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Abstract: In this article, we focus on the existence of positive solutions and establish a corresponding
iterative scheme for a nonlinear fourth-order equation with indefinite weight and Neumann boundary
conditions

Y00 + (ka + k)y"(0) + kilky(x) = AhCOf (y(x)),  x € [0, 1],
y'(0) =y'(M) = y"(0) =y"() = 0,

where k; and k, are constants, A > 0 is a parameter, h(x) € L'(0, 1) may change sign, and f ¢ C([0, 1] x R*, R),
R* := [0, 0co). We first discuss the sign properties of Green’s function for the elastic beam boundary value
problem, and then we establish some new results of the existence of positive solutions to this problem if the
nonlinearity f is monotone on R*. The technique for dealing with this article relies on a monotone iteration
technique and Schauder’s fixed point theorem. Finally, an example is presented to illustrate the application of
our main results.

Keywords: Euler-Bernoulli beam equations, positive solutions, indefinite weight, monotone iteration
technique
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1 Introduction

In this article, we aim to investigate the existence of positive solutions and establish a corresponding
iterative scheme for a nonlinear Euler-Bernoulli beam equation with Neumann boundary conditions (for
short NBVP)

y'(0) = y'() = y"(0) = y"(1) = 0, (D

{y(“)(X) + (o + k)y" () + kloy(x) = Ah(Of (y(x)), x € [0,1],

where k; and k, are constants, A > 0 is a parameter, h(x) € L(0, 1) may change sign and f € C([0, 1] x R*, R),
R* := [0, 0o). This problem is always used to describe the sliding braces at both ends of an elastic beam.

Boundary value problems of ordinary differential equations are of great importance in both theory and

application, many of which come from classical mechanics and electricity. For example, the equation of the
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elastic beam studied in this article is derived from the description of the deformation of the elastic beam in
material mechanics. In material mechanics, the boundary value problem of the fourth-order differential
equation is used to describe the deformation of the elastic beam in the equilibrium state. In particular,
the elastic beam equation is also called the Euler-Bernoulli beam equation. In the last few decades,
the equation in (1.1) with clamped beam boundary condition

y©0) =y(1) =y'(0)=y'(1) =0 (1.2)

has attracted the attention of many scholars, which describes the deformations of elastic beams with both
fixed end-point, see [1-7] as well as references therein. In addition, equation (1.1) with the Lidstone
boundary condition

y(0) =y(1) =y"(0) =y"(1) =0 (1.3)

also has received a lot of attention, since it models the stationary states of the deflection of an elastic beam
with both hinged ends, see [8-11] and references therein.

Some nonlinear analysis tools have been used to investigate the existence of solutions for the
fourth-order elastic beam equation with boundary conditions (1.2) and (1.3), such as lower and upper
solutions [1,12-14], a monotone iterative technique [8,15-17], Krasnosel’skii fixed point theorem
[5,11,18,19], fixed-point index [8], Leray-Schauder degree [20], and bifurcation theory [10,21-23].
In particular, by using the bifurcation techniques, Ma [10] considered the existence and multiplicity
results of differential equation

y@00) + ny"(x) = {y(x) = AhCOf(y(x)), x € (0,1) (1.4)
with boundary condition (1.3), where f € C(R, R) satisfies yf(y) > 0 for all y # 0, and 1 € (00, +00) and
(€ [0, +00) are constants and satisfies the key condition % + % < 1. Now, the interesting question is

whether we could give a more general condition on 1 and {?
In 2014, by using lower and upper solution methods, Vrabel [14] discussed the existence of the solution
following beam equation:

YO0 + (a + k)y"(0) + kakoy(x) = f(x, y(x)), x € (0,1) (1.5)
with hinged end condition (1.3). Here, constants k and k; satisfy the following condition:
kl < k2 < 0. (16)

Now, if we take n =k + ks and { = -Igk, then the left sides of equations (1.4) and (1.5) are the same.
However, it is easy to see that the condition (1.6) is more general than the condition % + % < 1. Later,
Ma et al. [12,13] discussed the same problem (1.5) with Lidstone boundary condition (1.3) under the restric-

tive conditions
O<k<k<m? and k<O0<k<n? 1.7)

and obtained the existence of a solution by using lower and upper methods. It is noted that Vrabel [14], Ma
et al. [12,13] only obtained the positivity of Green’s function under the conditions (1.6) and (1.7). Naturally,
the question is: could we obtain sign properties of Green’s function when k; and k change and the positive
solution to these kinds of problems under similar conditions?

Roughly speaking, these tools which we talked about earlier cannot be applied directly if the weight
function is allowed to change sign. The likely reason is the lack of any a priori estimate over the set of
possible solutions. As far as we know, boundary value problems with sign-changing weight functions arise
from population modeling. In this model, a weight function changes sign corresponding to the fact that the
intrinsic population growth rate is positive at some points and negative at others, for details, readers can
see Cantrell and Cosner [24]. It is precise because of this fact that many scholars have become more and
more interested in boundary value problems with sign-changing weight functions.

In particular, for the case of fourth-order boundary value problem with sign-changing weight func-
tions, Ma et al. [23] considered nonlinear boundary value problem with a sign-changing weight function
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y@W0) = rhOf (y(x)),  x € (0, 1) (1.8)

with simply supported beam conditions (1.3), where r is a parameter, f € C(R,R) and h: [0,1] > R is
a continuous function which attains both positive and negative values. They determine the principal eigen-
values of the linear problem corresponding to (1.8). With this result in hands, they establish the existence
of positive solutions for problem (1.8) via the global bifurcation theory.

It is worth pointing out that studies [21] and [23] only discussed the existence of nodal or positive
solutions for fourth-order equations with a sign-changing weight function under the simply supported
beam conditions (1.3), respectively. However, to the best of our knowledge, a fourth-order equation with a
sign-changing weight function under Neumann boundary conditions despite its simple-looking structure,
is considered as a difficult problem in the literature. Therefore, relatively little is known about problem (1.1).
The possible reason is that fewer techniques are available for problem (1.1), and the popular comparison
principle appears to be completely inapplicable (see Yan [25]). To overcome these difficulties, we use a
method to overcome the change sign of the weight function, which is the monotone iterative technique. We
also refer readers to Pei and Chang [17] and Yao [5] for this approach under the fourth-order case. Never-
theless, the difference between these works and our work consists of the fact that our weight function may
change signs. Motivated by the aforementioned studies, the main purpose of this article is to establish
a monotone convergent iterative scheme for nonlinear NBVP (1.1), which avoids the aforementioned incon-
venient, and then obtain some new existence results on the positive solutions for the problem (1.1) with
indefinite weight.

To sum up, all the ideas mentioned in the Introduction, we try to discuss the existence of positive
solutions for the nonlinear NBVP (1.1) under more general conditions like (1.6) and (1.7). Our method is also
suitable for problem (1.5), (1.6) and problem (1.5), and (1.7). To obtain it, we first discuss the properties of
Green’s function G(x, s) for NBVP (1.1). We will investigate the sign properties of Green’s function as the
constants k; and &, change, see Section 2. Based on the properties of Green’s function, we try to discuss the
existence of positive solutions for nonlinear NBVP (1.1) by using a monotone iterative technique.

To make our statements precise, we have to recall two common notations. Namely,

h*(x) == max{h(x), 0} and h (x):= max{-h(x),0} for x € [0, 1].

It is not difficult to see that h* > 0 and h(x) = h*(x) — h™(x), x € [0, 1]. Throughout this article, we use the
following assumptions:

(A1) h(x) € L(0, 1) may change sign;

(A2) f:R* —> R" is continuous and nondecreasing on R*;

(A3) f:R* — R*is continuous and nonincreasing on R*.

This article is divided into six sections. From the previous discussion, we find that the appearance of k; and
lo leads to the absence of the positivity of Green’s function in NBVP (1.1), which greatly increases the
complexity of the calculation of Green’s function. On this basis, in the second part of this article, we discuss
the properties of Green’s function in detail according to the different classifications of k; and k. Including
the case of ;< ko < 0, k< 0 < kp < 2 /4 and O < k < ky < 7%/ 4, respectively. Some preliminary results
which we shall require are introduced. Sections 3 and 4 are devoted to establishing the existence results of
positive solutions of NBVP (1.1) by constructing a monotone iteration scheme. In Section 5, we give
a supplementary theorem and an example to illustrate our main results and iteration schemes. Finally,
in the last section, we review the main problems and the main results and make a summary statement for
the problems with other kinds of boundary conditions in this article.

2 Preliminaries

Let X = C[0, 1] be a Banach space, with its usual norm |y|| = max{|y(x)|, x € [0, 1]} for all y € X.
Define linear operator L : D(L) — X as follows:
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Ly =y® + (ka + k)y" + kiky, y € D(L),

where D(L) = {y € C*[0, 1] : y'(0) = y'(1) = y""(0) = y""(1) = 0}. To obtain Green’s function G(x, s) of Ly = 0,
we define another linear operator

Ly=y"+ky, D() :={yeCq0,1]:y'(0)=y(1) =0}
Ly=y" +ky, D(L)={yeCl0,1]:y'(0)=y'(1) = 0}.

It is easy to verify that Green’s function of Ly = L, o (Ly) and Ly = 0 is
1
60x,5) = [ G2, 06i(e, 9t (x,5) € [0,1] x [0, 1, @.1)
0

where Gj(t, s) ([26]) are (symmetric) Green’s functions for Ly = 0 (i = 1, 2) and

_ cosh[=ki(1 - )] cosh(y/~kis) s<t
) Jhi sinhy ki L ke (-0, 0)
cosh[{/“ki(1 - 5)] cosh(“kit) ’ T

’ t S ’
J-k; sinh /- k; *

cos[\/k;(1 - t)] cos(\/k;s) sot
) Jhisin ki ki € (0, 1/ 4).
cos[\/E(l -9)] cos(\/?,-t) fos

\/E sin\/E-

Gi(t’ S) =

But for t > s, we have

cosh(y/—k; (1 — t))- cosh(y/-k;s)
J=ki sinh\/=k '
This function is obviously positive for k; < 0 and negative for k; € (0, 12 /4). Consequently, G : [0, 1] x [0,1] — R.

In particular, we refer to the study by Wang et al. [4] for details of the calculation of equality (2.1), and some of the
results are discussed in the following sections.

Gl(t, S) =

2.1 Green’s function and its sign properties in case ky < k, < 0

From k; < k; < 0, let ky = —a?, k, = —B?, where a and B are constants greater than zero that satisfy a > .
Therefore, we divide two cases as follows:

Casel.a=f3>0

From the theory of Green’s function, we can obtain the explicit expression of Green’s function of (1.1)
as follows:

sinha cosh[a(1 - s)][cosh(ax) — ax sinh(ax)]
2a3 sinh?
L@ cosh(ax)[cosh(as + s sinha sinh[a(1 - s)]] s<x
Gixs) = | 203 sinh?a ’ ’
sinha cosh[a(1 — x)][cosh(as) — as sinh(as)]
203 sinh?
a cosh(as)[cosh(ax + x sinha sinh[a(1 - x)]]
+ , X<8.
203 sinh? a

Case2.a>f>0
Thus, the concrete expression of Green’s function of problem (1.1) is
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1 cosh[B(1 - s)] cosh(Bx) _ cosh[a(l - s)] cosh(ax) 0<x<s<il
5.5 a? - p? B sinhp a sinha oo T w
X, S) =
1 cosh[B(1 — x)] cosh(Bs) _ cosh[a(1 — x)] cosh(as) 0<s<x<i
a? - p? B sinhp asinha oo

Lemma 2.1. [4, Theorem 2.1] If a, S € (0, +00) with a > f3, then Green’s function of problem (1.1) satisfies
G(x,s) >0, (x,s)¢€[0,1] x [0,1].

2.2 Green’s function and its sign properties in case ky < 0 < k, < 2% / 4

From k< 0 < ko < 1%/ 4, let ks = —a?, k = B% and a € (0, +00), B € (0, 1 /2]. Thus, the concrete expres-
sion of Green’s function of problem (1.1) is

1 [cos[ﬂ(l - 5)] cos(Bx) N cosh[a(1 — s)] cosh(ax) D<x<s<1

) a? + p? B sinpf asinha
-G(x,8) =
1 cos[B(1 - x)] cos(fBs) N cosh[a(1l — x)] cosh(as) 0<s<x<i
a? + B2 B sinp a sinha oo

The properties of Green’s function G(x, s) are given as follows:

Lemma 2.2. ([4], Theorem 2.1) If a € (0, +00), 8 € (0, /2], then
G(x,s) <0, (x,s)¢€][0,1]x][0,1].

Remark 2.3. It is worth noting that we obtain G(x, s) < 0 with the case of k; < 0 < k < 72/4. At this point,
if the problem we are studying (1.1) is transformed into the following form:

YO0 + (k + k)y"(x) + kiky(0) + AhCOf (y(x)) = 0, x € [0, 1], -
y'(0) =y'(M) = y"(0) =y"() = 0, 22

then the results obtained in this article still held true for the above problems.

2.3 Green’s function and its sign properties in case 0 < k; < k, < 2 /4

FromO < ky < ky < 12 /4, letky = a®, k; = B?,and 0 < a < B < 71 /2. Therefore, we divide two cases as follows:
Case3.a=f8<m/2
Then, we can obtain the concrete expression of Green’s function of problem (1.1) as follows:

sina cos[a(1 — s)][cos(ax) + ax sin(ax)] L@ cos(ax)[cos(as — s sina sin[a(1 - s)]]

. . ’ s S X’
_ 203 sin’a 203 sin’a
G(x,s) =14 . . . .
sina cos[a(1 — x)][cos(as) + as sin(as)] L« cos(as)[cos(ax — x sina sin[a(1 — x)]] X<s
203 sin?a 203 sina oo

In particular, ifa = =m/2,thent =s=0ort = s = 1, G(x, s) contains zero.
Case 4.0 <a<f<m/2
In this case, the concrete expression of Green’s function of problem (1.1) is
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1 cos[a(l — s)] cos(ax)  cos[B(1 — s)] cos(Bx) O<x<s<l1
60, 5) B2 - a? asina Bsinp T
X,S) =
1 cos[a(l - x)]cos(as)  cos[B(1 — x)] cos(Bs) O<s<x<l1
B2 - a2 asina Bsinp T

The properties of Green’s function G(x, s) are given as follows:

Lemma 2.4. ([4], Theorem 2.1) If0 < a < B < 11 /2, then
G(x,s) >0, (x,s)e[0,1]x[0,1].

Remark 2.5. It should be noted that in the three cases discussed in this article, if the parameter iy = 0 or
I, = 0, the operator Ly has eigenvalue A = 0 and Ly = 0 has nontrivial solution y = C (C # 0). Therefore,
according to the Fredholm alternative theorem, there is no solution to the problem (1.1), so the parameters
in this article meet the requirement that kik, # O are always valid.

Based on the sign of Green’s function of NBVP (1.1), without loss of generality, we discuss the case
of 0 <lq <l <m?/4b.
First, let us briefly recall the concept of cone. That is:

Definition 2.6. [27] Let E be a real Banach space. A nonempty closed convex set K ¢ E is said to be a cone
provided that

(@) uyye K forally ¢ K and u > 0;

(b) Ify e K and -y € K, then y = 0.

In the sequel, we recall the Schauder’s fixed-point theorem, which will be used along the article.

Lemma 2.7. [28] Let P be a compact convex set in a Banach space X and let £ be a continuous mapping of
P into itself. Then, L has a fixed point, that is,

Ly =y,

for some y € P.

It is well known that NBVP (1.1) has a solution y = y(x) if and only if y solves the operator equation
1
y(x) = AIG(X, Sh(s)f (y(s)ds = Ly(x),
0

whose domain will be C*[0, 1], the cone of continuous nonnegative functions. The operator £ does not leave
this cone invariant since we allow h(x) to change its sign. Here, G(x, s) denote the Green’s function for the
linear boundary value problem

YO0 + (g + k)y"(x) + kkoy(x) = u(x), x € (0,1),
y(0) =y @D =y"0)=y"1 =0

with u € C[0, 1], for details, see Section 2 in this article.

Remark 2.8. It is not difficult to check, from Section 2, that G(x, s) is continuous and nonnegative on
(x, s) € [0, 1] x [0, 1]. Moreover, we need to give it a proper estimate, that is,

0 < G(x,s) < M = max G(x,s) for x,s € [0,1], 2.3)

0<x,s<1
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which plays a significant role in giving an example corresponding our main result.

For the sake of brevity, we denote

H*={xe[0,1] : h(x) > 0} and H = {xe[0,1]: h(x) < O}.

3 The case of f(y(x)) nondecreasing

Lemma 3.1. Suppose (A1) and (A2) hold. If there are two bounded measurable functions ¢,(x) and ,(x) on
[0, 1], such that they satisfy

(M) 0 < @y(x) < Py(x) for x € H*, 0 < Py(x) < @py(x) for x € H~;

(hy) Lpy(x) < Po(x) for x € H*, Lipy(x) < Po(x) for x € H~;

(h3) LPy(x) = ¢py(x) for x € H*, LPy(x) = ¢py(x) for x € H~, then ¢,(x) and P,(x) also satisfy the corre-
sponding inequalities, where

| LPo0), x € H,
100 = {szo(x), XeH

and

L), x € HY,
$i00 = {L(I)O(x), x e H.

Proof. Due to the fact that
h(x) =h*(x) —-h(x) and x € [0,1],

the operator £ can be rewritten as

L) = A f G(x, (S (d(s))ds - A j GO, S (S)f (B(s))ds.
H H~

For simplicity, we write
L) = Lip(x) - Lp(x) and x € [0,1],

where £;¢(x), (i =1, 2) are both monotones in the sense that ¢p(x) < P(x) implies L;p(x) < Lap(x). L; acts
on C*([0,1] N ‘H*) and £, on C*([0, 1] N H ). Note that (h;) implies that

L0 = Lipo00) — Lapo() < Lthy(0) — Laho00) = Ly 0. (3.1)
This immediately implies that ¢,(x) and ,(x) satisfy condition (h;). More precisely, they hold
0 < ,(x) = LPy(x) < LPy(x) = ¢,(x) for x € H*
and
0 < P,(x) = LPy(x) < LP(x) = P,(x) for x € H~.
The condition (h,) for 1,(x) is that
LYP,(x) < P,(x) = Lpy(x) for x € H*
and
LYP,(x) < p,(x) = Lp,(x) for x € H~.

More precisely, we have
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LY, (x) < Lpy(x) for x € [0,1].
According to conditions (h,) and (h3), we have
LP,(x) = Lh(x) = Lah(x) = Li(LP(x0)) = LALP(X)) < Lhy(X) = LX) = LPy(x).  (3.2)
Therefore, condition (h,) is satisfied. Similarly, condition (hs) for ¢,(x) is that

LP,(x) = p,(x) = Lpy(x) for x € H*

and
LP,(x0) = P,(x) = L,(x) for x € H~.
Now,
LP(x) = L1gy(x) = Lo (X) = Li(LPo(x)) — LoA(LPo(X)) 2 L1gpo(xX) — Lao(x) = LPo(x)  (3.3)
gives conditions (hs) for ¢,(x). Consequently, the proof is completed. O

Theorem 3.2. Assume that (A1) and (A2) hold. If there exist two bounded measurable functions ¢,(x) and
Yo (x) on [0,1] that satisfy conditions (hy), (hy), and (hs) of Lemma 3.1, then, NBVP (1.1) has at least one positive
solution.

Proof. Define

) L0, x e HY,
¢,.100 = { L9.00, xeH- (3.4)
and
~ LY, (x), x e H,
V) = {chn(x), X € H-. (3.5)

Note that, in general, ¢, (x) and ¥, (x) are not continuous. We know, by Lemma 3.1 and Section 1, that
(9,00, P, (x)) satisfies conditions (hy), (hy), and (hs) of Lemma 3.1. Then, it follows from (3.1), (3.2), and (3.3)
that

0<Lp,(x) < L) << L ,(xX) < L, (x) < LPy(x).

Therefore, L¢,(x) is monotonically increasing and satisfies

L¢,00) - ¢(x) for n — oco;
meanwhile, L, (x) is monotonically decreasing and satisfies

LP,(x) — P(x) forn— oo
and

P00 < P0).

Since

L, 100 = L1, (X)) = Lop,,1(0) = Li(Lp,(X)) — LALY,(X));
LY, )= Lap, () = Lap, () = Li(Lp, (X)) - LALP, (X)),

we may apply Lebesgue’s dominated convergence theorem to have

P = Lip(x) - L (x); (3.6)
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PO = Lp(x) - Lp (0. (3.7)
Thus, both [5 (x) and f/; (x) are continuous on [0,1].

In view of (3.4) and (3.5), we have ¢,,,(x) — (;T)(x) on H* by definition of (f(x). On the other
hand, ¢,,,(x) = L$,(x) on H*, so ¢,.,(x) = £$(x). Thus, a(x) = L$(x) on H*. On H~-, we have
@, = LB, — (%) by definition of ¢(x). However, ¢, ,(x) = L,(x) on H~, so P,,,(x) — P(x) on
H-, LP(x) = 0.

In a similar method, we have

500 - {./;?(x), x e A,
LYx), x e H,

and

= .Cl:l;(X), x € HH,
Vo= {L$(X), xeH

and (;T) (x) and 175 (x) are fixed points of £2.
Now, we consider the convex region in C[0, 1] defined by

C={gMIPp) <gx) <PXx), xe[0,1]}
This is invariant under £ since
Lg(x) = Lig00) - L2800 < L (0) — L () = P(0)
by (3.7). Similarly,
£800) = Lig(x) - L28() = Lip00) - LAP(x) = $0).

Since G(x, s) is continuous on (x, s) € [0, 1] x [0, 1], h(x) € LY(0, 1) implies that {(£Lg(x)) : g(x) € C} is
uniformly equicontinuous, it follows from the Arzela-Ascoli theorem that £ restricted to C is a compact
operator.

We can know, by Lemma 2.7, that £ has a fixed point. Hence, NBVP (1.1) has at least one positive
solution. Consequently, the proof is complete. O

Remark 3.3. The order interval
)| LPy(x) < gx) < LPy(x), x€[0,1]}

already is invariant and one could use Schauder’s theorem directly. But the iteration improves the esti-
mates. In general, one might expect the two functions ¢ (x) and 1 (x) to be the same. Therefore, one could in
effect construct the solution numerically, see Section 5 for more precise statements.

4 The case of f(y(x)) nonincreasing

Lemma 4.1. Suppose (A1) and (A3) hold. If there are two bounded measurable functions ¢;(x) and P;(x)
on [0, 1] such that they satisfy

(h))0 < D) < Py (x) for x € H*, 0 < Py(x) < py(x) for x € H~;

(hy) Lpy(x) < Py(x) for x € H*, Lpj(x) < Pp(x) for x € H~;

(h3) LP5(x) = ps(x) for x € H*, LP5(x) = Py(x) for x € H.

Then, ¢;(x) and Y;(x) also satisfy the corresponding inequalities, where
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crn LPy(x), x € HY,
100 = {qug(x), X e H-

and

on [ L£P00, x € H,
Yoo = {Ll/)g(x), xeH .

Note that (h)) here is the same as (h;) in Lemma 3.1.

Proof. Due to the fact that
h(x) =h"(x) - h(x) and x€][0,1],

the operator £ can be rewritten as

L) = A j G(x, N (S)F (P(s))ds — A j G(x, Hh(S)F (b(s))ds.
H* H™

For convenience, we write

LX) = Lip(x) — Logp(x) for x € [0, 1],

where L;p(x) (i =1, 2) are both monotone in the sense that ¢(x) < P(x) implies Li¢p(x) > Lip(x). Ly acts

on C*([0, 1] n H*) and £, on C*([0, 1] N H"). Note that (h;) implies that
LPg(x) = Ligg(0) = Lagpg(x) = Lpy(x) — Laps(x) = Lpg(x).
This immediately implies that ¢"(x) and 1;"(x) satisfy condition (h;). To be specific, it holds
0 < ¢ (x) = LYP;(X) < Lp;(x) = P (x) for x € H*
and
0 < Pi(x) = LYP;(x) < LP;(x) = p/(x) for x € H~.
The condition (h;) for ¢(x) is that
L) <P(x) = LPg(x) for x e H*

and
LX) < p(0) = Lpj(x) for x e H~.

More precisely, we have
L (x) < LPi(x) for x € [0,1].

According to conditions (hy) and (h3), we have

L) = L9 (x) — Lo (0) = Li(LYy(0) — LoALy(0) < Ligpg(x) — LaP(x) = L5 ().

Therefore, condition (h)) is satisfied. Similarly, condition (h3) for P (x) is that
LPi(x) = ¢F(x) = LPi(x) for x € H*
and
LY () 2 P (0) = LP;(x)  for x € H.
Now,
LP;(0) = Lap; () = Lapr(x) = LI(LPL0O) — LALYS0)) = Ly (0) — L) = LPg(x)

gives conditions (h3) for ;' (x). Consequently, the proof is completed.

(4.1)

(4.2)

(4.3)
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Theorem 4.2. Assume that (A1) and (A3) hold. If there exist two bounded measurable functions qbg(x) and
Py(x) on [0, 1] that satisfy conditions (1), (hy), and (h}) of Lemma 4.1. Then, NBVP (1.1) has at least one
positive solution.

Proof. Define

L¢:(x), x e H,

¢y, 00 = { LU0, x < H- (4.4)

and

LYP(x), x e H,

Y00 = { L8700, x € H-. (4.5)

Note that, in general, ¢ (x) and ¥);(x) are not continuous. We know, by Lemma 4.1 and Section 1, that

(¢:(x), P (x)) satisfies conditions (h;), (hy), and (h3) of Lemma 4.1. Then, it follows from (4.1), (4.2), and (4.3)
that

0<LYy(x) < LY, (X)) << Loy () < Lpr(x) < LP[ ().

Therefore, L¢;(x) is monotonically increasing and satisfies

LPi(x) - p(x) for n - oo;
meanwhile, L, (x) is monotonically decreasing and satisfies

LY(x) - P(x) for n —> oo
and

PO < ).

Since

L, 00 = L, (00 - Loy, (6) = Li(LP, () — LoA(Lp(X));
L, .00 = L, ,(X) — Lo, ,(0) = Li( L, (X)) - LALY, (X)),

we may apply Lebesgue’s dominated convergence theorem to have
YO = Lp(x) - Lo (0; (4.6)
P00 = Lip(0) - Lp (0. (4.7)
Thus, both 1 (x) and ¢ (x) are continuous on [0,1].

In view of (4.4) and (4.5), we have ¢ (x) — ¢(x) on H* by definition of (x). On the other

hand, ¢ (0)=LP:(x) on H*, so ¢ (x) > LH(x). Thus, ¢(x)=Lp(x) on H*. On H-,
we have ! | = L (x) - ¢(x) by definition of ¢ (x). But, ¢, (x) = L (x) on H~, so ¢! ,(X) — P(x)
on H-, LP(x) = p(x).

In a similar way, we have

_— LP(X), x € H,
P00 = {LJ(X), xeH,

and

Lo, xe H
v = {L(f(x), xeH

and ¢ (x) and Y (x) are fixed points of £2.
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Now, we consider the convex region in C[0, 1] defined by
D =P X) <nl) < dx), xe0,1].
This is invariant under £ since
Ln(x) = LX) - Lanx) < LPx) - Lap(x) = P (x)
by (4.7). Similarly,
Ln(x) = Ln(x) - Ln) = Li(x) - Lp(x) = p(x).

Since G(x, s) is continuous on (x, s) € [0, 1] x [0, 1], h(x) € L'(0, 1) implies that {(£Ln(x)) : n(x) € D}
is uniformly equicontinuous, which follows from the Arzela-Ascoli theorem that £ restricted to D is
a compact operator.

We can know, by Lemma 2.7, that £ has a fixed point. Hence, NBVP (1.1) has at least one positive
solution. Consequently, the proof is complete. O

5 Supplementary theorem

In this section, we shall construct examples where the previous main results. To this end, we make the
following assumption:
(A4) There exists a positive real number X such that

jh*(s)ds >+ X)Ih‘(s)ds for x € [0, 1].
0 0

Clearly, we can build, from condition (A4), that weight function h(x) is sufficiently positive near 0.
In the following, we only make an example corresponding to Theorem 3.2, and the examples corresponding
to Theorem 4.2 are similar.

Theorem 5.1. Assume that (A1), (A2), and (A4) hold. If f(0) > 0. Then, there is mg € (0, +0c0) U {+00}
satisfying

f(m) < f(0)A + X), m € [0, m).
Moreover, there exists Ay > 0 such that NBVP (1.1) has at least one positive solution for 0 < A < Ag, where

/\0 = mn

- 1 1 )
Mf(O)[ joh(s)ds + X j h*(s)ds]
0

Proof. We shall construct ¢p,(x) and ,(x) such that the conditions (h;)-(hs) in Lemma 3.1 are satisfied.
Assume

m, x € H-

Bo(x) = {0, x e H,

and

m, x € H*,
woo- o 1T

where m € [0, my) is a constant. Then, condition (h,) is satisfied. Now, the condition (h,) is

Ly = Lipy — L, = Li(m) — L(0) <m  for x € [0, 1]; (5.1)
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in addition, condition (h3) is

Ly = Lipy — Loy = L1(0) — L(m) =0 for x € [0, 1]. (5.2)
Let
1
£00 = [ G0x, h(s)ds, 53)
1
then conditions (5.1) and (5.2), respectively, become
AE*(Of (m) = §~()f(0)] < m (5.4)
and
AlET (O (0) = §~Cf(m)] 2 0 (5.5)
with f(0) > 0. We first consider (5.5). Define
§00 = &) - (1 + X)§ (). (5.6)

In view of (5.3) and (5.6) that é(x) is a solution of the following boundary value problem having the
form

§W00 + (ka + k)"0 + kkog (00 — [h*00) - (1 + (0] =0, x €[0,1],
§'(0) = §'(M) = §"(0) = §" (1) = 0.

It follows that
ED) + (k + )E"(X) + kiloé (x) = h*(x) - (1 + X)h~(x)

and
1
£(x) = f G, )[H(s) — (1 + X)h-(s)]ds.
0

Clearly, we can infer, from condition (A4), that £(x) is non-negative, to be specific, we have
Ex) =21+ X)é(x) for x €[0,1].
Therefore, (5.5) is satisfied if
fm) < (1 + X)f(0).

We select such an m and argue that (5.4) can now be satisfied for small A. To prove this, we will give
a proper estimate. According to (5.3), we have

1
£00 - £ = j 6(x, $)h(s)ds.
0
Moreover, it follows from (2.3) that
1
£100 < £00 + M [ heds:
0

consequently, we have
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1
fm)E(x) - f(0)(x) <[f(m) - F(O)]E~(x) + Mf(m)jh(s)ds
1 ° 1
< M[f(m) - f(O)]Ih‘(s)ds N Mf(m)jh(s)ds
) 0 l0
< MXf(O)jh‘(s)ds M@+ X)f(O)Ih(s)ds
0 X 1 0
- MFO)| x Ih‘(s)ds L+ X)Ih(s)ds
0 0

[ 1 1
- MFO)| @+ X)Ih*(s)ds - J‘h*(s)ds
| 0 0

[ 1 1
= MF(0) j h(s)ds + X _[h*(s)ds .
| O 0

Therefore, (5.4) is satisfied if

A< m

1 P '
MF(0) joh(s)ds + X f h(s)ds
0

It follows from Lemma 3.1 and Theorem 3.2 that NBVP (1.1) has at least one positive solution for
m
1 1

0< /1 < /].0 = .
MF(0)[ j h(s)ds + X j h*(s)ds]
0 0

Example. Consider the following fourth-order Neumann boundary value problem

? ?
y@Px) + (? + 1))/"0() + EY(X) = Ah(Of (y(x)), x €[0,1],
y'(0) =y'(1) = y"(0) = y"() = 0,

in this example, we can take f(m) = f(0)(1 + X), where f(y(x)) = e, m = In(1 + X), and f(y(x)) =1 + yP,
then m = X», p > 0. Weight function h(x) is as follows:

a, x €[0,1/3];
h(x) = 1 linear, x € [1/3,2/3];
-B, x € [1/3,1]

with 0 < B <a. We can easily verify that 1+ X = a/f will work for condition (A4). In particular,
if h(x) = —x + 9/10, x € [0, 1], then, we can also easily verify that for any X € (0, 80] will work for (A4).

Remark 5.2. We have given a sufficient condition for small parameter A of the NBVP (1.1), which involves
h*(x) being sufficiently positive, that is, the condition (A4). Some such hypothesis is necessary, but we
believe that A small is a correct condition.
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6 Conclusion

At the end of the article, we summarize the main work of this article. In this article, we focus on the
existence of positive solutions for nonlinear fourth-order equation with Neumann boundary conditions

YD) + (k + k)y"(x) + kiky(x) = AhX)f(y(x)), x € [0, 1],
y'(0) =y'(1) = y"(0) = y"(1) = 0.

We first discuss the sign properties of Green’s function for the elastic beam boundary value problem, and
then we establish some new results of existence of positive solutions to this problem if the nonlinearity f is
monotone on R*. The technique for dealing with this article relies on a monotone iteration technique and
Schauder’s fixed point theorem. Finally, an example is presented to illustrate the application of our main
results.

Note that the results of Theorems 3.2, 4.2, and 5.1 are satisfied for the cases of 0 < kg < ky < 712/ 4.
In particular, the conclusion of Theorems 3.2, 4.2, and 5.1 for k; < O < k, < 1%/ 4 also apply when NBVP (1.1)
is converted into the problem (2.2) as Remark 2.3. On account of the proof is similar to Theorems 3.2, 4.2,
and 5.1, so we omit it here.

In particular, the Euler-Bernoulli beam equation (1.1) with boundary condition y(0) = y(1) = y'(0) = y'(1) = 0,
Lidstone boundary condition y(0) = y(1) = y"(0) = y"(1) = 0, and boundary condition y(0) = y'(1) =
y"(0) = y"(1) = 0, respectively. The conclusions drawn in this article still apply to these three types
of boundary value problems, and we will not dwell on them here, but leave the rest of the details to the
reader.
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