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Abstract: Almost s-mappings and almost compact mappings have been introduced and studied. In this
article, we continue to research some questions related to the almost s-images (resp., almost compact
images) of metric spaces. The following results are obtained. (1) A space X is a quotient and almost compact
image of a metric space if and only if X is a sequential space having a cs*-network which is point-regular at
nonisolated points, which gives an affirmative answer to Question 4.9 in the article “S. Lin, X. W. Ling, and
Y. Ge, Point-regular covers and sequence-covering compact mappings, Topology Appl. 271 (2020), 106987.”
(2) There exists a bi-quotient and almost compact image of a metric space satisfying no base, which is point-
countable at nonisolated points, which gives negative answers to Question 3.1 in the article “X. W. Ling and
S. Lin, On open almost s-images of metric spaces, Adv. Math. (China) 48 (2019), no. 4, 489-496” and
Question 3.7 in the article “X. W. Ling, S. Lin, and W. He, Point-countable covers and sequence-covering
s-mappings at subsets, Topology Appl. 290 (2021), 107572.” (3) Some characterizations of countably bi-quo-
tient and almost s-images (resp., pseudo-open and almost compact images) of metric spaces.
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1 Introduction

The metrization problem is one of the central topics in the study of general topology, and numerous
metrization theorems provide a broad stage for the discussion of generalized metric spaces [1]. The theory
of generalized metric spaces has injected some new vitalities into the development of general topology [2].
Metrizability can be characterized in terms of sequences of open coverings [3]. Nowadays, it is widely
recognized that the method of systems of coverings is one of the main tools for classifying spaces [1].
It was discovered that systems of coverings can be used very effectively to construct some natural mappings
of metrizable spaces onto spaces admitting such systems of coverings [4]. This method led to a mutual
classification of spaces and mappings based on the interaction of systems of coverings and mappings [2,5].

In 1960, Ponomarev [6] proved every space with a point-countable base can be characterized as
an open and s-image of a metric space. In 1962, Arhangel’skil [7, Theorem 1] proved that every space
with a point-regular base can be characterized as an open and compact image of a metric space. The aforemen-
tioned two results have become extremely important theorems in the theory of spaces and mappings and laid
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a foundation for its development [1]. After that, spaces with some types of point-countable (resp., point-regular)
covers were described as various continuous images of metric spaces [1,2]. Recently, the study of the relation-
ships between certain s-images (resp., compact images) of metric spaces and spaces with point-countable
(resp., point-regular) covers becomes one of the central research topics in general topology [1,4,8-17].

Arhangel’skii [10, p. 218] and Lin et al. [13, Definition 4.1(2)] introduced the notion of almost s-map-
pings and almost compact mappings, respectively. However, there is an open and almost s-image (resp.,
almost compact image) of a metric space, which is not an open and s-image (resp., compact image)
of a metric space [10,15]. A characterization of open and almost s-images (resp., almost compact images)
of metric spaces was given as follows.

Theorem 1.1. [14, Theorem 2.1] The followings are equivalent for a space X.
(1) X is an open and almost s-image of a metric space.
(2) X has a base which is point-countable at nonisolated points.

Theorem 1.2. [13, Theorem 3.4] The followings are equivalent for a space X.
(1) X is an open and almost compact image of a metric space.
(2) X has a base which is point-regular at nonisolated points.

Since the set of nonisolated points is a special subset in a topological space, we can further discuss
point-countable (resp., point-regular) covers at arbitrary subsets in topological spaces. In [13], Lin et al.
gave some characterizations about point-regular covers at arbitrary subsets. In [16], Ling et al. gave some
characterizations about point-countable covers at arbitrary subsets. But these studies are not complete,
inspired by [13,16], we continue to discuss the point-countable (resp., point-regular) covers at arbitrary
subsets in topological spaces and solve some related questions [13—15].

Inspired by Theorem 1.1, Ling et al. characterized quotient and almost s-images of metric spaces
as follows.

Theorem 1.3. [16, Corollary 3.5] The followings are equivalent for a space X.
(1) X is a quotient and almost s-image of a metric space.
(2) X is a sequential space with a point-countable cs*-network at nonisolated points.

It is interesting to investigate the following question.

Question 1.4. [13, Question 4.9] Are the following equivalent for a space X?
(1) X is a quotient and almost compact image of a metric space.
(2) X is a sequential space with a point-regular cs*-network at nonisolated points.

It is well known that a space X is a countably bi-quotient and s-image of a metric space if and only if X
is an open and s-image of a metric space (i.e., X has a point-countable base) [18, Theorem 1.1], and a space
X is a pseudo-open and compact image of a metric space if and only if X is an open and compact image of
a metric space (i.e., X has a point-regular base) [19]. The following questions were formed by Theorems 1.1
and 1.2,

Question 1.5. [14, Question 3.1] Does a countably bi-quotient and almost s-image of a metric space have
a base which is point-countable at nonisolated points?

Question 1.6. [15, Question 3.7] Does a pseudo-open and almost compact image of a metric space have
a base which is point-regular at nonisolated points?

In this article, we will give an affirmative answer to Question 1.4 (see Corollary 3.6), present an example
to give negative answers to Questions 1.5 and 1.6 (see Example 4.1), and further obtain some
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characterizations of countably bi-quotient and almost s-images (resp., pseudo-open and almost compact
images) of metric spaces (see Corollaries 4.4 and 3.8).

2 Mappings or networks at subsets

In this article, all spaces are T5, and all mappings are continuous and onto. Recall some related concepts
and notations. Let 7x denote the topology for a space X. For a family £ of subsets of a space X, x € X and
A c X, put
Py ={Pe?:xeP}, stix,?2)=JP)y and st(4,2)= ] st(x,?).
xeA
The family 2 is said to be point-countable (resp., point-finite) at A if the family (%), is countable (resp.,
finite) for each x € A.

Let X be a topological space. A subset P of X is called a sequential neighborhood of a point x in X if, for
each sequence {X,},cn in X converging to the point x, there exists m € N such that {x} U {x,: n > m} c P,
i.e., the sequence {x,},cn is eventually in P. A subset P of X is called a sequentially open set if P is
a sequential neighborhood of each point in P. The space X is called a sequential space [3] if every sequen-
tially open set of X is open in X. Let

I(X)={x : x isanisolated point of X}, NI(X) = X\I(X),
S(X) = {x : {x} is a sequentially open set in X}, NS(X) = X\S(X).

The purpose of this section is to introduce some mappings or certain networks at subsets and to discuss
some relationships between them.

Definition 2.1. Let f: X — Y be a mapping and A c Y.

(1) f is called an s-mapping (resp., a boundary s-mapping) at A [16, Definition 2.1] if f~1(y) (resp.,
the boundary of "1(y)) is a separable set in X for each y € A; f is called an almost s-mapping [10, p. 218]
if f is an s-mapping at NI(Y).

(2) f is called a compact mapping (resp., boundary-compact mapping) at A [16, Definition 2.1] if f(y)
(resp., the boundary 9f"!(y)) is a compact set in X for each y € 4; f is called an almost compact mapping
[13, Definition 4.1(2)] if f is a compact mapping at NI(Y).

(3) f is called a (countably) bi-quotient mapping [2, Definition 2.1.1(3) and p. 113] at A if, for each y € A and
each (countable) family % of open subsets in X, which covers f~1(y), there is a finite subfamily %' of %
such thaty € [f(U#')]° inY.

(4) f is called a strictly countably bi-quotient mapping [20, Definition 2.2] at A if, for each y € A and each
countable family % of open subsets in X which covers f~!(y), there is an element U of % such that
yel[f(U)]" inY.

(5) f is called an open mapping at A if, for each y € A and each x € f~1(y), theny € [f(U)]® in Y whenever
U is a neighborhood of x in X.

(6) f is called an almost-open mapping at A if, for each y € A, there exists a point x € f-1(y) such that
y € [f(U)]° in Y whenever U is a neighborhood of x in X.

(7) f is called a pseudo-open mapping at A if, for each y € A and f!(y) c U with U open in X, then
yel[f(U)]" inY.

(8) f is called a sequentially quotient mapping [2, Definition 2.1.4(3)] at A if, whenever {y, } ey is a sequence
converging to a point y € A inY, there are a convergent sequence {x;};cy in X and a subsequence {ym}ieN

of {},}nen With each x; € f7(y,,).

The mapping f is called a P-mapping if f is the P-mapping at Y, where P is defined in (1)—(8).
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It is known that open mappings = almost-open mappings = bi-quotient mappings (resp., strictly
countably bi-quotient mappings) = countably bi-quotient mappings = pseudo-open mappings = quotient
mappings [20].

Lemma 2.2. Let f : X — Y be a mapping and A c Y. If f is a pseudo-open and boundary-compact mapping
at A, then f is bi-quotient at A.

Proof. Let y € A and % be a family of open subsets in X, which covers f-1(y). Since f is boundary-compact
at A, there exists a finite subfamily %' of % such that of "'(y) ¢ |J#'. We can assume that there existsU € %'
such thatU n f~1(y) + @, whencey ¢ f(U).LetV = [f'(y)]° u U%'. Then f~(y) ¢ V. Since f is pseudo-open
at A, we have that y € [f(V)]° c f(f "/ (y) u UZ") ={y} u fF(U%") = F(U%"). So y € [f(U%")]° . Therefore,
f is bi-quotient at A. O

Lemma 2.3. Let f: X — Y be a mapping and A C Y. Suppose that 3f "\(y) is Lindelof in X for each y € A.
(1) If fis countably bi-quotient at A, then f is bi-quotient at A.
(2) If fis strictly countably bi-quotient at A, then f is almost-open at A.

Proof. (1) Let y € A and % be a family of open subsets in X which covers f~1(y). Since the set 3f !(y) is
Lindel6f, there exists a countable subfamily %' of % such that 8f"'(y) ¢ [J#' and y € f((U%'), whence
') < [fX(y)]° uU#'. Since f is countably bi-quotient at A, there exists a finite subfamily %" of %’
such that y € [f((U%")]°. Hence, f is bi-quotient at A.

(2) If f is not almost-open at A, then there exists a point y € A such that for every x € f~1(y) there is an
open neighborhood U, at x in X satisfying y ¢ [f(U,)]°. Then y is a nonisolated point in Y. Since of'(y) is
Lindeldf, there exists a subset {x; : i € N} ¢ f1(y) such that d3f 1(y) c U{Uy, : i € N}, whence f(y) c
[fY()]° u |J{Uy, : i € N}. Since f is strictly countably bi-quotient at A, y € [f(Uy)]° for somei € N, which
is a contradiction. Hence, f is almost-open at A. O

Let X be a space and A ¢ X. The space X is called a first-countable space at A if each point of A has
a countable neighborhood base in X; the space X is called a Fréchet space at A if for any subset B ¢ X
and x € A n B, there is a sequence in B converging to x in X.

Remark 2.4. If X is Fréchet at a point x € X and U is a sequential neighborhood of x in X, then U is
a neighborhood of x.

Lemma 2.5. Let f: X - Y be a mappingand A c Y.

(1) IfY is a first-countable space at A and f is a sequentially quotient mapping at A, then f is countably
bi-quotient at A.

(2) If Yis a Fréchet space at A and f is a sequentially quotient mapping at A, then f is pseudo-open at A.

(3) IfXis a Fréchet space at f1(A) and f is a pseudo-open mapping at A, then Y is a Fréchet space at A and
f is sequentially quotient at A.

Proof. (1) If f is not countably bi-quotient at A, then there exist y € A and a countable family {U; : i € N}
of open subsets in X covering f~!(y) such that for everyn e N,

y € Y\[f(_U Uz)] = Y\f(.U Ui]-

SinceY is first-countable at A, there is y, € Y\f({UicnU) for each n € N such that y, — y. Since f is sequen-
tially quotient at A, there are a convergent sequence {xj}jcy in X and a subsequence { y,,}_},-eN of {y, }nen With
each xj € f‘l(yn]_). Let x = lim;_,o,X. Then x € f7(y). It follows that there exists m € N such that x € Up,.
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Hence, there is k € N such that x; € U, and m < n; for each j > k. So Yoy € f(Uy) for each j = k, which is
a contradiction.

(2) Statement (2) holds by a similar proof in (1).

(3)Let Bc Y and y € AnB.If f1(y) nf1(B) = @, then f1(y) c X\f'(B). Since f is pseudo-open
at A, we have that

y € [FG\fT'B)]" < [F&\fTB)]" = (Y\B)* = Y\B,

which is a contradiction. So there exists x € f-1(y) n f-1(B). It follows from Fréchet property at x that there
exists a sequence {X,}qen in f71(B) such that x, — x. Then {f(X,)}nen is the sequence in B converging to y.
Hence, Y is a Fréchet space at A.

Lety, — y € Awith eachy, # y.Put C = [JnenCn, where each C, = f71(y,). We claim that f1(y) n C # @.
Assume that f~(y) n C = &, then f~!(y) ¢ (X\C)°.Since f is pseudo-open at A, we have thaty € [f(X\C)]°.
It follows that thereism € N such thaty,, € f(X\C), which is a contradiction. Hence, f!(y) n C # &, and put
x € f1(y) n C. There exists a sequence {x;};en in C such that x; — x ¢ C in X. We may assume that there is
a subsequence {y,, }icn Of {);,}nen such that each x; € f*l(yni). Therefore, f is sequentially quotient at A. O

Lemma 2.6. The followings are equivalent for a space X and A c X.

(1) X is a first-countable space at A.

(2) X is the image of a metric space under an almost-open and boundary-compact mapping at A.
(3) X is the image of a metric space under a countably bi-quotient and boundary s-mapping at A.
(4) X is the image of a metric space under a pseudo-open and boundary-compact mapping at A.

Proof. By a similar proof of [15, Lemma 3.8], we have that (1) = (2). Obviously, (2) = (4). By Lemma 2.2,
(4) = (3). Next, we will show that (3) = (1).

Let f: M — X be a countably bi-quotient and boundary s-mapping at A, where M is metrizable.
Suppose that 4 is a point-countable base of M and x € A.

Ifof 1(x) = @&, then the set f~1(x) is open in M. It follows from the fact that f is countably bi-quotient at
Athat x € [f(f1(x))]° c {x}, i.e., x is an isolated point of X, whence x has a countable neighborhood base
in X.

Suppose that 9f 1(x) # @. Let #' = {B € # : B n df 1(x) # &}. It is well known that every point-count-
able family of open subsets in a separable space is countable. Thus, the separable set 3f !(x) meets at most
countably many elements of . Then f(#') is nonempty and countable, and it can be denoted by {P};cy.
Put

P = {( U Pa) : A is a finite subset of N}.

ael

Then 2 is countable. If U is an arbitrary neighborhood of x in X, then of 1(x) ¢ f~1(x) ¢ f1(U), thus there
exists %; ¢ 4' such that of 1(x) c [J%; c f(U). Hence, f1(x) =[f10)] wof'(x) c [f1(x)]° ulU% ¢
fI(U). Since f is countably bi-quotient at A, there is a finite subfamily %4, of %; such that x €
LFASFI0] uUB)l° = [f(U%)]°. 1t follows from [ f(|J%,)]° € 2 and [f(|J%,)]° < U that x has a count-
able neighborhood base in X.

In summary, X is a first-countable space at A. O

Definition 2.7. Let 2 be a family of subsets of a space X and A ¢ X. The family £ is called a cs*-network at
A for X [16, Definition 2.6(2)] if, for each x € A, any sequence {X,},y in X converging to x and x € U € Ty,
there exist a subsequence {X,}icy Of {Xntnen and P € 2 such that {x} U {x,, : i € N} c P c U; the family 2
is called a cs*-network for X if it is a cs*-network at X [21, Definition 3].

A family 2 of subsets of a space X is called a network at a point x € X [3] if x € [\%, and for each
neighborhood U of x in X, there is P € £ such that P c U.



1572 =—— Shou Lin et al. DE GRUYTER

Definition 2.8. Let X be a space and A c X. A sequence {Z};y of families of subsets in X is called a point-
star network at A for X [13, Definition 2.4] if {st(x, Z)}i«y is a network at x in X for each x € A; {Z}ien
is called a point-star network for X [22, Definition 5(2)] if {Z};cn is a point-star network at X.

Definition 2.9. Let # be a family of subsets of a space X and A ¢ X.

(1) The family 2 is called a uniform cover at A for X [13, Definition 2.3(1)] if, for x € A, each countably
infinite subset 2’ of (2), is a network at x in X; 2 is called a uniform cover for X [23] if Z is a uniform
cover at X.

(2) The family 2 is called a point-regular cover at A for X [13, Definition 2.3(2)] if, for each x € A and
x € U € 1%, the family {P € (#), : P ¢ U} is finite; 2 is called a point-regular cover [23] for X if 2 is
a point-regular cover at X.

(3) The family 2 is called a cs*-cover at A for X if {x,},«y is a sequence converging to a point x € A in X, then
there exists P € # such that some subsequence of {x,},y is eventually in P; £ is called a cs*-cover for X
[24] if 2 is a cs*-cover at X.

Definition 2.10. Suppose that £ is a family of subsets of a space X such that, for each x € X, there is
a countable subfamily of 2, which is a network at x in X. Let # = {F, : @ € A}, which is no repetition by
indexes in the enumeration, and A be endowed with the discrete topology. Put

M= {a = (a;) € N\ : {Pal.}ieN forms a network at some point x, in X}.

Define a function f: M — X by f(a) = x, for each a € M. Then (f, M, X, %) is called Ponomarev’s system
[25, p. 296].

Definition 2.11. Let {Z};.y be a sequence of subset families in a space X, satisfying for each x € X and each
i € N, there is P, ; € % such that the family {P, ;};cv is a network at x. For eachi e N, let Z; = {P, : a € A3},
and A; be endowed with the discrete topology. Put

M={a=(a) € HAi : {Pa,.}iEN forms a network at some point x, in X}.
ieN
Define a function f: M — X by f(a) = x, for each a € M. Then, (f, M, X, {#}) is called Ponomarev’s system
(25, p. 296].

Ponomarev’s system is one of the important methods to construct metric spaces, and it is also a basic
tool to discuss the images of metric spaces under certain mappings [1,2].

Lemma 2.12. Let (f, M, X, 2) be Ponomarev’s system and x € X. Then
(1) M is a metric space, and f : M — X is a mapping [25, Lemma 1(1)].
(2) fl(x) is separable in M if and only if (%) is countable [14, Lemma 1.3].

Lemma 2.13. Let (f, M, X, {#}) be Ponomarev’s system and x € X. Then

(1) M is a metric space, and f : M — X is a mapping [15, p. 4].

(2) If{ZP}ien is a point-star network at x in X, then f~1(x) is compact in M if and only if each 2, is point-finite
at x [15, Lemma 2.6].

(3) f is a sequentially quotient mapping at x if and only if {Z}iN is a sequence of cs*-cover at x for X
[26, Theorem 2.7(2)].

The result (3) in Lemma 2.13 was proved for each point x in the space X, but it is easy to see that it is also
correct for each fixed point x in X.
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3 On sequentially quotient and compact mappings

The purpose of this section is to give some characterizations of the images of metric spaces under sequen-
tially quotient and compact mappings at subsets. Furthermore, we give an affirmative answer to Question 1.4,
and improve and perfect the characterizations of the images of metric spaces under compact mappings
at subsets.

Lemma 3.1. [13, Lemma 3.1] Let 2 be a family of subsets of a space X and A c X. Then the followings are

equivalent.

(1) 2 is a point-regular cover at A for X.

(2) 2 is a uniform cover at A for X.

(3) For each x € A, if {B, : n € N} is an infinite set of (#), and U is a sequential neighborhood of x in X,
then there is m € N such that B, c U for alln > m.

Proposition 3.2. Suppose that A is a subset of a space X. If X has a point-regular cs*-network at A for X,
then X has a sequence of point-countable cs*-covers at A, which is a point-star network at A for X.

Proof. Let # be a point-regular cs*-network at A for X. We can assume that £ is closed under finite
intersections (see [13, Lemma 3.1]) and {{x} : x € S(X) n A} c 2.

Claim a. Z is point-countable at A (see [13, Claim 1 in the proof of Lemma 3.2]).

Put

Pm={HeP: I HcPe?, then P=H}
P =(P\?™ U {{x}: x € SX) n A}.

Claim b. If x € A and P € (#),, then there exists H € 2™ such that P c H.

To the contrary, assume that there exists an infinite subset {P,: n € N} of 2 such that P ¢ P,
¢P,¢...B, ¢PB.1 ¢ - . Then there exists a point y # x such that {x, y} c B, for each n € N. Hence,
{B,:neN}c{Pe (P)y:P¢ X\{y}}, which is a contradiction.

Claim c. 2’ is a point-regular cs*-network at A for X.

It suffices to prove that 2’ is a cs*-network at A N NS(X) for X. Let x € A N NS(X), {x.}nen be a sequence
converging to x and x € U € 1x. We may assume that every x,, # x. Since Z is a cs*-network at A for X, there
exist P, € 2 and some subsequence S; of {x,},cn such that {x} U S; c P, ¢ U. Pick y € Sy, then there exist
P, € 2 and some subsequence S, of S; such that {x} u S, c P, c U\{y}.PutP=P n P,,thenx e P ¢ P,c U
and P contains a subsequence of {x,},.n. Hence, P € 2'. It implies that £’ is a cs*-network at A for X.
So the proof of (c) is completed.

Let

isn

P = PM, %H:[(@\U?g)u{{x}:xeS(X)nA} , neN,

It follows from Claims (a)-(c) that 2 = Jy,en% and every £, is a point-countable cs*-cover at A. We claim
that {Z,},cn is a point-star network at A for X. Let x € A and B, € (), Vn € N. If x € S(X), there exists
m € N such that B, = {x}, whence {B, : n € N} is a network at x in X. If x ¢ NS(X), since P,, P,,... B,,... are
distinct, it follows from Lemma 3.1 that {B, : n € N} is a network at x in X. Therefore, {#},.«y is a point-star
network at A for X. O

Lemma 3.3. [8, Theorem 2.3] The followings are equivalent for a space X.

(1) X has a point-regular cs*-network.

(2) X has a sequence of point-finite cs*-covers, which is a point-star network for X.
(3) X is a sequentially quotient and compact image of a metric space.
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The following is the main result in this section, which generalizes the aforementioned lemma.

Theorem 3.4. The followings are equivalent for a space X and A c X.

(1) X has a point-regular cs*-network at A for X.

(2) X has a uniform cs*-network at A for X.

(3) X has a sequence of point-finite cs*-covers of A, which is a point-star network at A for X.
(4) X is the image of a metric space under a sequentially quotient and compact mapping at A.

Proof. By Lemma 3.1, we have that (1) © (2). Next, we will prove that (1) = (3) = 4) = ().

(1) = (3).LetZ be a point-regular cs*-network at A for X. We can assume that 2 is closed under finite
intersections and {{x} : x € S(X) n A} c 2. 1t follows from Proposition 3.2 that the family 2 can be
expressed as | Jnen %, Where {Z}noy is a sequence of cs*-covers of A, which is a point-star network at A
for X and each %, refines Z,. Put 2 |, = {P N A : P € #}. Because Z |, is a point-regular cs*-network for
the subspace 4, it follows from Lemma 3.3 that the family # |, can be expressed as | Jyen2n, Where {2} ey
is a point-star network consisting of point-finite cs*-covers in the space A and each 2,,; refines 2,.
For each n € N, put

Ry = 20 U {{x} U (stlx, ZY)\A) : x € A}.

It is obvious that £, is a point-finite family at A for X. Let L = {x;};cy be a sequence converging to some point
x e Ain X.If|{i e N : x; € A}| = w, since 2, is a cs*-cover for the space A, there exists Q € 2, such that some
subsequence L’ of L is eventually in Q; if |{i € N : x; € A}| < w, since %, is a cs*-cover at A for X, there exists
P ¢ %, such that some subsequence L" of L is eventually in P, it follows that the sequence L" is eventually in
the set {x} U (st(x, Z)\A). It implies that %, is a cs*-cover at A for X. We claim that {#,},«y is a point-star
network at A for X.

Let x € A and U be a neighborhood of x in X. There exist i,j € N such that st(x,2)cUnA
and st(x, %) c U. Put m = max{i, j}. Then

st(x, Zm) = st(x, 2m) U (st(x, Z)\A) c U.

Hence, {Zn}ney is a point-star network at A for X.

(3) = (4). Suppose that X has a sequence {Z};y of point-finite cs*-covers of A which is a point-star
network at A for X. For each x € X\A and i € N, we may assume that {x} € #. Let (f, M, X, {#}) be
Ponomarev’s system. It follows from Lemma 2.13 that M is a metric space and f: M — X is a sequentially
quotient and compact mapping at A.

(4) = (1).Suppose that f : M — X is a sequentially quotient and compact mapping at A, where M is a
metric space. Let {%;}icy be a sequence of locally finite open covers of M such that each %;,; refines %;;
and for every compact subset K of M, {st(K, %;) : i € N} is a neighborhood base of K in M [3, Exercises,
5.4.E(a)]. For eachi € N, put Z, = {f(B) : B € %3}, then Z, is a cover of X. Since f is compact at 4, it follows
that %, is point-finite at A. Put 2 = | J;cn%;. We claim that 2 is a point-regular cs*-network at A for X.

Since f is sequentially quotient at A and | Jien%; is a base for M, it is easy to verify that the family 2 is
a cs*-network at A for X. For each x € A, let V be an open neighborhood of x in X. Since the compact subset
(%) of M satisfies f~1(x) c f1(V), it follows that there exists n € N such that st(f(x), %,) c f}(V). Then
for eachi > n, st(x, %) c st(x, %) c V. Thus, {P € (#)y : P ¢ V} c (Ui<nZ)x is finite. Hence, Z is a point-
regular cs*-network at A for X. O

Corollary 3.5. The followings are equivalent for a space X.

(1) X has a cs*-network which is point-regular at NI(X) for X.

(2) X has a point-regular cs*-network at NI(X) for X.

(3) X is a sequentially quotient and almost compact image of a metric space.

It is known that suppose that M is a sequential space then a mapping f : M — X is quotient if and only
if X is a sequential space and f is sequentially quotient [2, Propositions 2.1.12(2)(5) and 2.3.1(1)].
By Corollary 3.5, we have the following corollary, which gives an affirmative answer to Question 1.4.
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Corollary 3.6. The followings are equivalent for a space X.
(1) X is a quotient and almost compact image of a metric space.
(2) X is a sequential space with a point-regular cs*-network at nonisolated points.

Corollary 3.7. The followings are equivalent for a space X and A c X.

(1) X is the image of a metric space under a pseudo-open and compact mapping at A.
(2) X is the image of a metric space under a bi-quotient and compact mapping at A.
(3) X is a first-countable space at A and has a point-regular cs*-network at A for X.

Proof. It follows from Lemmas 2.6, 2.5(3), and Theorem 3.4 that (1) = (3). By Theorem 3.4 and Lemma 2.5(1),
we have that (3) = (2). Obviously, (2) = (1). O

The following corollary is related to Question 1.6, which gives a characterization of the image of a metric
space under a pseudo-open and almost compact mapping.

Corollary 3.8. The followings are equivalent for a space X.

(1) X is a pseudo-open and almost compact image of a metric space.

(2) X is a bi-quotient and almost compact image of a metric space.

(3) X is a first-countable space having a cs*-network which is point-regular at nonisolated points.

At the end of this section, we discuss a version at subsets of Theorem 1.2. For ease of reading and proof,
we quote the following results.

Lemma 3.9. [13, Theorems 3.3 and 3.4] The followings are equivalent for a space X and A C X.

(1) X is the image of a metric space under an open and compact mapping at A.

(2) There exists a compact mapping at A, f : M — X from a metric space M satisfying the following condition:
for each x € A, there is a point z € f~(x) such that f(U) is a sequential neighborhood of x in X whenever
U is a neighborhood of z in M.

(3) X has a point-regular base at A for X.

Theorem 3.10. The followings are equivalent for a space X and A c X.

(1) X is the image of a metric space under an almost-open and compact mapping at A.

(2) X is the image of a metric space under a strictly countably bi-quotient and compact mapping at A.
(3) X has a point-regular base at A for X.

Proof. By Lemma 2.3(2), (1) © (2). By Lemma 3.9, (3) = (1) and (1) = (3). O
The following result is a supplement to Theorem 1.2.
Corollary 3.11. The followings are equivalent for a space X

(1) X is an almost-open (or a strictly countably bi-quotient) and almost compact image of a metric space.
(2) X has a base which is point-regular at NI(X).

4 On countably bi-quotient s-mappings

In this section, we present an example to give negative answers to Questions 1.5 and 1.6, see Example 4.1.
Furthermore, we consider what conditions need to be given so that the answer to Question 1.5 is affirmative,
see Corollary 4.12, and improve and perfect the characterizations of the images of metric spaces under
s-mappings at subsets.
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Example 4.1. Consider two subsets in the plane R2:
Ci={(a,b)cR?:b=iand 0 <ac<1}, wherei=1,2,

and let X = C; U G,. Specify the neighborhood base #(x) of each point x € X as follows: let %4(x) = {{x}}
for x € G; and let (x) = {Bx(x) : k € N} for x = (a, 1) € C;, where

Bi(x)={x}u{d,b)eX:0<|a-a]<Vk}.

The space X is called the Alexandroff double lines space [3, Example 3.1.26]. It is not difficult to verify
that X is a Hausdorff, compact, and first-countable space.

(1) X has no base that is point-countable at NI(X). Suppose not, let 8 be a base which is point-
countable at NI(X). C; is separable metrizable, let D c C; be a countable dense subset, and let 8, =
{Be€ B :BnD+ J}, then B, is countable. It implies that {{x} : x € G} U B, is a o-discrete base of X.
This is a contradiction since X is not metrizable. So then X has no base which is point-regular at NI(X)
by Claim in the proof of Proposition 3.2, and X is not a strictly countably bi-quotient and almost s-image of
a metric space (see Corollary 4.7).

Obviously, NI(X) = C; and C; is compact in X. However, C; is not a Gs-set in X. So X has no base which is
point-countable at NI(X).

(2) X has a point-regular cs*-network at NI(X) for X, so then X is a bi-quotient and almost compact
image of a metric space by Corollary 3.8.

Let Z=R x {1}. It follows from the metrizability of R that Z has a point-regular base %.
Let v ={Un C;: U € %}. For each x € C;, put

W= U B NGl keN} and # =7 U W} : x € Cil.

It is easy to see that % is a point-regular cs*-network at NI(X) for X.

Although the answer to Question 1.5 is negative, it is interesting to obtain a characterization of the
image of a metric space under a countably bi-quotient and almost s-mapping. A basic result in this direction
is the following lemma.

Lemma 4.2. [16, Theorem 3.2] The followings are equivalent for a space X and A c X.
(1) X is the image of a metric space under a sequentially quotient and s-mapping at A.
(2) X has a point-countable cs*-network at A for X.

Theorem 4.3. The followings are equivalent for a space X and A c X.
(1) X is the image of a metric space under a (countably) bi-quotient and s-mapping at A.
(2) X is first-countable at A and has a point-countable cs*-network at A for X.

Proof. By Lemma 2.3(1), it is known that the image of a metric space under a bi-quotient and s-mapping at A
coincides with the image of a metric space under a countably bi-quotient and s-mapping at A.
By Lemmas 2.6, 2.5, and 4.2, we have that (1) & (2). O

Corollary 4.4. The followings are equivalent for a space X.
(1) X is a (countably) bi-quotient and almost s-image of a metric space.
(2) X is a first-countable space having a cs*-network, which is point-countable at NI(X).

For the sake of completeness and analogy Theorem 3.10 and Corollary 3.7, we will further give some
characterizations of the images of metric spaces under open (resp., strictly countably bi-quotient,
or pseudo-open) and s-mappings at A.

Corollary 4.5. The followings are equivalent for a space X and A c X.
(1) X is the image of a metric space under a pseudo-open and s-mapping at A.
(2) X is a Fréchet space at A and has a point-countable cs*-network at A for X.
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Proof. By Lemmas 2.5(3) and 4.2, we have that (1) = (2). By Lemmas 4.2 and 2.5(2), we have that (2) = (1).
O

Theorem 4.6. The followings are equivalent for a space X and A c X.

(1) X is the image of a metric space under an open and s-mapping at A.

(2) X is the image of a metric space under a strictly countably bi-quotient and s-mapping at A.
(3) X has a point-countable base at A for X.

Proof. Clearly, (1) = (2). Next, we will prove that (2) = (3) = (1).

(2) = (3). Let f: M — X be a strictly countably bi-quotient and s-mapping at A and let % be a point-
countable base of M. Foreach x € A, let %, ={B € # : Bn f1(x) + @} and # = f(4,). Since the set f1(x)
is separable, families %4, and %, are non-empty and countable. Put 2 = | Jyca% and 2 = {P° : P € #}. Then
2 is point-countable at A. Next, we will show that 2 is a base at A for X. If x € A and U is an arbitrary
neighborhood of x in X, then f-1(x) c f~1(U); thus, there exists %', ¢ %, such that f1(x) ¢ %, < f1(U).
Since f is a strictly countably bi-quotient mapping at A, there is B € %', such that x € [f(B)]°. It follows
from [f(B)]° € 2 and[f(B)]° ¢ U that X has the point-countable base at A for X.

(3) = (1). Let 2 be a point-countable base at A for X. We may assume that {{x} : x € X\ A} ¢ £ and put
2P ={By: a € A}. Then 2 is a network for X. Let (f, M, X, ) be Ponomarev’s system. By Lemma 2.12, M is
a metric space and f is an s-mapping at A.

For each a = (a;) € M and k € N, put

By, ay, ...,;0) ={(y;)) e M : a; =y, if i < k}.
Then f(B(ay, a2, ...,0x)) = [i<kBy; (see [2, part (4.2) of Proposition 2.4.4]) and {B(a;, @y, ...,a) : k € N} is
a local base at a in M.
Let x € A and z = (@) € f1(x). If V is a neighborhood of z in M, there exists k ¢ N such that
B(ay, ay, ...,ax) ¢ V, so then (i<kPy = f(B(aw, ay, ...,ax))  f(V), thus f(V) is a neighborhood of x in X.
Then f is an open mapping at A. O

The following result is a supplement to Theorem 1.1.

Corollary 4.7. The followings are equivalent for a space X.
(1) X is an almost-open (or a strictly countably bi-quotient) and almost s-image of a metric space.
(2) X has a base which is point-countable at NI(X).

At the end of this section, we discuss the conditions under which Question 1.5 has a positive answer.

Recall two related concepts [27]. Let 2 be a family of subsets of a space X and A c X. Put
PY={F c P . isfinite}. The family 2 is said to satisfy (BM) at A if, whenever x € A and U is
a neighborhood of x in X, there exists # € 2<% such that

xeN#, xe(¥)° and UZ cU.
2 is called a minimal interior cover of A if A c (|J2)° and A ¢ ()" for any proper subset # of 2.
Lemma 4.8. Let X be a space and A c X. Suppose that X is a first-countable space at A and 2 is a point-
countable cs*-network at A for X, then 2 satisfies (BM) at A.
Proof. For each x € A, put

F={U7 : F € (#)* and x € (JF)°}.

Then #, is countable. To complete the proof, we only need to show that the family %, is a network at x in X.
To the contrary, assume that there exists a neighborhood G of x in X with F ¢ G for each F € #,.
Put

{Pe(@P)y:PcGt={P:ieN}; F=J{P:i<n},neN.
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So each F, is not a neighborhood of x in X. Since X is first-countable at x and (#), is a cs*-network at x in X,
for each i € N, there are a sequence T; converging to the point x and n; € N such that T; c B, ,\F, and
N > n. Put T = {x} U |{T; : i € N}. It follows that there is a sequence {xi}xeny in T converging to x, which
meets infinitely many sequences T;. Then there exists i € N such that P; contains a subsequence {xi, }men
of {Xy}xen. So there are m,j € N such that j > i and x, € Tj, whence x,, € P, n (X\F;) = &, which is a
contradiction. Thus, %, is a network at x in X. O

Lemma 4.9. Let X be a space and A c X. Suppose that X is a first-countable space at A and has a point-
countable cs*-network at A for X. If|0A| < w, then X has a point-countable base at A for X.

Proof. Let Z be a point-countable cs*-network at A for X. Let 2 = [J{2 : x € A}, where each
2,={PNA:PePJUx}u (P\A) : P e (#), and x € P\A}.

It is easy to check that 2 is a point-countable cs*-network at A for X. It follows from Lemma 4.8 that the
family 2 satisfies (BM) at A. Let

O={F c2Y:AnNZ + B}
For each 7 € @, put V() = [J#(F) n 2]°, where
H(F)={H c X : # is aminimal interior cover of H n A}.
Put
v ={V(F): F € O}

Claim 1. 7" is a base at A for X.

Let x € A and U be a neighborhood of x in X. By condition (BM), there exist #, # € ® such that
xe(NZ)n (%) and x € (UB)° < | U# c (UF)° c U. We may assume that the family # is a minimal
interior cover of {x}, and the family 4 satisfies that # is a minimal interior cover of B N A for each B € %,
i.e., B e #(F). Hence, (J#)° c V(F) € ¥". It follows that x € V(%) c U. So 7" is a base at A for X.

Claim 2. 7~ is point-countable at A.

Letx e A. If x € V(Z) € ¥, then there exists K € # (%) n 2 such that x € K. Since (2), is countable,
to complete the proof of Claim 2, we only need to prove the following claim: suppose that Kn A + &,
then K € (%) for at most countably many # € ®@.

To the contrary, assume that K € # (%) for uncountably many % € @. It follows from @ = J,en
{77 c2°v:|Z|=nand AN (Z # &} that we can choose m € N and an uncountable subset @' of ®
such that |#| = m and K € #(F) for every # € @'. According to the Zorn lemma, suppose that M is
a maximal subset of 2 satisfying {7 € @' : M c Z} is uncountable. Then0 < M| <mandKn A ¢ (JM)".
Pick a point y € (K n A)\(UM)", then y € X\[JM. Since X is first-countable at A, there exists a sequence L
in X\|M convergingtoy.Let®" = {# € @' : M c F}.Foreach# ¢ @, itfollows fromy € Kn A c(JF)*
that Ln (U#)° + . We may assume that Lc AorL n A = &.

If L c A, since 2 is point-countable at A and @” is uncountable, there exists Q € 2 suchthatQ N L + &
and{# € ®" : Q € #}is uncountable. It follows from L ¢ X\ JM thatQ ¢ M and{# € ®" : M U {Q} ¢ F}
is uncountable. This implies that M is not maximal, which is a contradiction.

Now, we assume that L N A = &. For each & ¢ @", there is P, ¢ # such that P» n L # &; thus,
Pz ¢ M. 1t follows from A N (F # @ that P> N A # @&, so we can fix a point x> € P» n A. By the definition
of 2, x;}=PrNA and x7 € Ps\A. Let T={xz : # € ®"}. Then, T c An X\A c dA. It follows from
|0A| € w that T is countable. Let 2’ = {P» : & ¢ @"}. By the point-countability of 2, the family 2’ is coun-
table. Since ®" is uncountable, there exists R € 2’ such that {# € ®" : R € #} is uncountable, so then
{F ¢ @" : M U{R} c #} is uncountable. This implies that M is not maximal, which is a contradiction.

According to Claims 1 and 2, X has the point-countable base 7~ at A for X. (|
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By Theorem 4.3 and Lemmas 4.8 and 4.9, we obtain the following result.

Theorem 4.10. Suppose that A is a subset of a space X satisfying|0A| < w. Then the followings are equivalent:
(1) X has a point-countable base at A for X;
(2) X is the image of a metric space under a countably bi-quotient and s-mapping at A.

Remark 4.11. It is obvious that 0X = & for a space X; thus, the followings are equivalent by Lemma 4.9
and Theorem 4.10.

(1) X has a point-countable base.

(2) X is the image of a metric space under a countably bi-quotient and s-mapping [18].

(3) X is a first-countable space and has a point-countable cs*-network for X [1, Corollary 2.1.7].

Corollary 4.12. The followings are equivalent for a space X with |ONI(X)| < w.

(1) X has a base which is point-countable at NI(X).
(2) X is a countably bi-quotient and almost s-image of a metric space.

5 Conclusion

In this article, we study some questions related to the almost s-images (resp., almost compact images)
of metric spaces. The following conclusions are obtained.

Conclusion 5.1. A space X is a quotient and almost compact image of a metric space if and only if X is
a sequential space having a cs*-network which is point-regular at nonisolated points.

Conclusion 5.2. A space X is a pseudo-open (or bi-quotient) and almost compact image of a metric space
if and only if X is a first-countable space having a cs*-network which is point-regular at nonisolated points.

Conclusion 5.3. A space X is an almost-open (or a strictly countably bi-quotient) and almost s-image of
a metric space if and only if X has a base that is point-countable at nonisolated points.

Conclusion 5.4. There exists a bi-quotient and almost compact image of a metric space satisfying no base
which is point-countable at nonisolated points.
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