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Abstract: We mainly study the dimension-free LP-inequality of the truncated maximal operator

M) = sup o |B| jf(x ~ ty)dy |,

where B} = {x : a < |x| <1}. When 0 < a < 1, we prove that [|[M[rgr < C(P)Ifllrgn for p > n/(n - 1).
When a = 1, we prove that [Mplrw® < C(P)Iflrwn for p = 2.
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1 Introduction

Let f € S(R™) be a rapidly decreasing function defined on R". For O < a < 1, define the truncated maximal
operator

M2 _ _ d ,
MEF0) = sup o |B| jf(x ty)dy

where B! := {x : a < |x| < 1} and |B}| denote the volume of B}. Conveniently, we denote the unite sphere S"!
by B.. Define

MYf(x) = sup —— jf(x ~ ty)do(y)|,

t>0|1

where do(y) denotes the usual measure of the unite sphere and |B}| denotes its total mass. Obviously, M? is
the Hardy-Littlewood maximal operator and M, is the sphere maximal operator. We mainly study the
dimension-free LP-boundedness of the truncated maximal operators M for O < a < 1. Stein first studied
the sphere maximal operator M,}. In [1], he pointed out that if p > n/(n — 1), then

IMyf iy < C(p, WIIflrwr s
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where C(p, n) denotes a constant depending on p and n. The case for n = 2 was proved by Bourgain [2].
Later many authors tried to generalize the spherical maximal function to other hyper-surface. In [3], Sogge
and Stein pointed out that if the Gaussian curvature of S does not vanish of infinite order at each point of S,
then there exists a 2 < Py(S) < co such that the corresponding surface maximal operator is strongly
LP-bounded for p > po(S). Moreover, when the surface has at least one non-vanishing principal curvature
everywhere in R", then the maximal operator maps L? to L? for p > 2 [4]. More related works can be seen in
[5-14] and the references therein.

When a = 0, M{ is the classical Hardy-Littlewood maximal operator. According to the result of [1], Stein
[15] obtained that there exists a constant C(p) independent of n such that

IMafllrwn < CO)Iflrr 1)

for p > 1. Analogously, many authors turned to focus on generalizing the dimension-free estimate for the
maximal function to the general case. Bourgain [16] studied the maximal operator over central symmetric
convex sets and obtained a similar result as (1) for p = 2. Later, Bourgain [17] and Carbery [18] generalized
this result for all p > 3/2 in different ways independently. For some special convex set such as g-balls,
1< g < 0o, Miiller [19] extended the L? bound to every p > 1. Recently, Bourgain [20] showed that the
strong type constant can be bounded by a constant, which is independent of the dimension for the Hardy-
Littlewood maximal operator over cubes for all p > 1. In this article, we will study the dimension-free
estimate of the truncated maximal operator M}, generalizing the results of Hardy-Littlewood maximal
operators and sphere maximal operators proved in [1].

Theorem 1.1. Let f € S(R"). If0 < a < 1, then there exists a constant C(p) independent of n and a such that
IMifllrwry < (1 — @) 'CP)IIfllrwn
forp>1. Whenp >n/(n-1),
IMafllrwry < COOIfllrwry -
Ifa =1, then
IMafllzery < C(PIIf vy )

for p = 2.

2 The proof of main theorem for the casea =1

By interpolation theorem, we only need to prove the case p = 2. This result follows from the general
I?-estimate on convolution maximal operators obtained by Bourgain [16].

Lemma 2.1. Let K € S'(R") be a tempered distribution. Suppose K € L®(R") and is differentiable. Define the
following quantities:

a= sup [K@)| and Bj= sup [(VK(&), ).

D<|&|<2H 2<|¢|<2*!

for j e Z. Then,

sup|f = Ky
t>0

< CTEOf Nlzwry »
L2(R™)

where

T(K) = Y a}'? (a5 + B2,

jez
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Let M = ﬁda(y) and m(¢) is the Fourier transform of M, where do(y) is the usual measure of unite

sphere. Then,
i3 |
J‘e*2”i5‘5|(1 - s2)"2ds,
%F(Tl -1
and

MY () = sup jf « M),

t>0

Let P(t > 01) be the Poisson-semigroup on R" satisfying ﬁ(.{ ) = et To derive (2), we take K &) =
m(&) — e 2kl
Stein [15] showed that there exists a constant C, independent of dimension n, such that

< Collflzrawry
LP(R™)

supl|F; * f]
t>0

for all p > 1. So it is sufficient to prove that

sup|K; * f|

t>0

< ClIflzwr- 3)
LR

To use Lemma 2.1, we will study the asymptotic properties of K(-). Suppose n > 3, we give three estimates

about m(¢).
Firstly, when |£] is large enough, we have

F(ﬁ) 1 1 —Zm'slfld 1 2"—-3d
|m(£)| mm Ie E( —S)2 S

-1

r(2) (4)
- n%l‘(f’;l) 28l I ‘ ot ®
<Cmo|¢ [
When |£] is small enough, we obtain
Im(¢) - 1= 7'[;1:<(§)1 J‘(e*ZmSIg’I D - s2)7°ds
2
n (5)
< Cn2[é]
Finally, we obtain
n 1
(Ve 1= nl;‘<(2)l) I e 2msI(2ris|¢])(1 — $2)"2'ds
-1

2
n 1
79 Ie‘zm“f'd (s(l - 27 ) (6)




DE GRUYTER Dimension-free estimate for the truncated maximal operator = 1551

It is easy to know that

e 21— 1] < nodig],

e 91 < mifg
and

(Ve 214, £)] < C.
Combining these two inequalities with (4)-(6), we have

IRl < crife |,

K@)l < cn12],
and

|<VK (&), &>| < C.
According to three inequalities mentioned earlier and Lemma 2.1, we obtain

suplf = K
t>0

< Cllflzwr-

LR

3 The proof of main theorem for the case0 < a < 1

For O < a < 1, we have

<I
|Bal £>0

MF(x) = sup — jf(x ~ ty)dy aM,E’(mxx). @)
Bl

d
ot |B| 1Bl J IFGe - iy <

It follows from (1) and (7) that

1
M fllrpwry < . aC(p)”f"Lp([R")-

The general case has been proved. It remains to consider the special case p > n/(n — 1). We introduce the
following operator:

foya 6 = 07|
My f(X) = sup —— .

m
>0 LSMQM dy

Noting that

leylslf(x - ty)|y|mdy‘ U _[n S = tp@)pm™n- ld6dp ‘

(8)
J;Jg|y\g1|y|mdy J .[5" 1anrm ldedp

It implies

M3 f (0 < Ma(IfDCO.
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From this, it follows that
M2 fllrwry < C(p, WIfllrwry- ©)
For T € O(n), define

fx = tr(y, 0))|Y1|n_de1

Jaslyllsl
M f (x) = sup

n-k
0 leyllsllyll dy1
where (y;, 0) € RK x R"k, Then
[y = €, 0Dy,
ME f (x) = sup ——— — = Mg fe(t™),
>0 | el
where f;(-) = f(1 -). Hence,
IME fllzrwmy < A(p, OIf lrwn - (10)
Since
[ rec-oay
1 as<|yl<1
- [rec- may -
|Ba| Bl J‘ dy
a a<|y|<1
[ ] e opir-tayar
_ 0(n) Jaslyl<1
[ | wirraydr
O(n) Ja<ly,|<1
we obtain
MFeo < [ ME DO, i
o)

where dr is the normalized Harr measure on the orthogonal group O(n).
It follows from (10) and (11) that

IMafllrwny < A(p, OIflrwn- (12)

Since n > p/(p — 1), we take k to be the smallest integer greater than p/(p — 1). Our theorem follows
from (12).
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