (3.4), we obtain
0<n, <L — T+ 6n— &l

Since €, — 0 and 6, — 0, we have 17, — 0. This ensures that lim,_,.g([x, — Sxzall) = 0,

nlim 1Bawyn — Box*|| = nlim |Byvn — Biy*ll = 0 (3.6)
and
lim [Au, — Ax*| = lim |4y, - Ax'| = O. (3.7)
n—oo n—oo

Note that g is a strictly increasing, continuous, and convex function with g(0) = 0. So, it follows that

lim ||x, — Szl = O. (3.8)
n—oo

On the other hand, using Lemma 2.2(b) and the firm nonexpansivity of II;, we have

v = 7119 = [T c(wy — VZBZWn) = IIe(x* - VzBZX*)"q
< (W = WoBowy — (X* = W,Box*), J;(v = y*))
=(Wp = X5 Jg( = V")) + Wy (Box™ — Bowy, Jj(Va — y*))

1 .
< g[HWn -7 + (g = Dlve = y* 17 = l(Iwy = x* = v + y*ID] + Uy (Box* — Bowy, Jy(vy — Y,

which hence attains
Ve = y*19 < llwn = x*19 = a(llw = Vo = X* + y*I) + quy|Box* — Bawillllv, — y*1971.
In a similar way, we obtain

lun — x*9 = (v — pyBivi) — Te(y* — By
<V = B — (v* = i By®), J(un — x¥))
=V = ¥*, Jg(un = X*)) + py(Bry* — B, Jy(Uy — X*))

1 ~
< E["Vn - )/*||q + (q - 1)”un - X*"q - hZ(”Vn - y* —Up + X*”)] + y1<Bly* - Ble ]q(un - X*»,
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which hence attains

Mt = X9 < Ve = Y19 = Aa(llve = ¥* = tn + X°1) + @y IBy* — Buvalllun — x*1971
<lxn = X719 = Ay(llwn = v = X* + y*1) + @l Bax* — BowallIve — y*9-1 (3.9)
— (Ve = Un + X" = y*1) + @y IBry* = Buvalllluy — x*J71.
Since J. ;ﬁ is firmly nonexpansive (due to Lemma 2.4 (ii)), by Lemma 2.2(b), we obtain
Iy, = x*19 = T2 (un — ApAun) — JE (x* = ApAx*)|4
<{(Un = AAuy) — (0 = AAX), Jo(y, = X))
< é[ll(un = AdAuy) — (" = L AX)IT + (g = Dy, — x*19 = ha(llun — An(Aun — Ax*) = y, D],

which, together with (3.1), implies that

”yn - X*"q < ”(un - AnAun) - (X* - AnAX*)”q - hl(”un - An(Aun - AX*) - yn")
<lup = x* 19 = hillun — An(Aun — AX*) = y,lD).

This, together with (3.2) and (3.9), implies that
X1 = X7 < Anllf () = XN+ Bllxn — X*19 + Y llSnzn — x4
< tllf () = X9 + Bylxn = x*M7 + y[(1 = m)llun — X9 + rlly, — x*19]
S allf O0n) = X7 + Bl = X*19 + {1 = m)llun — x4
+ alllun = X1 = hy(llun — An(Aun — Ax*) =y, D1}
= aullf O) = XN + BlIxn = X9 + Yl — X1 = nhu(llun — An(Aun — Ax*) = y,ID}
< @llf () = X9+ Byl = X + Yl = x¥19 = Pu(llwn = Vo = X* + Y*1) = Fa(llvie = U + x* = y*I)
+ qulIBiy* — Bivalllun — x*1971 + qp,lIBox* — Bowllllve — y*[97"
= rh(llun — An(Aun — Ax*) - y,ID}
< allf ) = X719 + xn = x*19 = YdBu(Iwn — Voo = X* + Y1) + Fo(llve — u + x* = y*1)
+ rh(llun — An(Aun — Ax*) = y,ID}
+ qiyIBry* = Byvalllun — x*1971 + quyIBox* — Bawallllve = #1197,

which immediately yields

Vel (W = Voo = x* + Y*1) + Bl = tn + x* = y*1) + mdu(llun — An(Auy — Ax*) = y,ID}
< anlf (%) = x*19 + Ly = Tyir + qiyBiy* — Bvallllun — x*[971 + gpo,lIBox™ — Bowillllvy — y*[1971.

Since ﬁl, Hz, and h; are strictly increasing, continuous, and convex functions with le(O) = flz(O) = h(0) =0,
from (3.6) and (3.7), we conclude that |[w, — v, — x* + y*| = O, [V, — Uy + x* — y*| — 0, and |lu, — Y,/ - O
as n — oo. This together with w,, = s;x,, + (1 — s,)u, ensures that

lim |x; — upll = lim [w, — u,ll = lim [ju, - y,|l = 0. (3.10)
n—oo

n—oo n—oo

In a similar way, we obtain

Iz = x*19 = IJF (un = AnAY, + B(¥, = Un)) = JR.(X* = ApAx?)[4
<A{(un = LAy, + (Y, — up)) — (X* = A,Ax7), ]q(Zn - x*))

1
< E["(un - LAY, + 1(Y, — up)) — (X = L AXO + (@ - Dllzn — x*|4

- hz(”un + rn(yn - un) - /\n(Ayn - AX*) - Zn”)],

which, together with (3.2), implies that
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Izn = x*19 < |(Un = ArAY, + 1V — Un)) — (X* = AAXN = ho(luy + 1(Y, — Un) — An(Ay, — Ax*) = zy)
<up = X7 = hy(llun + 1y, = Un) — Ap(Ay, — AX*) = zy|).

So, it follows that

(%41 = X9 < @nllf OG) = X719 + BylIxn = X9 + YyllSpzn — x*119
S Wullf () = X719+ Bulxn = x*19 + ylllun = x*19 = ha(llun + (¥, = un) — An(Ay, — Ax*) = zyl)]
< agllf (Xa) = x* 12 + lIx, — x*9 - ynhz(”un + rn(yn - up) - /\n(Ayn - Ax*) - zy|),
which immediately leads to
Ynhz(Hun + Tn()’n - un) - An(Ayn - AX*) - Zn”) < an"f(xn) - X*"q + 1—‘rl - 1—‘nJrl-

Note that h; is a strictly increasing, continuous, and convex function with h,(0) = 0. Using (3.7) and (3.10),
we obtain

1inln—>oo||un - Zn” = 0,
which, together with (3.10), implies that

lim ||x, — z,ll = O. (3.11)

n—oo

Combining (3.8) and (3.11), we obtain
1% = SpXall < X = Spznll + 1Sn2n = SwXall < X = SnZall + 20 = Xull > 0 (1 — ©c0).

Moreover, using Proposition 2.1, we obtain

limy, oo ISiXn — Sxill = O.
So, it follows that

1Sxn = Xull < 15X = Sxull + ISwXn = Xl = 0 (n — 00). 3.12)

For eachn > 0, we put Ty, := ]ABn(I — AA). Then, from (3.10), we obtain

lim, -, eollun — Ty uall = O.
Note that 0 < A < A, for all n > 0, and using Proposition 2.3 (ii), we obtain from (3.10) that

1Thxn — Xull < 1Tt — Tattnll + [ Tatty — unll + llttn — Xl
< 2xn = unll + 1 Tattn, — ugll (3.13)
<2|Ixn — ugll + 2||T/1,,un Ul -0 (n— o0).

In addition, again from (3.10), we obtain
1Gxn = Xull < 1GXn = GWall + 1GWy — Xall < 1X0 = Wall + Uy — Xull = O(n — 00). (3.14)

We define the mapping @ : C — C by ®x == 6,Sx + 0,Gx + (1 — 0, — 6,)T)x, Vx € C, with 6, + 6, < 1 for con-
stants 0y, 6, € (0, 1). Then, by Lemma 2.8 and Proposition 2.3 (i), we know that @ is nonexpansive and

Fix(®) = Fix(S) n Fix(G) n Fix(Ty) = MR Fix(S,) N GSVI(C, By, By) N (A + B)'0(=Q).
Taking into account that
DX = Xl < O1l1SXn = Xall + O201GX = Xnll + (1 = 61 = O Tixn — Xarll,

we deduce from (3.12) to (3.14) that

nlijgo [Px, — Xqll = 0. (3.15)
Let z; = sf(zs) + (1 — s)®z;, Vs € (0, 1). Then, it follows from Proposition 2.4 that {z;} converges strongly
to a point x* € Fix(®) = Q, which solves the HVI as follows:

(A=, Jx*-p)) <0, VpeQ.
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In addition, from Lemma 2.1, we obtain
Izs = xall? = lIs(f(z5) — Xn) + (1 = $)(Dzs — x|
< (1 - s)q"cDZs - Xn"q + qs(f(zs) = Xn, ]q(Zs - Xn)>
=1 - s)|Dzs — x4l + gs{f(zs) — zs, ]q(Zs — Xn)) + qS{zs — Xp, ]q(Zs - Xn))
< (1 - S)q("q)zs - CDXn" + "cDXn - Xn")q + qs<f(Zs) = Zs, ]q(Zs - Xn)) + qS"Zs - Xn"q

<A - 9)(llzs = Xull + 1Pxn — xal)? + gs{f(2s) — Zs, Jy(2Zs — X)) + gslzs — xall,

which immediately attains

1-25) s—1
Fz9) - 26 0 — 20) < Sz — sl + s — 3t + Lz — e
From (3.15), we have
Y _ Y _
limsup(f(zs) — zs, J;(xn — 25)) < 1-5) M + as 1M = ((1 ) + g 1)M, (3.16)
n—oo qs qs qs

where M is a constant such that |z — x,4|? <M for all n>0 and s € (0,1). It is easy to see that
((1-15) +gs -1)gs — 0 as s — 0. Since J; is norm-to-norm uniformly continuous on bounded subsets
of E and z; — x*, we obtain

”]q(xn - Zs) - ]q(xn -x) -0 (s—0).
So, we obtain

[{f(zs) — zs, ]q(xn -z5)) - (f(x*) = x*, ]q(xn - XN
= [{f(zs) = (X, Ji0tn = 25)) + (FOX*) = X*, JgOn = 25)) + X = Zs, Jg(n — 25)) — (F(X) = x*, J;0t — X))
< [FO) = X7 JqOn = 25) = JgOtn = XN + [{f(2s) = FO), JgOn = 2| + [ = 25, Jg(Xn — 2))|
< IF ) = X Mg = 25) = JgOtn = XN + (A + 8)llzs — x*[xn — 2197
Hence, for each n > 0, we obtain
limg_o{f (2s) — Zs, Jy(Xn — 25)) = (fF(X*) = x*, Jy(Xn — X7)).
From (3.16), as s — 0, it follows that

limsup(f(x*) — x*, J;(x, — x*)) < 0. (3.17)

n—co
By (C1) and (3.8), we obtain
[Xne1 = Xall = llan f (Xn) + BXn + V,Sezn = Xall < @ullf (Xn) = Xall + Y lISn2n — Xall > 0 (n —> 00).  (3.18)
Using (3.17) and (3.18), we have
limsup(f(x*) — x*, J(Xq+1 — x*)) < 0. (3.19)

n—oo

Using Lemma 2.9 and (3.19), we can infer that I, -» 0 as n — co. Thus, x, —» x* asn — oo.
Case 2. Suppose that there exists a subsequence {I}.} of {I}} s.t. Ij; < Ti+1, Vi € N, where N is the set
of all positive integers. Define the mapping 7 : N — N by

(k) = max{i < k : I; < [;,4}.
Using Lemma 2.7, we have
gy < T and - T < Ty
Putting I} = |x, — x*|9, Vk € N, and using the same inference as in Case 1, we can obtain

klim Xy +1 = Xzl = O (3.20)
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and

limsup(f(x*) - x*, J;(Xz(y+1 — X)) < 0. (3.21)

k—o00

Because of Iy < Irgy+1 and arg) > 0, we conclude from (3.5) that

Xeqey = x*19 < N iI 5 F&x) = x*, i1 — X)),

and hence,

limsup||x;gy — x*[9 < 0.

k—oo
Thus, we have

lim ”X‘r(k) - X*"q = 0.
k—o00

Using Proposition 2.2 and (3.20), we obtain

IXey+1 = XN = Xy = X*19 < G oy1 = Xeos Jgegy = X)) + KglXeqoy+1 — Xeqoll?

< qlXegoy1 — XeollXegoy = X197 + KglXego+1 — Xe@ollt — 0 (k — 00).
Taking into account Iy < Ir)+1, we have
Ixie = x*19 < xegosr = X 19 < IXeey = X9+ lXegioyr1 = XeollXeqey = X197 + KgllXegioys1 — Xeqoll? -

It is easy to see from (3.20) that x;, — x* as k — oo. This completes the proof. O

We also obtain the strong convergence result for the generalized extragradient implicit method in a real
Hilbert space H. It is well known that , = 1 [26]. Thus, by Theorem 3.1, we derive the following conclusion.

Corollary 3.1. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let f: C — C be a
§-contraction with constant 6 € [0, 1) and {S,}72 o be a countable family of nonexpansive self-mappings on C.
Let A:C— H and B: C — 2" be a o-inverse-strongly monotone mapping and a maximal monotone
operator, respectively. Suppose that B, and B, : C — H are a-inverse-strongly monotone mapping and
B-inverse-strongly monotone mapping, respectively. Assume that Q = (72Fix(S,) N GSVI(C, By, By) N
(A + B)'0 # @. For any given xq € C, let {x,}2, be the sequence generated by

Wy = SpXp + (1 = Sp)up,

Vn = Pc(Wy — 1,Bawn),

un = Pc(vn — 1,B1vn),

0 = T8 (un — AnAuy),

Zn = J1 (Un = AaAY, + 1Y, — Un)),

Xn1 = OnfOtn) + BXn + VySnZn, YN 20,

(3.22)

where ],ﬁ = (I + AB) 7, {1, {sn)s {@n}, {8}, 1} € (0, 1] withay, + B, + ¥, = 1 and {Aq} € (0, co). Suppose that
the following conditions hold:

(C1): limp_,coty = 0 and ) &y = 00;

(C2): 0<as<P,<b<land0<c<s,<1;

(C3): 0<rsrn<1and0</1§)ln<%sy<20;

(C4): O <y <2aand O < u, < 2f.
Assume that Zzo SUPxeplSni1x — Spxll < co for any bounded subset D of C. Let S : C — C be a mapping

defined by Sx = lim,_,,Spx, Vx € C, and suppose that Fix(S) = [52,Fix(S,). Then, x, — x* € Q, which is
the unique solution to the HVI: (I - f)x*,p — x*) > 0, Vp € Q, i.e., the fixed point equation x* = Pq f (x*).
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4 Conclusion

Now, it is well known that the Korpelevich’s extragradient method is an important tool for solving a class of
variational inequalities. In this article, we extend this method to solve a GSVI in which a VI problem and
a fixed point problem are involved. More specifically, we propose a generalized extragradient implicit
algorithm [Algorithm 3.1] for solving GSVI (1.6), where the related operators A, B, B;, and B, are all
inverse-strongly accretive mappings. At the same time, this extragradient algorithm can be used to solve
a fixed point problem of a countable family of nonexpansive self-mappings {S,},., and a VI problem. Under
some mild conditions, we show that the sequence {x,} generated by Algorithm 3.1 converges strongly to
a common point in Q, which also solves the variational inequality ((I — f)x*, J(x* - p)) < 0, Vp € Q.
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