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Abstract: A graph is said to be symmetric if its automorphism group is transitive on its arcs. This article is
one of a series of articles devoted to characterizing prime-valent arc-transitive graphs of square-free order
or twice square-free order. In this article, we determine all 7-valent symmetric graphs of order 2pq and 11-
valent symmetric graphs of order 4pq.
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1 Introduction

For a simple, connected, and undirected graph Γ, the vertex set and arc set of Γ are denoted byV Γ and AΓ,
respectively. Let G be a subgroup of the full automorphism group ΓAut of Γ. Then, Γ is called G-vertex-
transitive and G-arc-transitive if G is transitive on V Γ and AΓ, respectively. An arc-transitive graph is also
called symmetric. It is well known that Γ is G-arc-transitive if and only if G is transitive on V Γ and the
stabilizer G g G α αα

g{ ∣ }≔ ∈ = for some α V Γ∈ is transitive on the neighbor set αΓ( ) of α in Γ.
For a group G and a subset S S s s S1 1{ ∣ }= ≔ ∈

− − of G, the Cayley graph G S,Cay( ) is a graph with vertex
setG and edge set g sg g G s S, ,{{ }∣ }∈ ∈ . It is well known that the right multiplication ofG, say R G( ), and the
set G S α G S S, αAut Aut( ) { ( )∣ }≔ ∈ = are groups of automorphisms of G S,Cay( ). The Cayley graph G S,Cay( )

is called normal if the right multiplication of G is normal in G S,Aut Cay( ( )). The following Cayley graphs of

dihedral groups are denoted by CD pq
k
2 .

Example 1.1. Let G a b a b a a, 1,pq b
pq

2 1
2D∣= ⟨ = = = ⟩ ≅

− , and let k be a solution of the equation

x x x pq1 0 .6 5 mod( )+ + ⋯+ + ≡

Set

G b ab a b a bCD , , , , , .pq
k k k k k
2

1 15 4
Cay( { })= …

+ + +⋯ + +

The study of graphs with square-free order has a long history, see, e.g., [1–4]. In recent work [5], the
authors gave a characterization for connected prime-valent arc-transitive graphs of square-free order. This
article is devoted to classifying 7-valent arc-transitive graphs of order 2pq, which gives supplementary proof
of Lemma 2.9 in [5, Lemma 2.9]. The first result of this article is the following theorem.
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Theorem 1.2. Let Γ be a 7-valent symmetric graph of order 2pq, where q p 3> ≥ are primes. Then one of the
following statements holds:

(1) Γ CD pq
k
2≅ and Γ :pq2 7Aut D �≅ , where p q 1∣ − . Up to isomorphism, there is only one such graph for

p 7= and there are exactly six such graphs for p 7> .
(2) Γ lies in Table 1.

The method used in this article for classifying symmetric graphs of square-free order is also applicable
to classifying symmetric graphs of twice square-free order. See the following two theorems.

Theorem 1.3. Let Γ be a connected symmetric graph of order p4 with valency 11,where p is a prime, then p 3=

and KΓ 12= , the complete graph of order 12.

Theorem 1.4. Let Γ be a connected symmetric graph of order 4pq with valency 11,where p q 3> ≥ are distinct

primes, then Γ 60�≅ , 532� , or i
276� for i1 4≤ ≤ , with their automorphism groups ΓAut and vertex stabilizers

Γ αAut( ) listed in Table 2, where α is a vertex.

2 Preliminaries

We now give some necessary preliminary results. The first one is a property of the Fitting subgroup, see
[6, P. 30, Corollary].

Lemma 2.1. Let F be the Fitting subgroup of a group G. If G is soluble, then F 1≠ and the centralizerC F FG( ) ≤ .

We shall need information of maximal subgroups of rPSL 2,( ) and rPGL 2,( ), where r is an odd prime,
refer to [7, Section 239] and [8, Theorem 2].

Lemma 2.2. Let G rPSL 2,( )= or rPGL 2,( ) and let M be a maximal subgroup of G, where r 5≥ is a prime.
(1) If G rPSL 2,( )= , then M D D Z Z A S A, , : , , ,r r r r1 1 1 2 4 4 5{ }( )∈

− + − /
.

(2) If G rPGL 2,( )= , then M D D Z Z S r, , : , , PSL 2,r r r r2 1 2 1 1 4{ ( )}( ) ( )∈
− + −

.

By [9], we have the next lemma.

Lemma 2.3. Let G SΓ ,Cay( )= be a normal Cayley graph on G. Then, G SΓ ,1Aut Aut( ) ( )= , where 1 is the
identity of G.

For a graph Γ and a positive integer s, an s-arc of Γ is a sequence α α α, , , s0 1 … of vertices such that αi 1−

and αi are adjacent for i s1 ≤ ≤ and α αi i1 1≠
− +

for i s1 1≤ ≤ − . In particular, a 1-arc is just an arc. Then, Γ is
called G s,( )-arc-transitive with G ΓAut≤ if G is transitive on the set of s-arcs of Γ. A G s,( )-arc-transitive

Table 1: Connected 7-valent symmetric graphs of order 2pq

Row Γ (p q, ) AutΓ Aut( )Γ α Transitivity Remark

1 �78
1 (3,13) PGL(2,13) D28 1-transitive No bipartite

2 �78
2 (3,13) PSL(2,13) D14 1-transitive No bipartite

3 �310 (5,31) PSL �( )5, 2 . 2 SL SL� ( ( ) ( ))×: 2, 2 3, 22
6 3-transitive Bipartite

4 �30 (3,5) S8 SL� ( ): 3, 22
3 2-transitive Bipartite
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graph is called G s,( )-transitive if it is not G s, 1( )+ -arc-transitive. In particular, a graph Γ is simply called
s-transitive if it is sΓ,Aut( )-transitive.

The following lemma is about the stabilizers of arc-transitive 7-valent graphs, refer to [10, Corollary 2.2]
and [11, Theorem 3.4].

Lemma 2.4. Let Γ be a 7-valent G s,( )-transitive graph, whereG ΓAut≤ and s 1≥ . Let α V Γ∈ . Then, one of the
following statements holds:
(a) If Gα is soluble, then s 3≤ and G 252α∣ ∣∣ . Furthermore, the couple s G, α( ) lies in the following table.

s 1 2 3

Gα 7� , 14F , 21F , 14 2F �× , 21 3F �× ,42 42 2F F �× , 42 3F �× 42 6F �×

(b) If Gα is insoluble, then G 2 3 5 7α
24 4 2∣ ∣∣ ⋅ ⋅ ⋅ .

From [12, pp. 134–136], we can obtain the following two lemmas by checking the orders of nonabelian
simple groups. The arguments in the proof of Lemmas 2.5 and 2.6 are heavily relying on the classification of
finite simple groups.

Lemma 2.5. Let q p 3> ≥ be primes, and let T be a nonabelian simple group of order p q2 3 5 7i j k
⋅ ⋅ ⋅ ⋅ ⋅ ,

where i2 25≤ ≤ , j0 4≤ ≤ , and k0 2≤ ≤ . Then, T is listed in Table 3.

Table 2: Connected 11-valent symmetric graphs of order 4pq

Graph AutΓ Aut( )Γ α (q p, ) Bipartite?

�60 PGL(2,11) F22 (3,5) No

�276
1 PGL(2,23) D44 (3, 23) Yes

� i
276, ≤ ≤i2 4 PSL(2,23) D_22 (3, 23) No

�532 ×J Z1 2 PSL(2,11) (7, 19) Yes

Table 3: Simple group T with order dividing ⋅ ⋅ ⋅ ⋅ ⋅p q2 3 5 725 4 2

T ∣ ∣T ( )p q, T ∣ ∣T ( )p q,

M22 ⋅ ⋅ ⋅ ⋅2 3 5 7 117 2 ( ) ( )3, 11 , 5, 11 PSL( )2, 26
⋅ ⋅ ⋅ ⋅2 3 5 7 136 2 ( ) ( )3, 13 , 5, 13

M23 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 237 2 ( )11, 23 PSL( )2, 29
⋅ ⋅ ⋅ ⋅2 3 7 19 739 3 ( )19, 73

M24 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 2310 3 ( )11, 23 PSL( )2, 27 ⋅ ⋅ ⋅2 3 7 112 3 ( )3, 11
J1 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 193 ( )11, 19 PSL( )2, 125 ⋅ ⋅ ⋅ ⋅2 3 5 7 312 2 3 ( )5, 31
J2 ⋅ ⋅ ⋅2 3 5 77 3 2 ( )3, 5 PSL( )2, 49 ⋅ ⋅ ⋅2 3 5 74 2 2 ( ) ( )3, 7 , 5, 7
HS ⋅ ⋅ ⋅ ⋅2 3 5 7 119 2 3 ( )5, 11 PSU( )3, 5 ⋅ ⋅ ⋅2 3 5 74 2 3 ( )3, 5
A7 ⋅ ⋅ ⋅2 3 5 73 2 ( )3, 5 PSL( )3, 8 ⋅ ⋅ ⋅2 3 7 199 4 ( )3, 19
A8 ⋅ ⋅ ⋅2 3 5 76 2 ( )3, 5 ( )D 24 ⋅ ⋅ ⋅2 3 5 712 5 2 ( )3, 5
A9 ⋅ ⋅ ⋅2 3 5 76 4 ( )3, 5 ( )D 24

3
⋅ ⋅ ⋅2 3 7 1312 4 2 ( )7, 13

A10 ⋅ ⋅ ⋅2 3 5 77 4 2 ( )3, 5 PSp( )8, 2 ⋅ ⋅ ⋅2 3 5 716 5 2 ( )3, 5
A11 ⋅ ⋅ ⋅ ⋅2 3 5 7 117 4 2 ( ) ( )3, 11 , 5, 11 PSL( )4, 4 ⋅ ⋅ ⋅ ⋅2 3 5 7 1712 4 2 ( ) ( )3, 17 , 5, 17
A12 ⋅ ⋅ ⋅ ⋅2 3 5 7 119 5 2 ( )3, 11 PSL( )5, 2 ⋅ ⋅ ⋅ ⋅2 3 5 7 3110 2 ( ) ( )3, 31 , 5, 31
Sz( )8 ⋅ ⋅ ⋅2 5 7 136 ( )5, 13 PSp( )4, 8 ⋅ ⋅ ⋅ ⋅2 3 5 7 1312 4 2 ( )7, 13
PSU( )3, 8 ⋅ ⋅ ⋅2 3 7 199 4 ( )3, 19 ( )D 24

2
⋅ ⋅ ⋅ ⋅2 3 5 7 1712 4 ( ) ( )3, 17 , 5, 17

PSp( )6, 2 ⋅ ⋅ ⋅2 3 5 79 4 ( )3, 5 ( )G 42 ⋅ ⋅ ⋅ ⋅2 3 5 7 1312 3 2 ( ) ( )3, 13 , 5, 13
PSL( )4, 2 ⋅ ⋅ ⋅2 3 5 76 2 ( )3, 5 PSL( )3, 16 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 13 1712 2 2 ( )13, 17
PSL( )3, 4 ⋅ ⋅ ⋅2 3 5 76 2 ( )3, 5 PSL( )q2, ( )( )+q q q1 − 1

2
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Proof. If T is a sporadic simple group, by [12, pp. 135–136], T 22M= , 23M , 24M , 1J , 2J , or HS. If T nA= is an
alternating group, since 210 does not divide T∣ ∣, we have n 13≤ , it then follows thatT 7A= , 8A , 9A , 10A , 11A ,
or 12A in Table 3.

Suppose now T X q( )= is a simple group of Lie type, where X is one type of Lie groups, and q p f
= is a

prime power. If p 3≥ , as T∣ ∣ contains at most five 3-factors, three 5-factors, and two 7-factors, it easily
follows from [12, p. 135] that the only possibility is T q2,PSL( )= , 2, 27PSL( ), 2, 125PSL( ), 2, 49PSL( ),
or 3, 5PSU( ). Similarly, if p 2= , then we have T 8Sz( )= , 3, 8PSU( ), 6, 2PSp( ), 4, 2PSL( ), 3, 4PSL( ),

3, 8PSL( ), 2, 26PSL( ), 2, 29PSL( ), D 24( ), D 24
3 ( ), 8, 2PSp( ), 4, 4PSL( ), 5, 2PSL( ), 4, 8PSp( ), D 24

2 ( ), G 42( ),
or 3, 16PSL( ). □

Lemma 2.6. Let T be a nonabelian simple group and let p q> be two distinct odd primes. Suppose that T11∣∣ ∣

and T p q2 3 5 7 1118 8 4 2∣ ∣∣ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , then T lies in Table 4.

Proof. Assume T is a sporadic simple group. Then, by checking the order of sporadic simple group in [12],
we have Part 1 of the table.

Assume T An= is an alternating group with n 5≥ . Since T11∣∣ ∣, n 11≥ ; and since T∣ ∣ has at most seven
distinct prime divisors, n 18≤ . Then, we have Part 2 of the table.

Assume from now on that T is a simple group of Lie type over a field GF r( ) of order r te
= , where t is

a prime. Note that the order of T is not divisible by 219, 310, 56, 74, 113, and s2, where s 11> is a prime.

Assume first thatT is a simple exceptional group. By [12], we can easily rule out F r E r E r E r, , ,4 6 6
2

7( ) ( ) ( ) ( ),

and E r8( ) as r T19∣∣ ∣ if T is one of them. Since F11 ̸ 24
2∣ ( )∣∣ , T F 24

2 ( )≠ . If T F r4
2 ( )= with r 2 2m2 1 3

= ≥
+ ,

then r T12∣∣ ∣, and hence T236∣∣ ∣, a contradiction. If T D r4
3 ( )= , then r T12∣∣ ∣, and hence T D 24

3 ( )= . However

D11 ̸ 24
3∣ ( )∣∣ , a contradiction. If T G r2( )= , then r T6∣∣ ∣, and hence the possibilities are G G G2 , 4 , 82 2 2( ) ( ) ( ),

and G 32( ). However, a computation shows that 11 does not divide the orders of these four groups, a contra-
diction. IfT B r2

2 ( )= with r 2 2m2 1 3
= ≥

+ (noting that B 22
2 ( ) is solvable), then r T2∣∣ ∣, and hence the possibilities

are B B B B2 , 2 , 2 , and 22
2 3

2
2 5

2
2 7

2
2 9( ) ( ) ( ) ( ). However 11 does not divide the orders of these four groups, a contra-

diction. If T G r2
2 ( )= with r 3 3m2 1 3

= ≥
+ (noting that G 3 PSL 2, 8 32

2 ( ) ( )≅ ⋅ is not a simple group, and

11 ̸ PSL 2, 8∣ ( )∣∣ ), then r T3∣∣ ∣, and hence T39∣∣ ∣. Then, T G 32
2 3( )= . However, G11 ̸ 32

2 3∣ ( )∣∣ , a contradiction.
To summary, we have shown that T is not a simple exceptional group.

Assume next that T is a classical group. Note that r PGL n r,n n 1 2∣∣ ( )∣( )− / and rPSUn∣ ( )∣, r p rPSm
m2

2
∣∣ ( )∣

and P rΩ m2 1∣ ( )∣
+

, and r P rΩm m
m

1 2
2∣∣ ( )∣( )− / ± . Considering the isomorphisms between classical groups (see [12]),

the possibilities of T are as follows:

Table 4: Simple group T with order dividing ⋅ ⋅ ⋅ ⋅ ⋅ ⋅p q2 3 5 7 1118 8 4 2

Part T ∣ ∣T T ∣ ∣T

1 M11 ⋅ ⋅ ⋅2 3 5 114 2 M12 ⋅ ⋅ ⋅2 3 5 116 3

M22 ⋅ ⋅ ⋅ ⋅2 3 5 7 117 2 M23 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 237 2

M24 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 2310 3 J1 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 193

HS ⋅ ⋅ ⋅ ⋅2 3 5 7 119 2 3 McL ⋅ ⋅ ⋅ ⋅2 3 5 7 117 6 3

Suz ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 1313 7 2 Co3 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 2310 7 3

Co2 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 2318 6 3 Fi22 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 1317 9 2

2 A11 ⋅ ⋅ ⋅ ⋅2 3 5 7 117 4 2 A12 ⋅ ⋅ ⋅ ⋅2 3 5 7 119 5 2

A13 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 139 5 2 2 A14 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 1310 5 2 2

A15 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 1310 6 3 2 A16 ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 1310 6 3 2

A17 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 13 1714 6 3 2 A18 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 7 11 13 1715 8 3 2

3 PSL(2,11) ⋅ ⋅ ⋅2 3 5 112 PSL(2, 112) ⋅ ⋅ ⋅ ⋅2 3 5 11 613 2

PSL(2, 25) ⋅ ⋅ ⋅2 3 11 315 PSL(2, 210) ⋅ ⋅ ⋅ ⋅ ⋅2 3 5 11 31 4110 2

PSL(2, 35) ⋅ ⋅ ⋅2 3 11 612 5 2 PSU5(2) ⋅ ⋅ ⋅2 3 5 1110 5

PSU6(2) ⋅ ⋅ ⋅ ⋅2 3 5 7 1115 6 PSL( p2, ) ( )( )+ /p p p− 1 1 2
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r r p p
k
k
k
k

P P P P p p
p k p p p p p

PSL 2, with divides one of 2 , 3 , 5 , 7 , 11 , 11 ,
PSL 2 for 1 6, PSL 3 , PSL 3 , PSL 3 , PSL 5 , PSL 7 ,
PSL 2 for 1 3, PSL 3 , PSL 2 , PSL 2 ,
PSU 2 for 2 6, PSU 3 , PSU 3 , PSU 3 , PSU 5 , PSU 7 ,
PSU 2 for 1 3, PSU 3 , PSU 2 , PSU 2 ,

Ω 3 , Ω 2 , Ω 2 , Ω 2 , PS 3 , PS 2 ,
PS 2 for 2 4, PS 3 , PS 3 , PS 5 , PS 2 , PS 4 .

k

k

k

k

k

18 9 5 3 2

3 3 3
2

3
3

3 3

4 4 5 6

3 3 3
2

3
3

3 3

4 4 5 6

7 9 8 8 6 8

4 4 4
2

4 6 6

( ) { ( )}

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

>

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤

+ −

Then, computation shows that T is in Part 3 of Table 4. □

The next lemma is about the vertex stabilizer in an arc-transitive group of automorphisms of symmetric
graph of valency 11, see [10] and [13].

Lemma 2.7. Let Γ be a connected G-arc-transitive graph with valency 11 and α a vertex of Γ. Then, one of the
following statements holds:
(1) If Gα is soluble, then G 1,100α∣ ∣∣ and Gα is one of

Z D F Z D Z D F Z F Z F Z F, , , , , , , , .11 22 55 2 22 5 55 110 2 110 5 110 110 110× × × × ×

(2) If Gα is insoluble, then G 2 3 5 7 11α
16 8 4 2∣ ∣∣ ⋅ ⋅ ⋅ ⋅ , and the pairs G G,α α( ∣ ∣) lie in Table 5.

A typical method for studying vertex-transitive graphs is taking normal quotients. Let Γ be a G-vertex-
transitive graph, whereG ΓAut≤ . Suppose thatG has a normal subgroup N , which is intransitive onV Γ. Let
V ΓN be the set of N -orbits onV Γ. The normal quotient graph ΓN of Γ induced by N is defined as the graph with
vertex set V ΓN , and B is adjacent to C in ΓN if and only if there exist vertices β B∈ and γ C∈ such that β is
adjacent to γ in Γ. In particular, if Γ ΓNval val( ) ( )= , then Γ is called a normal cover of ΓN .

A graph Γ is called G-locally primitive if, for each α V Γ∈ , the stabilizer Gα acts primitively on αΓ( ).
Obviously, an arc-transitive pentavalent graph is locally primitive. The following theorem gives a basic
method for studying vertex-transitive locally primitive graphs, see [14, Theorem 4.1] and [15, Lemma 2.5].

Theorem 2.8. Let Γ be a G-vertex-transitive locally primitive graph, where G ΓAut≤ , and let N G◃ have at
least three orbits on V Γ. Then, the following statements hold:
(i) N is semi-regular on V Γ, G N ΓNAut/ ≤ , and Γ is a normal cover of ΓN ;
(ii) G G Nα γ( )≅ / , where α V Γ∈ and γ V ΓN∈ ;

(iii) Γ is G s,( )-transitive if and only if ΓN is G N s,( )/ -transitive, where s1 5≤ ≤ or s 7= .

For the case where N has at most two orbits on V Γ, the next fact is a consequence of the connectivity
of the graph, which is well known.

Lemma 2.9. Let Γ be a connected G-arc-transitive graph of odd prime valency d. Let N1 ≠ be a normal
subgroup of G. Suppose that N have at most two orbits on V Γ and N 1α ≠ , where α is a vertex of Γ. Then, Nα
is transitive on the neighbors αΓ( ) of α, particularly, d Nα∣∣ ∣.

By Li and Feng [16, Theorem 3.6], we have the following lemma.

Table 5: Insoluble vertex stabilizer of arc-transitive graph with valency 11

Gα ∣ ∣Gα Gα ∣ ∣Gα Gα ∣ ∣Gα

PSL(2,11) ⋅ ⋅ ⋅2 3 5 112 M11 ⋅ ⋅ ⋅2 3 5 114 2 A11 ⋅ ⋅ ⋅ ⋅2 3 5 7 117 4 2

S11 ⋅ ⋅ ⋅ ⋅2 3 5 7 118 4 2 ( )×A PSL 2, 115 ⋅ ⋅ ⋅2 3 5 114 2
×A M6 11 ⋅ ⋅ ⋅2 3 5 117 4 2

×M M10 11 ⋅ ⋅ ⋅2 3 5 118 4 2 ( )×A A Z:10 11 2 ⋅ ⋅ ⋅ ⋅2 3 5 7 1115 8 4 2
×A A10 11 ⋅ ⋅ ⋅ ⋅2 3 5 7 1114 8 4 2

×S S10 11 ⋅ ⋅ ⋅ ⋅2 3 5 7 1116 8 4 2
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Lemma 2.10. Let n be a square-free integer and Γ a 7-valent one-regular graph of order n. Then,
n p p p2 7 13t

s1 2= ⋅ ⋅ ⋯ ≥ , where t 1≤ , s 1≥ , and pi’s are distinct primes such that p7 1i∣( )− . Furthermore,

Γ is isomorphic to one of n
l�� and there are exactly 6s 1− such non-isomorphic graphs of order n.

For reduction, we need some information of 7-valent symmetric graphs of order p2 , stated in the
following lemma, see [2, Table 1].

Lemma 2.11. Let p be a prime and let Γ be a 7-valent symmetric graph of order p2 . Then, Γ is isomorphic to one
of the following graphs:
(1) The complete bipartite graph 7,7K for p 7= with Γ 7 2Aut S S≅ ≀ .
(2) The graph p2 , 7G( ) for p 7> with p2 , 7 :p2 7AutG D �( ) ≅ .

Remark of Lemma 2.11. We define the graph p2 , 7G( ) in the following. Let A and A′ be two disjoint
copies of p� . For each element i of p� , we shall denote the corresponding elements of A and A′ by i and i′,
respectively. Let r be a positive integer dividing p 1− , where p is prime, and let H p r,( ) denote the unique
subgroup of p�∗ of order r. We define the graph G p r2 ,( ) to have vertex-set A A∪ ′ and edge-set
xy x y y x H p r: , , and ,p�{ ( )}′ ∈ − ∈ .

We need some classification results on symmetric graphs of valency 11. The following two lemmas are
obtained from [2], [17], and [18].

Lemma 2.12. Let Γ be a connected symmetric graph of order r2 and valency 11, where r is an odd prime.
Suppose that ΓAut is insolvable, then Γ is the complete bipartite graph K11,11.

Lemma 2.13. Let Γ be a connected symmetric graph of order m2 and valency 11, wherem is an odd square-free
integer, then one of the following statements holds:
(1) Γ is a normal Cayley graph on D m2 and D ZΓ :m2 11Aut = ;
(2) JΓ 1Aut = , Γ PSL 2, 11αAut ( )= , and m 7 19= ⋅ , moreover, Γ is not bipartite;
(3) rΓ PSL 2,Aut ( )= or rPGL 2,( ) where r 1 11mod( )≡ ± is a prime.

3 Examples

In this section, we give some examples of 7-valent symmetric graphs of order 2pq with q p 3> ≥ distinct
primes.

For a given small permutation group X , one may determine all graphs that admit X as an arc-transitive
automorphism group by using Magma program [19]. It is then easy to have the following result.

Example 3.1. There are two connected 7-valent symmetric graphs of order 78, which admit 2, 13PSL( ) or
2, 13PGL( ) as an arc-transitive automorphism group. These two graphs are denoted by 78

1� and 78
2� , which

satisfy the conditions in Rows 1 and 2 of Table 1.

Example 3.2. There is a unique connected 7-valent symmetric graph of order 310, which admits
5, 2 . 2PSL �( ) as an arc-transitive automorphism group. This graph is denoted by 310� , which satisfies the

conditions in Row 3 of Table 1.

Example 3.3. There is a unique connected 7-valent symmetric graph of order 30, which admits 8S as an arc-
transitive automorphism group. This graph is denoted by 30� , which satisfies the conditions in Row 4
of Table 1.
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4 The proof of Theorem 1.2

Now, we prove the main result of this article. Let Γ be a 7-valent symmetric graph of order 2pq. Set ΓA Aut= .
By Lemma 2.4, 2 3 5 7α

24 4 2A∣ ∣∣ ⋅ ⋅ ⋅ , and hence p q2 3 5 725 4 2A∣ ∣∣ ⋅ ⋅ ⋅ ⋅ ⋅ . Let R be the soluble radical of A and
let F be the Fitting subgroup of A (recall that the Fitting subgroup F of A is defined to be the product of all
normal nilpotent subgroups of A). We divide our discussion into the following three cases.

Case 1. R 1=

Let N be a minimal normal subgroup of A and letC NCA( )= . Since R 1= , we have that N Td
= , whereT

is a nonabelian simple group and d 1≥ . Furthermore, since p q2 3 5 725 4 2A∣ ∣∣ ⋅ ⋅ ⋅ ⋅ ⋅ , we have
N p q2 3 5 725 4 2∣ ∣∣ ⋅ ⋅ ⋅ ⋅ ⋅ .

Assume that N has t orbits onV Γ. If t 3≥ , then by Theorem 2.8, N 1α = and so N T pq2d∣ ∣ ∣ ∣ ∣= , which is
a contradiction as T is a nonabelian simple group. Hence, N 1α ≠ , N has at most two orbits on V Γ and pq
divides N N: α∣ ∣. Since Γ is connected, N A◃ , and N 1α ≠ , we have N1 α

α
α

αΓ ΓA( ) ( )
≠ ◃ , it follows that 7 divides

Nα∣ ∣, we thus have that pq7 divides T∣ ∣.
We first show that d 1= . If not, d 2≥ , then T N72 2∣ ∣ ∣ ∣ ∣= as N T p q2 3 5 7d 25 4 2∣ ∣ ∣ ∣ ∣= ⋅ ⋅ ⋅ ⋅ ⋅ . It follows

that p 7= or q 7= . If p 7= , then q 7> and q T2 2∣ ∣ ∣ , a contradiction. If q 7= , then p 3= or 5. It can
conclude that T 2 3 5 712 2∣ ∣ ∣ ⋅ ⋅ ⋅ . Note that T21 ∣ ∣ ∣ or T35 ∣ ∣ ∣. By checking the nonabelian simple group of

order less than 2 3 5 712 2
⋅ ⋅ ⋅ (e.g., [12]), we have that T 7A≅ , 8A , or 3, 4PSL( ), and so d 2= , N 7

2A= , 8
2A ,

or 3, 4 2PSL( ) . On the other hand, C A◃ , C N 1∩ = and C N C N,⟨ ⟩ = × . Because C N∣ ∣× divides
p q2 3 5 725 4 2 2

⋅ ⋅ ⋅ ⋅ ⋅ and N T 2 3 5 72 6 4 2 2∣ ∣ ∣ ∣= = ⋅ ⋅ ⋅ or 2 3 5 79 4 2 2
⋅ ⋅ ⋅ , C is a p2,{ }-group, and hence soluble,

where p 3= or p 5= . So C 1= as R 1= . This implies C N T 2A A Aut Aut S( ) ( )= / ≤ ≅ ≀ . By Magma [19], no
such graph exists. Thus, d 1= and N T A= ⊴ is a nonabelian simple group.

We next show that C 1= . If not, then C is insoluble as R 1= and C A⊴ . The same argument as for the
case N leads to C7 α∣ ∣ ∣. Since C N C N,⟨ ⟩ = × and C, N A⊴ , we have N Cα α αA× ≤ . On the other hand,

N7 α∣ ∣ ∣, it concludes that 7 α
2 A∣ ∣ ∣, a contradiction with Lemma 2.4. Hence, A is almost simple and

TA Aut( )≤ . Thus, we have Tsoc A( ) = as a nonabelian simple group and satisfies the following condition.
Condition ( )∗ : T∣ ∣ lies in Table 3 such that pq T7 ∣∣ ∣ and T p q2 3 5 725 4 2∣ ∣∣ ⋅ ⋅ ⋅ ⋅ ⋅ .
Assume first that T 22M= , 24M , 1J , 2J , HS, 3, 8PSU( ), 6, 2PSp( ), 8, 2PSp( ), 4, 8PSp( ), 3, 4PSL( ),
2, 29PSL( ), 2, 27PSL( ), 2, 125PSL( ), 2, 49PSL( ), 3, 5PSU( ), 3, 16PSL( ), 9A , or 10A . Note that T T pq: α∣ ∣ = or

2pq. By Atlas [20], T has no subgroup of index pq or 2pq, a contradiction.
Assume that T 23M= , 7A , 11A , 12A , 8Sz( ), 4, 2PSL( ), 4, 4PSL( ), 3, 8PSL( ), or 2, 26PSL( ). Note that

T TA Aut( )≤ ≤ . We can exclude all these cases by using Magma [19].
Assume that T 5, 2PSL( )= . Then, p q, 3, 31( ) ( )= or 5, 31( ). For the former case, T has no subgroup of

index 93 or 186, a contradiction. For the latter case, by Example 3.2, Γ is isomorphic to 310� . Assume that
T 8A= . Then, p q, 3, 5( ) ( )= . By Example 3.3, Γ is isomorphic to 30� .

Assume thatT q2,PSL( )= . Then,T T q2,A Aut PGL( ) ( )≤ ≤ = and T: 2A∣ ∣ ≤ . If αA is insoluble, thenTα
is also insoluble as T: 2α αA∣ ∣ ≤ . By Lemma 2.2, Tα 5A= , which is impossible as T7 α∣ ∣ ∣. Thus, αA is
soluble, and by Lemma 2.4, αA divides 252, and so T 252α∣ ∣∣ . It implies that the order of T divides

p q504 ⋅ ⋅ . Note that q2, q q q1 1
2PSL∣ ( )∣

( )( )
=

− + and , 1q q1
2

1
2( ) =

+ − . If p q 1
2∣
− , then q 1+ divides 504. It follows

that q 5, 7, 11, 13, 17, 23, 41, 71, 83, 167, 251= , or 503. However, q2,PSL( ) does not satisfy the Condition ( )*

for q 5, 7, 11, 17= , or 23. Thus, q 13, 41, 71, 83, 167, 251= , or 503 for this case. If p q 1
2∣
+ , then q 1− divides

504. It follows that q 5, 7, 13, 19, 29, 37, 43, 73= , or 127. However, q2,PSL( ) does not satisfy the Condition
( )* for q 5, 7, 19, 37= , or 73. Thus, q 13, 29, 43= , or 127 for this case. Therefore, forT q2,PSL( )= ,T is one of
the following groups:

T Order T Order

2, 13PSL( ) 2 3 7 132
⋅ ⋅ ⋅ 2, 29PSL( ) 2 3 5 7 292

⋅ ⋅ ⋅ ⋅

2, 41PSL( ) 2 3 5 7 413
⋅ ⋅ ⋅ ⋅ 2, 43PSL( ) 2 3 7 11 432

⋅ ⋅ ⋅ ⋅

2, 71PSL( ) 2 3 5 7 713 2
⋅ ⋅ ⋅ ⋅ 2, 83PSL( ) 2 3 7 41 832

⋅ ⋅ ⋅ ⋅

2, 127PSL( ) 2 3 7 1277 2
⋅ ⋅ ⋅ 2, 167PSL( ) 2 3 7 83 1673

⋅ ⋅ ⋅ ⋅

2, 251PSL( ) 2 3 5 7 2512 2 3
⋅ ⋅ ⋅ ⋅ 2, 503PSL( ) 2 3 7 251 5033 2

⋅ ⋅ ⋅ ⋅
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Assume that q 29, 41, 71, 127= , or 251. Note that T T pq: α∣ ∣ = or 2pq. By Lemma 2.2, T has no subgroup
of index pq or 2pq, a contradiction. Assume that q 43, 83= , or 167. Note that q2,A PGL( )= or q2,PSL( ).
We can exclude all the cases by Magma [19]. Assume that q 503= . Then, T 504α∣ ∣ = or 252. It implies thatTα is
soluble and so as αA . By Lemma 2.4, 252αA∣ ∣ ∣ , and therefore, 2, 503A PSL( )= , 252αA∣ ∣ = . Again by Lemma
2.4, α 42 6A F �≅ × , which is impossible by Lemma 2.2. Assume, finally, that q 13= . Then, T 2, 13PSL( )=

and 2, 13A PSL( )= or 2, 13PGL( ). By example 3.1, Γ is isomorphic to 78
1� or 78

2� . This completes the proof of
this case.

Case 2. R 1≠ and A is soluble
Then, R A= , and by Lemma 2.1, F 1≠ and F FCA( ) ≤ . As V pqΓ 2∣ ∣ = , A has no nontrivial normal Sylow

s-subgroup, where s p2,≠ , or q. So F O O Op q2 A A A( ) ( ) ( )= × × , where O O, p2 A A( ) ( ), and Oq A( ) denote the
largest normal 2-, p-, and q-subgroups of A, respectively.

For each r p q2, ,{ }∈ , since q p 3> ≥ , Or A( ) has at least three orbits on V Γ, by Proposition 2.8, Or A( )

is semi-regular on V Γ. Therefore, O 22 A∣ ( )∣ ≤ , pOp A∣ ( )∣ ≤ , qOq A∣ ( )∣ ≤ , F pq2�≤ is abelian, and F FCR( ) = .
If F 2∣ ∣ = , by Proposition 2.8, the normal quotient graph ΓF is a 7-valent FA/ -arc-transitive graph of odd

order pq, not possible. Thus, there exists a prime r p q,{ }∈ such that r F∣ ∣ ∣, and so rOr A( ) = . By Theorem
2.8, ΓOr A( ) is a 7-valent OrA A( )/ -arc transitive graph of order s2 with s p q,{ }∈ and OrA A( )/ is soluble. Then,
by Lemma 2.11, ΓOr A( ) is isomorphic to 7,7K or p2 , 7G( ). For the former case, by [21, Theorem 1.1], p 7= and

Γ CD q
k

O 14r A( ) ≅ as described in Theorem 1.2 (1). For the latter case, by Lemma 2.11, pΓ 2 , 7Or GA ( )( ) ≅ and

Γ :sO 2 7rAut DA �( ) ≅ is arc-regular on AΓ. Hence, O :r s2 7A A D �( )/ ≅ , it implies that Γ is an 7-valent arc-
regular graph of order 2pq. By Lemma 2.10, Γ CD pq

k
2≅ as in Theorem 1.2 (1).

Case 3. R 1≠ and A is insoluble
Let N be a minimal soluble normal subgroup of A. Then, N r

d�≅ has at least three orbits onV Γ, where r
is a prime. It follows from Theorem 2.8 that N is semi-regular on V Γ, and so d 1= , r p q,{ }∈ . Furthermore,

ΓN is NA/ -arc-transitive graph of order t2pq
r

2
= and NA/ is insoluble, where t p q,{ }∈ . Since ΓN is NA/ -arc-

transitive and NA/ is insoluble, by Lemma 2.11, ΓN is isomorphic to 7,7K . Thus, Γ is a normal t� -cover of 7,7K ,
where t 7≠ . By [21, Theorem 1.1], no such graph Γ exists.

Thus, we complete the proof of Theorem 1.2.

5 The proof of Theorems 1.3 and 1.4

In this section, we prove Theorems 1.3 and 1.4. Let Γ be a connected symmetric graph of order n4 and
valency 11, where n p q= ⋅ with p q, 3≥ two distinct primes, and let α be a vertex of Γ. Set A ΓAut= and let
R be the largest solvable normal subgroup of A.

Lemma 5.1. A is insolvable.

Proof. Suppose for a contradiction that A is solvable. Let H be the Fitting subgroup of A. Then, H is
nilpotent and H is the product of all its Sylow r-subgroups, where r is a prime dividing H∣ ∣. Clearly, Hr is
characteristic in H , and hence, normal in A. If Hr has at most two orbits onV Γ, then n V2 Γ 2∣ ∣= / divides Hr∣ ∣,
a contradiction. Therefore, Hr has at least three orbits onV Γ. Considering the quotient graph ΓHr, by Lemma
2.8, we have Hr is semi-regular onV Γ, and hence H n4r∣ ∣∣ , and ΓHr is a connected A Hr/ -arc-transitive graph of
valency 11. This implies H 12∣ ∣ = or 2 as there is no symmetric graph of odd order and odd valency, and Hr∣ ∣ is
a prime if r is odd. Then, H is cyclic. Let C C HA( )= . Then, C H≤ by Lemma 2.1, and hence, C H= . Thus,
A H A C HAut( )/ = / ≤ is abelian. Since A A A H HA H A Hα α α α( )≅ / ∩ ≅ / ≤ / is abelian, Aα is abelian, and
hence A Zα 11≅ by Lemma 2.7. Thus, Γ is an arc-regular graph (i.e., ΓAut is regular on the arc set of Γ).
However, there is no arc-regular graph of order four times an odd square-free integer, see [22], a contra-
diction. This proves the lemma. □
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Lemma 5.2. Assume that A is insolvable and R 1= . Then, T A TAut( )⊴ ≤ for some nonabelian simple group
T, and T has at most two orbits on V Γ and T11 α∣∣ ∣.

Proof. Let N 1≠ be a minimal normal subgroup of A. Then, N T m
= for some nonabelian simple group T ,

where m 1≥ be a positive integer. SinceT is nonabelian simple group, T4∣∣ ∣, and so N4m∣∣ ∣. If N has at least
three orbits onV Γ, then N 1α = by Lemma 2.8. Considering the quotient graph ΓN , and V n4 Γ 4∣∣ ∣ = , we obtain
the quotient graph ΓN is of odd order and valency 11, which is impossible. Therefore, N has at most two
orbits on V Γ.

If N 1α = , then the order of N divides V nΓ 4∣ ∣ = . Since T4∣∣ ∣, we have N T= . Note that T∣ ∣ has at least
three prime divisors. Thus, n pq= and T pq4∣ ∣ = . By [23], we have N A5≅ . Note that now N is regular
on V Γ. Thus, N SΓ ,Cay( )= is a normal Cayley graph for some subset S N 1{ }⊆ ⧹ . Then, by Lemma 2.3,
A A N S N S,α 1 5Aut Aut( ) ( )≅ = ≤ ≅ , and so A11 ̸ α∣ ∣∣ , contradicting to Lemma 2.7.

Therefore, N 1α ≠ . Then, by Lemma 2.9, N11 α∣∣ ∣. If A has another minimal normal subgroup, namely M ,
then M11 α∣∣ ∣ by an argument similar to N . It follows M N A11 α α α

2∣∣ ∣∣∣ ∣× , a contradiction. Therefore, N is the
unique minimal normal subgroup of A.

It remains to show N T= . Since N has at most two orbits on V Γ, n N∣∣ ∣. This implies n T4 11 ∣∣ ∣⋅ ⋅ .
Thus, n N A n A4 11 4m m

α( ) ∣∣ ∣∣∣ ∣ ∣ ∣⋅ ⋅ = . Then, n A4 11m m
α

1( ) ∣∣ ∣⋅ ⋅
− . Since A11 ̸ α

2 ∣ ∣∣ by Lemma 2.7, we have m 1= .
Thus, N T= , as required. □

We further determine graphs in the case where A is insolvable and R 1= .

Lemma 5.3. Assume that A is insolvable and R 1= .
(1) If n is a prime, then KΓ 12= .
(2) If n pq= , where p q 3> ≥ are two distinct primes, then A AΓ, , α( ) is listed in the first three rows of Table 2.

Proof. By Lemma 5.3, T A TAut( )⊴ ≤ for a nonabelian simple group, T has at most two orbits on V Γ, and
T11 α∣∣ ∣. By Lemma 2.7, A V A nΓ 2 3 5 7 11α

18 8 4 2∣ ∣ ∣ ∣∣ ∣∣= ⋅ ⋅ ⋅ ⋅ ⋅ . Thus, T44∣∣ ∣ and T n2 3 5 7 1118 8 4 2∣ ∣∣ ⋅ ⋅ ⋅ ⋅ ⋅ . There-
fore, such simple groups T are determined by Lemma 2.6 and are listed in Table 4.

We first deal with the case where T pPSL 2,( )= . Assume that T pPSL 2,( )= . Then, A pPSL 2,( )= or
pPGL 2,( ). By the information of maximal subgroups of pPSL 2,( ) and pPGL 2,( ) in Lemma 2.2, we know

Aα is solvable. Then, by Lemma 2.7, there are only three possibilities for Aα, that are Z D,11 22, and D Z22 2× . In
particular, Aα is a 2, 11{ }-group. Since A n A4 α∣ ∣ ∣ ∣= , where n has at most two prime divisors, we obtain A∣ ∣ that
has at most four prime divisors, so does T∣ ∣. By [23], T PSL 2, 23( )= . Noting PSL 2, 23 2 3 11 233∣ ( )∣ = ⋅ ⋅ ⋅ and
p q> , we have p 23= and q 3= . Then, by Lemma 2.7, pair A A D, PGL 2, 23 ,α 44( ) ( ( ) )= or DPSL 2, 23 , 22( ( ) ).
Computation with Magma [19] shows that, up to graph isomorphism, there is only one such graph Γ for pair

DPGL 2, 23 , 44( ( ) ), say 276
1� , with automorphism group PGL 2, 23( ); and there are three graphs for pair

DPSL 2, 23 , 22( ( ) ), say i
276� for i2 4≤ ≤ , with automorphism group PSL 2, 23( ). Then, A AΓ, , α( ) is as the

second and third rows of Table 2.
Now, we prove parts (1) and (2) of the lemma.
(1). Suppose that n is a prime.
Clearly, n 2≠ . If n 3= , then V Γ 12∣ ∣ = , which implies that KΓ 12= . Actually, KΓ 12= arises when

T M M A PSL, , , 2, 1111 12 12 ( )= because each of them has a 2-transitive permutation representation of degree
12 (see [24]).

Therefore, we assume that n 5≥ . SinceT has at most two orbits onV Γ, T T n: 2α∣ ∣ = or n4 . By Atlas [20]
or direct computation in Magma [19], it is easy to check whether a simple groupT in Table 4 has a subgroup
of index n2 or n4 and of order divisible by 11. For example, letT M11= , then Atlas [20] tells us that a maximal
subgroup of M11 has index 11, 12, 55, 60, and 165 and the maximal subgroup of index 11 is M A . 210 6= .
Therefore, the only possibility for Tα is A6. However, this contradicts T11 α∣∣ ∣. Therefore, we can rule out the
case T M11= . Other simple groups can be ruled out similarly.

(2). Suppose that n pq= , where p q 3> ≥ are two distinct primes.
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We may assume that T p pPSL 2, 11( )( )≠ > . Assume T M11≅ with order 2 3 5 114 2
⋅ ⋅ ⋅ . Then, A M11= as

M 111Out( ) = . Then, pq 5 3= ⋅ and Aα is of order 2 3 112
⋅ ⋅ , contradicting Lemma 2.7. By an argument similar

to M11, we can rule out M M J Co, , ,23 24 1 2, and Co3, those simple groups with outer automorphism group 1.
Assume N M12≅ with order 2 3 5 116 3

⋅ ⋅ ⋅ . Then, A M12≅ or M Z.12 2 as M 212Out( ) = , refer to [20]. Then,
pq 5 3= ⋅ and Aα is of order 2 3 114 2

⋅ ⋅ or 2 3 115 2
⋅ ⋅ . By Lemma 2.7, this is impossible. Similarly, we can rule

out other simple groups with nontrivial out automorphism groups in Table 4, except two groups PSL 2, 11( )

and PSL 2, 112( ).
Assume T PSL 2, 11( )= with order 2 3 5 112

⋅ ⋅ ⋅ . Then, A PSL 2, 11( )= or PGL 2, 11( ) as
ZPSL 2, 11 2Out( ( )) ≅ . In this case, pq 5 3= ⋅ , and hence, V Γ 60∣ ∣ = . Computation in Magma shows that there

is a unique such graph Γ up to graph isomorphism, which is 60� , its automorphism group and the vertex of
stabilizer are PGL 2, 11( ) and D22, respectively. This is the first row of Table 2.

Assume T PSL 2, 112( )= . Then, A oPSL 2, 11 .2( )= , where o ZPSL 2, 112
2
2Out( ( ))≤ ≅ . Note that

PSL 2, 11 2 3 5 11 612 3 2∣ ( )∣ = ⋅ ⋅ ⋅ ⋅ . By Lemma 2.7, 11 is the largest prime divisor of Aα, thus pq 61 11= ⋅ and
so V Γ 4 11 61∣ ∣ = ⋅ ⋅ . If o 1= , then A PSL 2, 112( )= with A 2 3 5 11α∣ ∣ = ⋅ ⋅ ⋅ , contradicting Lemma 2.7.

If o ZPSL 2, 112
2
2Out( ( ))= ≅ , then A 2 3 5 11α

3∣ ∣ = ⋅ ⋅ ⋅ , also contradicting Lemma 2.7. Therefore, o Z2≅ .
Then, A 2 3 5 11α

2∣ ∣ = ⋅ ⋅ ⋅ , and so A PSL 2, 11α ( )= by Lemma 2.7. However, no such graph exists by computa-
tion with Magma [19]. □

At last, we complete the proof of Theorems 1.3 and 1.4 by dealing with the case where R 1≠ .

Lemma 5.4. Assume that A is insolvable and R 1≠ . Then, p 19= , q 7= , and A AΓ, , α( ) =

Z J, , PSL 2, 11532 2 1�( ( ))× , as the fourth row of Table 2.

Proof. Since R 1≠ , A has a minimal normal subgroup N Z 1r
m

≅ ≠ contained in R, where r is a prime. If N
has at most two orbits onV Γ, then n V N2 Γ 2∣ ∣ ∣∣ ∣= / , a contradiction. Therefore, N has at least three orbits on
V Γ. Considering the quotient graph ΓN , by Lemma 2.8, we have N as semi-regular onV Γ, and hence, N n4∣ ∣∣

and ΓN is a connected A N/ -arc-transitive graph of valency 11. Put v a vertex of V ΓN .
Case 1. Suppose that n is a prime.
Then, we have r 2= . Then, N Z2= because if N Z2

2
= , then ΓN is a symmetric graph of odd order and

valency 11, which is impossible. Note that A R/ is insolvable as A is insolvable. By Lemma 2.12, KΓN 11,11= ,
and so Γ is a normal Z2-cover of K11,11. However, there is no such graph Γ by [21, Theorem 1.1]. This proves
Theorem 1.3.

Case 2. Suppose that n pq= , where p q 3> ≥ are two distinct primes.
Then, r p q, , 2{ }∈ as N pq4∣ ∣∣ . If r q= , then V pΓ 4N∣ ∣ = . By Theorem 1.3 KΓN 12= , and so p 3= , contra-

dicting p q 3> ≥ . Therefore, r q≠ .
Assume that r p= . Then, V qΓ 4N∣ ∣ = . By Theorem 1.3 KΓN 12= , and so q 3= . Note that a subgroup

H SΓN 12Aut≤ = is arc-transitive if and only if H is 2-transitive on 12 points. By the classification of 2-
transitive permutation groups, see, e.g., [24], possibilities for A N A N, v( ( ) )/ / are as follows:

Z Z Z Z M A A S SPSL 2, 11 , : , PGL 2, 11 , : , , PSL 2, 11 , , , , .11 5 11 10 11 12 11 12 11( ( ) ) ( ( ) ) ( ( )) ( ) ( )

If A N A N Z Z, PSL 2, 11 , :v 11 5( ( ) ) ( ( ) )/ / ≠ , then A N/ acts 2-arc-transitively on KΓN 12= . Note that 2-arc-tran-
sitive cyclic cover of complete graph was determined in [25, Theorem 1.1], and from their result we can
obtain a contradiction.

Therefore, A N A N Z Z, PSL 2, 11 , :v 11 5( ( ) ) ( ( ) )/ / = . Then, A Z PSL. 2, 11p ( )= . Since the Schur
multiplier of PSL 2, 11( ) is isomorphic to Z2, see Atlas [20], we have A NA N A Z PSL 2, 11p ( )= ′ = × ′ = × .

Let K APSL 2, 11( )= ⊴ . Note that PSL 2, 11 2 3 5 112∣ ( )∣ = ⋅ ⋅ ⋅ . Therefore, K 1α ≠ . Then, Lemma 2.7 implies that
K has at most two orbits on V Γ. By Lemma 2.9, K11 α∣∣ ∣. Then p 5= . Since K has at most two orbits on V Γ,
K K pq2 44α∣ ∣ ∣ ∣ ( )= / = or K pq4 22∣ ∣ ( )/ = . By Atlas [20], PSL 2, 11( ) has no subgroup of order 44 but has
subgroups isomorphic to D22 of order 22. Therefore, K Dα 22= and K is transitive on V Γ, and hence Γ is
K-arc-transitive. By computation in Magma [19], Γ 60�= with automorphism group PGL 2, 11( ), contra-
dicting the assumption that R 1≠ .
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Assume last that r 2= . Then, N Z2= and ΓN satisfies Lemma 2.13. Since A N/ is insolvable, the case (1)
of Lemma 2.13 is impossible.

Suppose that case (2) of Lemma 2.13 happens, that is, p 19= , q 7= , JΓN 1Aut = , and Γ PSL 2, 11N vAut( ) ( )= .
Now, A N JΓN 1Aut/ ≤ = . Note that J 2 3 5 7 11 191

3∣ ∣ = ⋅ ⋅ ⋅ ⋅ ⋅ . Since A N/ acts arc-transitively on ΓN , A N∣ ∣/ is
divisible by V11 Γ 11 2 7 19N∣ ∣⋅ = ⋅ ⋅ ⋅ . By the information of maximal subgroups of J1 in Atlas [20], we have
A N J1/ = . Then, A Z J.2 1= . Since the Schur multiplier of J1 is 1, also refer to Atlas [20], we have A Z J2 1= × . Let
K J A1= ⊴ . Then, K 1α ≠ , and Lemma 2.8 implies that K has at most two orbits onV Γ. If K has two orbits on
V Γ, then K K pq2 660α∣ ∣ ∣ ∣= / = ; however, J1 has no subgroup of order 660 by Atlas [20]. Thus, K is transitive on
V Γ, and hence Γ is arc-transitive by Lemma 2.9. Computation in Magma [19] shows that there is a unique such
graph Γ, which is 532� , with automorphism group Z J2 1× .

Suppose that case (3) of Lemma 2.13 happens, then rΓ PSL 2,NAut ( )= or rPGL 2,( ), where r is a prime
such that r 1 11mod( )≡ ± . By Lemma 2.2, we have r A NPSL 2,( ) ≤ / as A N/ is insolvable. In addition, by
Lemma 2.2, we have A N Z D,v 11 22( )/ = or Z D2 22× . Then, rPSL 2,( ) is a simple group with at most four prime
divisors and PSL r11 2,∣∣ ( )∣, and hence r 23= by [23]. Then, we obtain p 23= and q 3= . If A N PSL 2, 23( )/ = ,
then A N PSL 2, 23 2 3 23 44v∣( ) ∣ ∣ ( )∣ ( )/ = / ⋅ ⋅ = ; however, PSL 2, 23( ) has no subgroup of order 44 by Lemma
2.2, a contradiction. If A N PGL 2, 23( )/ = , then A N A 88v α∣( ) ∣ ∣ ∣/ = = ; however, PGL 2, 23( ) has no subgroup
of order 88, see Lemma 2.2, which is a contradiction. □
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Appendix A

Magma codes used in Example3.1

TU:=[];

j:=0;

G:=PSL(2,13);

H:=Subgroups(G:OrderEqual:=14);

for t in [1..#H] do

HH:=H[t]‘subgroup;
A:=CosetAction(G,HH);

O:=Orbits(A(HH));

for i in [1..#O] do

OO:=SetToSequence(O[i]); GA:=OrbitalGraph(A(G),1,OO[1]);

if (IsConnected(GA) eq true) and (Valence(GA) eq 7) and

(not existst:t in TU∣IsIsomorphic(GA,t) eq true) then

Append( TU,GA);

j:=j+1;

end if;

end for;

end for;

j;
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