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Abstract: We mainly study the dimension-free L p-inequality of the truncated maximal operator
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1 Introduction

Let f n��( )∈ be a rapidly decreasing function defined on n� . For a0 1≤ < , define the truncated maximal
operator
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1. Conveniently, we denote the unite sphere Sn 1−
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where σ yd ( ) denotes the usual measure of the unite sphere and B1
1∣ ∣ denotes its total mass. Obviously, Mn

0 is
the Hardy-Littlewood maximal operator and Mn

1 is the sphere maximal operator. We mainly study the
dimension-free L p-boundedness of the truncated maximal operators Mn

a for a0 1≤ ≤ . Stein first studied
the sphere maximal operator Mn

1. In [1], he pointed out that if p n n 1( )> / − , then

M f C p n f, ,n L L
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where C p n,( ) denotes a constant depending on p and n. The case for n 2= was proved by Bourgain [2].
Later many authors tried to generalize the spherical maximal function to other hyper-surface. In [3], Sogge
and Stein pointed out that if the Gaussian curvature of � does not vanish of infinite order at each point of �,
then there exists a P2 0 �( )< < ∞ such that the corresponding surface maximal operator is strongly
L p-bounded for p p0 �( )> . Moreover, when the surface has at least one non-vanishing principal curvature
everywhere in n� , then the maximal operator maps L p to L p for p 2> [4]. More related works can be seen in
[5–14] and the references therein.

When a 0= , Mn
a is the classical Hardy-Littlewoodmaximal operator. According to the result of [1], Stein

[15] obtained that there exists a constant C p( ) independent of n such that

M f C p fn L L
0 p n p n� �∥ ∥ ( )∥ ∥( ) ( )≤ (1)

for p 1> . Analogously, many authors turned to focus on generalizing the dimension-free estimate for the
maximal function to the general case. Bourgain [16] studied the maximal operator over central symmetric
convex sets and obtained a similar result as (1) for p 2= . Later, Bourgain [17] and Carbery [18] generalized
this result for all p 3 2> / in different ways independently. For some special convex set such as q-balls,

q1 ≤ < ∞, Müller [19] extended the L p bound to every p 1> . Recently, Bourgain [20] showed that the
strong type constant can be bounded by a constant, which is independent of the dimension for the Hardy-
Littlewood maximal operator over cubes for all p 1> . In this article, we will study the dimension-free
estimate of the truncated maximal operator Mn

a, generalizing the results of Hardy-Littlewood maximal
operators and sphere maximal operators proved in [1].

Theorem 1.1. Let f n��( )∈ . If a0 1≤ < , then there exists a constant C p( ) independent of n and a such that
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If a 1= , then
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for p 2≥ .

2 The proof of main theorem for the case =a 1
By interpolation theorem, we only need to prove the case p 2= . This result follows from the general
L2-estimate on convolution maximal operators obtained by Bourgain [16].

Lemma 2.1. Let K n�� ( )∈ ′ be a tempered distribution. Suppose K L n �( )∈ ∞ and is differentiable. Define the
following quantities:
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Let Pt t 0( )> be the Poisson-semigroup on n� satisfying P ξ et
t ξ( ) = − ∣ ∣. To derive (2), we take K ξ( ) =
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Stein [15] showed that there exists a constant Cp independent of dimension n, such that
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for all p 1> . So it is sufficient to prove that
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To use Lemma 2.1, we will study the asymptotic properties of K( )⋅ . Suppose n 3≥ , we give three estimates
about m ξ( ).

Firstly, when ξ∣ ∣ is large enough, we have
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When ξ∣ ∣ is small enough, we obtain
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Finally, we obtain
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It is easy to know that
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Combining these two inequalities with (4)–(6), we have
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3 The proof of main theorem for the case < <a0 1
For a0 1≤ < , we have
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It follows from (1) and (7) that
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The general case has been proved. It remains to consider the special case p n n 1( )> / − . We introduce the
following operator:
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It implies
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From this, it follows that
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where τd is the normalized Harr measure on the orthogonal group O n( ).
It follows from (10) and (11) that
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Since n p p 1( )> / − , we take k to be the smallest integer greater than p p 1( )/ − . Our theorem follows
from (12).
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