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1 Introduction

For a simple, connected, and undirected graph T', the vertex set and arc set of I" are denoted by VT and AT,
respectively. Let G be a subgroup of the full automorphism group Autl’ of I'. Then, T is called G-vertex-
transitive and G-arc-transitive if G is transitive on VI and AT, respectively. An arc-transitive graph is also
called symmetric. It is well known that I' is G-arc-transitive if and only if G is transitive on VT and the
stabilizer G, = {g € G|a® = a} for some a € VT is transitive on the neighbor set I'(a) of a in T'.

For a group G and a subset S = S7! := {s7!|s € S} of G, the Cayley graph Cay(G, S) is a graph with vertex
set G and edge set {{g, sg}|g € G, s € S}. It is well known that the right multiplication of G, say R(G), and the
set Aut(G, S) = {a € Aut(G)|S* = S} are groups of automorphisms of Cay(G, S). The Cayley graph Cay(G, S)
is called normal if the right multiplication of G is normal in Aut(Cay(G, S)). The following Cayley graphs of
dihedral groups are denoted by CD’z‘pq.

Example 1.1. Let G = (a, b|aP4 = b? = 1, a’ = a™') = Dy,,, and let k be a solution of the equation
x84+ X5 +--+ x+1=0 (mod pgq).
Set
CD%,, = Cay(G, {b, ab, a**'b, ...,a¥+¥"++ksipl),
The study of graphs with square-free order has a long history, see, e.g., [1-4]. In recent work [5], the
authors gave a characterization for connected prime-valent arc-transitive graphs of square-free order. This

article is devoted to classifying 7-valent arc-transitive graphs of order 2pg, which gives supplementary proof
of Lemma 2.9 in [5, Lemma 2.9]. The first result of this article is the following theorem.
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Theorem 1.2. Let I be a 7-valent symmetric graph of order 2pq, where q > p > 3 are primes. Then one of the

following statements holds:

1) T'= CD’Z‘pq and AUtl’ = Dy,, : Z7, where p | q — 1. Up to isomorphism, there is only one such graph for
p = 7 and there are exactly six such graphs for p > 7.

(2) T lies in Table 1.

The method used in this article for classifying symmetric graphs of square-free order is also applicable
to classifying symmetric graphs of twice square-free order. See the following two theorems.

Theorem 1.3. Let T be a connected symmetric graph of order 4p with valency 11, where p is a prime, then p = 3
and T = Ky, the complete graph of order 12.

Theorem 1.4. Let ' be a connected symmetric graph of order 4pq with valency 11, where p > q > 3 are distinct

primes, thenT = Geo, Gs32, OF g§76 for1 < i < 4, with their automorphism groups Autl’ and vertex stabilizers
(Autl), listed in Table 2, where a is a vertex.

2 Preliminaries

We now give some necessary preliminary results. The first one is a property of the Fitting subgroup, see
[6, P. 30, Corollary].

Lemma 2.1. Let F be the Fitting subgroup of a group G. If G is soluble, then F + 1 and the centralizer Cz(F) < F.

We shall need information of maximal subgroups of PSL(2, r) and PGL(2, r), where r is an odd prime,
refer to [7, Section 239] and [8, Theorem 2].

Lemma 2.2. Let G = PSL(2, r) or PGL(2, r) and let M be a maximal subgroup of G, where r > 5 is a prime.
(1) IfG = PSL(2, 1), then M € {Dy_1, Dy11, Z; : Zr_1y;2, A4, S, As}.
(2) IfG = PGL(2, r)) then M ¢ {DZ(r—l)’ DZ(r+1)’ Zr : Zr—l’ Slh PSL(zx r)}'

By [9], we have the next lemma.

Lemma 2.3. Let I = Cay(G, S) be a normal Cayley graph on G. Then, (Autl'); = Aut(G, S), where 1 is the
identity of G.

For a graph I and a positive integer s, an s-arc of T is a sequence ag, ay, ..., as of vertices such that a;_;
and ¢; are adjacent for1 < i < sand a;_; # a;,1 for1 < i < s — 1. In particular, a 1-arc is just an arc. Then, T is
called (G, s)-arc-transitive with G < Autl' if G is transitive on the set of s-arcs of I'. A (G, s)-arc-transitive

Table 1: Connected 7-valent symmetric graphs of order 2pg

Row r P, q) Autr (Autl)g Transitivity Remark
1 C;s (3,13) PGL(2,13) Dys 1-transitive No bipartite
2 033 (3,13) PSL(2,13) Dy 1-transitive No bipartite
3 Cs10 (5,31 PSL(5, 2). 7, 7§ : (SL(2,2) x SL(3,2)) 3-transitive Bipartite
4 Cs0 (3,5) Sg 73:SL(3,2) 2-transitive Bipartite
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Table 2: Connected 11-valent symmetric graphs of order 4pg

Graph Autr (Autl), @q,p) Bipartite?
Geo PGL(2,11) F» (3,5) No
Gle PGL(2,23) Dis 3, 23) Yes
Ghe2<is<t PSL(2,23) D_22 @3, 23) No
Gs32 h x5 PSL(2,11) (7, 19) Yes

graph is called (G, s)-transitive if it is not (G, s + 1)-arc-transitive. In particular, a graph I is simply called
s-transitive if it is (Autl’, s)-transitive.

The following lemma is about the stabilizers of arc-transitive 7-valent graphs, refer to [10, Corollary 2.2]
and [11, Theorem 3.4].

Lemma 2.4. LetT be a 7-valent (G, s)-transitive graph, where G < Autl ands > 1. Leta € VI . Then, one of the
following statements holds:
(a) If G, is soluble, then s < 3 and |G,||252. Furthermore, the couple (s, G,) lies in the following table.

S 1 2 3

G, Z7, Fiy, Fo1, Fiy X 75, Fy X Z3 Fio, Fio x 75, Fiy x 75 Fio x Z¢

(b) If G, is insoluble, then |Gy||2%* - 3% - 5% - 7.
From [12, pp. 134-136], we can obtain the following two lemmas by checking the orders of nonabelian
simple groups. The arguments in the proof of Lemmas 2.5 and 2.6 are heavily relying on the classification of

finite simple groups.

Lemma 2.5. Let g > p > 3 be primes, and let T be a nonabelian simple group of order 21 -3/ . 5.7 .p . q,
where2 <i<25,0<j<4,and0 < k < 2. Then, T is listed in Table 3.

Table 3: Simple group T with order dividing2%® -34.52.7-p-q

T Tl (p, q) T 7| (P, )

M,, 27.32.5.7-11 (3,12), (5,11) PSL(2, 25) 26.32.5.7.13 (3,13), (5, 13)
M;3 27.32.5.7.11-23 (11, 23) PSL(2, 29) 2.33.7.19.73 (19,73)

My, 210.33.5.7.11-23 (11, 23) PSL(2, 27) 2.33.7.11 (3,11)

Ji 2.3.5.7.11-19 (11, 19) PSL(2, 125) 22.32.53.7.31 (5, 31)

J 27.33.5.7 (3,5) PSL(2, 49) 24.3.52.72 3,7),5,7)
HS 20.32.5.7.11 (5,11) PSU(3, 5) 24.32.5%.7 (3,5)

A, 2.32.5.7 (3,5) PSL(3, 8) 20.3%.7-.19 (3,19)

As 26.32.5.7 (3,5) D4(2) 212.35.58.7 (3,5)

Ag 26.34.5.7 (3,5) D, (2) 212.34.72.13 (7,13)

A 27.34.52.7 (3,5) PSp(8, 2) 216.35.5.7 (3,5)

An 27.34.582.7.11 (3,11), (5,11) PSL(4, 4) 212.34.52.7.17 (3,17), (5,17)
A, 22.35.52.7.11 (3,11) PSL(5, 2) 210.32.5.7.31 (3, 31), (5, 31)
Sz(8) 26.5.7.13 (5,13) PSp(4, 8) 212.34.5.72.13 (7,13)
PSUG, 8) 29.34.7-19 (3,19) D,(2) 2M.34.5.7.17 (3,17), (5,17)
PSp(6, 2) 2.34.5.7 (3,5) Gy(4) 212.33.52.7.13 (3,13), (5, 13)
PSL(4, 2) 26.32.5.7 (3,5) PSL(3, 16) 212.32.52.7.13.17 (13,17)

PSL(3, 4) 26.32.5.7 (3,5) PSL(2, q) aq+D@g-1
2
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Proof. If T is a sporadic simple group, by [12, pp. 135-136], T = My, My, My, Ji, Jo, or HS. If T = A, is an
alternating group, since 2'° does not divide |T|, we have n < 13, it then follows that T = A;, Ag, Ao, Ao, A,
or Ay, in Table 3.

Suppose now T = X(gq) is a simple group of Lie type, where X is one type of Lie groups, and g = pf is a
prime power. If p > 3, as |T| contains at most five 3-factors, three 5-factors, and two 7-factors, it easily
follows from [12, p. 135] that the only possibility is T = PSL(2, q), PSL(2, 27), PSL(2, 125), PSL(2, 49),
or PSU(3, 5). Similarly, if p = 2, then we have T = Sz(8), PSU(3, 8), PSp(6, 2), PSL(4, 2), PSL(3, 4),
PSL(3, 8), PSL(2, 29), PSL(2, 2), D4(2), °D,(2), PSp(8, 2), PSL(4, 4), PSL(5, 2), PSp(4, 8), °D,(2), G,(4),
or PSL(3, 16). O

Lemma 2.6. Let T be a nonabelian simple group and let p > q be two distinct odd primes. Suppose that 11||T|
and |T||2® - 38 .54 . 72.11 - p - q, then T lies in Table 4.

Proof. Assume T is a sporadic simple group. Then, by checking the order of sporadic simple group in [12],
we have Part 1 of the table.

Assume T = A, is an alternating group with n > 5. Since 11||T|, n > 11; and since |T| has at most seven
distinct prime divisors, n < 18. Then, we have Part 2 of the table.

Assume from now on that T is a simple group of Lie type over a field GF(r) of order r = t¢, where t is
a prime. Note that the order of T is not divisible by 21, 319, 56, 74, 13, and s?, where s > 11 is a prime.

Assume first that T is a simple exceptional group. By [12], we can easily rule out F,(r), Es(r), 2E()(r), E;(r),
and Eg(r) as r|T| if T is one of them. Since 11 | [*F,(2)|, T # °F,(2). If T = ?F,(r) with r = 22m+1 > 23,
then r?||T|, and hence 23||T|, a contradiction. If T = >D,(r), then r'2||T|, and hence T =>D,(2). However
1 ) |3D4(2)|, a contradiction. If T = G,(r), then r9||T|, and hence the possibilities are G,(2), G»(4), G(8),
and G,(3). However, a computation shows that 11 does not divide the orders of these four groups, a contra-
diction. If T = ?B,(r) with r = 22"*! > 23 (noting that ?B,(2) is solvable), then r2||T|, and hence the possibilities
are °B,(23), ’B,(25), 2B,(2"), and B,(2%). However 11 does not divide the orders of these four groups, a contra-
diction. If T = ?G,(r) with r = 32"+ > 33 (noting that 2G,(3) = PSL(2, 8)- 3 is not a simple group, and
11 J [PSL(2, 8)|), then r3||T|, and hence 3°||T|. Then, T = °G,(3%). However, 11 } |°G,(3%)|, a contradiction.
To summary, we have shown that T is not a simple exceptional group.

Assume next that T is a classical group. Note that r"*=D/2|PGL(n, r)| and |PSU(r)|, r™||PSpam(r)|

and |[PQ;n.1(r)], and r™m-D/2||PQZ (r)|. Considering the isomorphisms between classical groups (see [12]),
the possibilities of T are as follows:

Table 4: Simple group T with order dividing2'¥-3%8.54.72.11.p - g

Part T |T| T |T|
1 My 24.32.5.11 My, 26.33.5.11
M, 27.32.5.7-11 M3 27.32.5.7.11-23
My 210.33.5.7.11.23 h 22.3.5.7-11-19
HS 22.32.5.7.11 McL 27.36.53.7.11
Suz 23.37.5.7.11-13 Cos 210.37.53.7.11-23
Co, 218.36.53.7.11.23 Fix 217.39.582.7.11-13
2 An 27.34.52.7.11 Ap 22.35.52.7.11
A 22.3°.52.72.11-13 A 210.35.52.72.11.13
Ass 210.36.53.72.11.13 Ass 210.36.53.72.11.13
Ay 214.36.53.72.11.13 .17 Asg 215.38.53.72.11.13 .17
3 PSL(2,11) 2.3.5.11 PSL(2, 112) 2.3.5.112- 61
PSL(2, 25) 25.3.11-31 PSL(2, 219) 210.3.5.11.31- 41
PSL(2, 3°) 22.35.112- 61 PSUs(2) 210.35.5.11

PSUg(2) 215.36.5.7.11 PSL(2, p) p(p-D(p+1)/2
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PSL(2, r) with r divides one of {218, 3°, 5°, 73, 122, p(p > 11)},
PSL;(2¥) for 1 < k < 6, PSL(3), PSL3(32), PSL3(33), PSL;(5), PSL3(7),
PSL,(2) for 1 < k < 3, PSL,(3), PSLs(2), PSL«(2),

PSU5(25) for 2 < k < 6, PSUs(3), PSU(32), PSU5(3), PSUs(5), PSU5(7),
PSU,(2%) for 1 < k < 3, PSU,(3), PSUs(2), PSUx(2),

PQ;(3), PQy(2), PQg(2), PQ3(2), PSps(3), PSps(2),

PSp,(2K) for 2 < k < 4, PSp,(3), PSp4(3%), PSp4(5), PSpe(2), PSps(4).

Then, computation shows that T is in Part 3 of Table 4. O

The next lemma is about the vertex stabilizer in an arc-transitive group of automorphisms of symmetric
graph of valency 11, see [10] and [13].

Lemma 2.7. Let I' be a connected G-arc-transitive graph with valency 11 and a a vertex of T'. Then, one of the
following statements holds:
(1) If G is soluble, then |G,||1,100 and G, is one of

Zlh D22’ FSS’ ZZ X D22’ ZS X DSS’ FllO’ ZZ X FllO’ ZS X FllO: le() X FllO'
(2) If Gy is insoluble, then |G,||2!¢ - 38 - 5% - 72 . 11, and the pairs (G, |G|) lie in Table 5.

A typical method for studying vertex-transitive graphs is taking normal quotients. Let I be a G-vertex-
transitive graph, where G < Autl’. Suppose that G has a normal subgroup N, which is intransitive on VT. Let
VT be the set of N-orbits on VI'. The normal quotient graph Iy of I' induced by N is defined as the graph with
vertex set VI, and B is adjacent to C in Iy if and only if there exist vertices § € B and y € C such that f8 is
adjacent to y in I'. In particular, if val(T') = val(Ty), then I is called a normal cover of Ty.

A graph T is called G-locally primitive if, for each a € VT, the stabilizer G, acts primitively on I'(a).
Obviously, an arc-transitive pentavalent graph is locally primitive. The following theorem gives a basic
method for studying vertex-transitive locally primitive graphs, see [14, Theorem 4.1] and [15, Lemma 2.5].

Theorem 2.8. Let I' be a G-vertex-transitive locally primitive graph, where G < Autl’, and let N « G have at
least three orbits on VI. Then, the following statements hold:
(i) N is semi-regular on VT, G/N < Autly, and T is a normal cover of Ty;
(i) Gu= (G/N),, wherea € VI and y € VIy;
(iii) T is (G, s)-transitive if and only if Iy is (G /N, s)-transitive, where1 <s<5o0rs =7.

For the case where N has at most two orbits on VT, the next fact is a consequence of the connectivity
of the graph, which is well known.

Lemma 2.9. Let I be a connected G-arc-transitive graph of odd prime valency d. Let 1 #+ N be a normal
subgroup of G. Suppose that N have at most two orbits on VI and N, + 1, where a is a vertex of I'. Then, N,

is transitive on the neighbors T'(a) of a, particularly, d||N,|.

By Li and Feng [16, Theorem 3.6], we have the following lemma.

Table 5: Insoluble vertex stabilizer of arc-transitive graph with valency 11

G, |Gal G, |Gal G, |Gal

PSL(2,11) 2.3.5.11 My 24.32.5.11 An 27.34.582.7.11
Su 286.34.52.7.11 As x PSL(2,11) 24.32.5.11 Ag x My 27.34.52.11
Mio x My 28.34.52.11 (Ao xAn) : 5 215.38.54.72. 11 Ao x A 214.38.54.72. 11

S10 %X St 216.38.54.72. 11
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Lemma 2.10. Let n be a square-free integer and I a 7-valent one-regular graph of order n. Then,
n=2-7'-pip, - ps 213, wheret < 1, s > 1, and p;’s are distinct primes such that 7|(p; — 1). Furthermore,

I is isomorphic to one of CZ)ﬁ, and there are exactly 65~! such non-isomorphic graphs of order n.

For reduction, we need some information of 7-valent symmetric graphs of order 2p, stated in the
following lemma, see [2, Table 1].

Lemma 2.11. Let p be a prime and let T be a 7-valent symmetric graph of order 2p. Then, T is isomorphic to one
of the following graphs:

(1) The complete bipartite graph K; ; for p = 7 with Autl’ = S»:S,.

(2) The graph G(2p, 7) for p > 7 with AutG(2p, 7) = Dy, : Z;.

Remark of Lemma 2.11. We define the graph G(2p, 7) in the following. Let A and A’ be two disjoint
copies of Z,. For each element i of Z,, we shall denote the corresponding elements of A and A’ by i and i’,
respectively. Let r be a positive integer dividing p — 1, where p is prime, and let H(p, r) denote the unique
subgroup of Zj, of order r. We define the graph G(2p,r) to have vertex-set AU A’ and edge-set
{xy' :x,ye”Z,, and y-xeH(p,r)}

We need some classification results on symmetric graphs of valency 11. The following two lemmas are
obtained from [2], [17], and [18].

Lemma 2.12. Let T’ be a connected symmetric graph of order 2r and valency 11, where r is an odd prime.
Suppose that Autl is insolvable, then T is the complete bipartite graph K 1.

Lemma 2.13. Let T be a connected symmetric graph of order 2m and valency 11, where m is an odd square-free
integer, then one of the following statements holds:

(1) T is a normal Cayley graph on D, and Autl’ = Dy, : Zy3;

(2) Autl’ = J;, Autl, = PSL(2, 11), and m = 7 - 19, moreover, T is not bipartite;

(3) Autl’ = PSL(2, r) or PGL(2, r) where r = +1(mod 11) is a prime.

3 Examples

In this section, we give some examples of 7-valent symmetric graphs of order 2pg with g > p > 3 distinct
primes.

For a given small permutation group X, one may determine all graphs that admit X as an arc-transitive
automorphism group by using Magma program [19]. It is then easy to have the following result.

Example 3.1. There are two connected 7-valent symmetric graphs of order 78, which admit PSL(2, 13) or
PGL(2, 13) as an arc-transitive automorphism group. These two graphs are denoted by Cl3 and CZg, which
satisfy the conditions in Rows 1 and 2 of Table 1.

Example 3.2. There is a unique connected 7-valent symmetric graph of order 310, which admits
PSL(5, 2). Z, as an arc-transitive automorphism group. This graph is denoted by Cs;9, which satisfies the
conditions in Row 3 of Table 1.

Example 3.3. There is a unique connected 7-valent symmetric graph of order 30, which admits Sg as an arc-
transitive automorphism group. This graph is denoted by C;p, which satisfies the conditions in Row 4
of Table 1.
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4 The proof of Theorem 1.2

Now, we prove the main result of this article. Let I be a 7-valent symmetric graph of order 2pq. Set A = AutT.
By Lemma 2.4, |A4||2%* - 3% - 5% - 7, and hence |A[[2% - 3* - 52 . 7 - p - q. Let R be the soluble radical of A and
let F be the Fitting subgroup of A (recall that the Fitting subgroup F of A is defined to be the product of all
normal nilpotent subgroups of A). We divide our discussion into the following three cases.

Casel.R=1

Let N be a minimal normal subgroup of A and let C = CA(N). Since R = 1, we have that N = T9, where T
is a nonabelian simple group and d >1. Furthermore, since |A||2®-3%.5%.7.p.q, we have
IN|[2®.34.52.7.p-q.

Assume that N has t orbits on VT. If t > 3, then by Theorem 2.8, N, = 1and so|N| = |T |? | 2pq, which is
a contradiction as T is a nonabelian simple group. Hence, N, # 1, N has at most two orbits on VT and pq
divides [N : N|. Since T is connected, N <« A, and N, # 1, we have 1 # NI « AI® it follows that 7 divides
|N,|, we thus have that 7pq divides |T]|.

We first show thatd = 1. If not,d > 2, then 72 | |T |2 = [N|as|N| = |T |4 | 2% .34 .52.7 . p - q. It follows
that p=7 orq=7.1f p=7, then ¢ >7 and ¢? | |T |?, a contradiction. If ¢ = 7, then p = 3 or 5. It can
conclude that |T| | 212- 32 - 5 - 7. Note that 21 | |T| or 35 | |T|. By checking the nonabelian simple group of
order less than 212-32. 5.7 (e.g., [12]), we have that T = A;, Ag, or PSL(3, 4), and so d = 2, N = A2, A2,
or PSL(3, 4)2. On the other hand, C <A, CnN=1 and (C,N) = C x N. Because |C x N| divides
2%5.34.52.72.p.gqand|N| = |TP =26-3*-52.720r2°-3*.52. 72, C is a {2, p}-group, and hence soluble,
where p =3 or p=5.S0 C=1as R = 1. This implies A = A/C < Aut(N) = Aut(T):S,. By Magma [19], no
such graph exists. Thus,d =1and N = T < A is a nonabelian simple group.

We next show that C = 1. If not, then C is insoluble as R = 1 and C < A. The same argument as for the
case N leads to 7 | |Cyl. Since (C, N) =C x N and C, N € A, we have N, x C, < A,. On the other hand,
7 | INg, it concludes that 72 | |A,, a contradiction with Lemma 2.4. Hence, A is almost simple and
A < Aut(T). Thus, we have soc(A) = T as a nonabelian simple group and satisfies the following condition.

Condition (*): |T]| lies in Table 3 such that 7pq||T| and |T||2%-3*-5*-7 -p - q.

Assume first that T = My, My, Ji, Jo, HS, PSU(3, 8), PSp(6, 2), PSp(8, 2), PSp(4, 8), PSL(3, 4),
PSL(2, 29), PSL(2, 27), PSL(2, 125), PSL(2, 49), PSU(3, 5), PSL(3, 16), Ag, or Ao. Note that |T : T,| = pq or
2pq. By Atlas [20], T has no subgroup of index pq or 2pq, a contradiction.

Assume that T = My, A;, Ay, Ap, Sz(8), PSL(4, 2), PSL(4, 4), PSL(3, 8), or PSL(2, 2°). Note that
T < A < Aut(T). We can exclude all these cases by using Magma [19].

Assume that T = PSL(5, 2). Then, (p, q) = (3, 31) or (5, 31). For the former case, T has no subgroup of
index 93 or 186, a contradiction. For the latter case, by Example 3.2, T is isomorphic to C3;9. Assume that
T = Ag. Then, (p, q) = (3, 5). By Example 3.3, I is isomorphic to Cso.

Assume that T = PSL(2, q). Then, T < A < Aut(T) = PGL(2, g) and|A : T| < 2. If A, is insoluble, then T,
is also insoluble as |A,: Ty] < 2. By Lemma 2.2, T, = As, which is impossible as 7 | |T,]. Thus, A, is
soluble, and by Lemma 2.4, A, divides 252, and so |T;||252. It implies that the order of T divides
504 - p - q. Note that |PSL(2, q)| = £4-24*D and (121, °1) = 1. 1f p| ", then g + 1 divides 504. It follows
thatg =5, 7, 11, 13, 17, 23, 41, 71, 83, 167, 251, or 503. However, PSL(2, q) does not satisfy the Condition (*)

forq =5, 7,11, 17, or 23. Thus, q = 13, 41, 71, 83, 167, 251, or 503 for this case. If p|q;'1

504. It follows that g = 5, 7, 13, 19, 29, 37, 43, 73, or 127. However, PSL(2, q) does not satisfy the Condition
(*) forg =5,7,19, 37, or 73. Thus, g = 13, 29, 43, or 127 for this case. Therefore, for T = PSL(2, q), T is one of

the following groups:

, then g — 1 divides

T Order T Order

PSL(2, 13) 22.3.7-13 PSL(2, 29) 22.3.5.7.29
PSL(2, 41) 2.3.5.7.-41 PSL(2, 43) 22.3.7.11- 43
PSL(2, 71) 2.32.5.7.71 PSL(2, 83) 22.3.7.41-83
PSL(2, 127) 2.32.7-127 PSL(2, 167) 23.3.7.83.167

PSL(2, 251) 22.3%2.53.7.251 PSL(2, 503) 23.32.7.251-503
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Assume that g = 29, 41, 71, 127, or 251. Note that |T : T;| = pq or 2pq. By Lemma 2.2, T has no subgroup
of index pq or 2pq, a contradiction. Assume that g = 43, 83, or 167. Note that A = PGL(2, g) or PSL(2, gq).
We can exclude all the cases by Magma [19]. Assume that g = 503. Then, | T,| = 504 or 252. It implies that T, is
soluble and so as A,. By Lemma 2.4, |A,| | 252, and therefore, A = PSL(2, 503), |A4| = 252. Again by Lemma
2.4, Ay = Fyp x Zg, which is impossible by Lemma 2.2. Assume, finally, that ¢ = 13. Then, T = PSL(2, 13)
and A = PSL(2, 13) or PGL(2, 13). By example 3.1, T is isomorphic to C3g or C%. This completes the proof of
this case.

Case 2. R # 1 and A is soluble

Then, R = A, and by Lemma 2.1, F # 1 and Ca(F) < F. As|VT| = 2pq, A has no nontrivial normal Sylow
s-subgroup, where s # 2, p, or q. So F = 0,(A) x 0,(A) x 0,(A), where 0,(A), 0,(A), and O,(A) denote the
largest normal 2-, p-, and g-subgroups of A, respectively.

For each r € {2, p, q}, since g > p > 3, 0,(A) has at least three orbits on VT, by Proposition 2.8, 0,(A)
is semi-regular on VT. Therefore, |0,(A)| < 2, |0,(A)] < p, |04(A)| < g, F < Zyp, is abelian, and Cg(F) = F.

If|F| = 2, by Proposition 2.8, the normal quotient graph I is a 7-valent A/ F-arc-transitive graph of odd
order pg, not possible. Thus, there exists a prime r € {p, q} such thatr | |F|, and so 0,(A) = r. By Theorem
2.8,To,a) is a 7-valent A/ O,(A)-arc transitive graph of order 2s with s € {p, g} and A/O,(A) is soluble. Then,
by Lemma 2.11, Ip,(a) is isomorphic to K7 ; or G(2p, 7). For the former case, by [21, Theorem 1.1], p = 7 and
To,a) = CDﬁq as described in Theorem 1.2 (1). For the latter case, by Lemma 2.11, Iy ) = G(2p, 7) and
Autlp,a) = Dy @ Z;7 is arc-regular on AT'. Hence, A/O/(A) = Dy : Z;, it implies that I is an 7-valent arc-
regular graph of order 2pg. By Lemma 2.10, T’ = CD’Z‘M as in Theorem 1.2 (1).

Case 3. R # 1 and A is insoluble

Let N be a minimal soluble normal subgroup of A. Then, N = Zf has at least three orbits on VI', wherer
is a prime. It follows from Theorem 2.8 that N is semi-regular on VI, and sod = 1, r € {p, g}. Furthermore,
Iy is A/ N-arc-transitive graph of order 2”7‘1 = 2t and A/N is insoluble, wheret € {p, q}. Since Iy is A/ N-arc-
transitive and A/ N is insoluble, by Lemma 2.11, Iy is isomorphic toK; ;. Thus, I is a normal Z,-cover ofK; ;,
where t # 7. By [21, Theorem 1.1], no such graph I' exists.

Thus, we complete the proof of Theorem 1.2.

5 The proof of Theorems 1.3 and 1.4

In this section, we prove Theorems 1.3 and 1.4. Let I' be a connected symmetric graph of order 4n and
valency 11, wheren = p - g with p, g > 3 two distinct primes, and let a be a vertex of I'. Set A = Autl’ and let
R be the largest solvable normal subgroup of A.

Lemma 5.1. A is insolvable.

Proof. Suppose for a contradiction that A is solvable. Let H be the Fitting subgroup of A. Then, H is
nilpotent and H is the product of all its Sylow r-subgroups, where r is a prime dividing |H|. Clearly, H, is
characteristic in H, and hence, normal in A. If H, has at most two orbits on VT, then 2n = |VT|/2 divides |H,|,
a contradiction. Therefore, H, has at least three orbits on VT. Considering the quotient graph Iy, by Lemma
2.8, we have H, is semi-regular on VT, and hence|H,||4n, and I'y, is a connected A / H;-arc-transitive graph of
valency 11. This implies |H,| = 1 or 2 as there is no symmetric graph of odd order and odd valency, and |H,| is
a prime if r is odd. Then, H is cyclic. Let C = C4(H). Then, C < H by Lemma 2.1, and hence, C = H. Thus,
A/H = A/C < Aut(H) is abelian. Since A, = A,/(A; N H) = HA,/H < A/H is abelian, A, is abelian, and
hence A, = Z;; by Lemma 2.7. Thus, I is an arc-regular graph (i.e., Autl is regular on the arc set of I').
However, there is no arc-regular graph of order four times an odd square-free integer, see [22], a contra-
diction. This proves the lemma. O
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Lemma 5.2. Assume that A is insolvable and R = 1. Then, T < A < Aut(T) for some nonabelian simple group
T, and T has at most two orbits on VI and 11||T.

Proof. Let N # 1 be a minimal normal subgroup of A. Then, N = T™ for some nonabelian simple group T,
where m > 1 be a positive integer. Since T is nonabelian simple group, 4||T|, and so 4™||N|. If N has at least
three orbits on VT, then N, = 1 by Lemma 2.8. Considering the quotient graph Iy, and 4||VT| = 4n, we obtain
the quotient graph Iy is of odd order and valency 11, which is impossible. Therefore, N has at most two
orbits on VT.

If N, = 1, then the order of N divides |VT| = 4n. Since 4||T|, we have N = T. Note that |T| has at least
three prime divisors. Thus, n = pg and |T| = 4pq. By [23], we have N = As. Note that now N is regular
on VT. Thus, T' = Cay(N, S) is a normal Cayley graph for some subset S ¢ N\{1}. Then, by Lemma 2.3,
Ay = A = Aut(N, S) < Aut(N) = S5, and so 11 ) |A,|, contradicting to Lemma 2.7.

Therefore, N, # 1. Then, by Lemma 2.9, 11||N,|. If A has another minimal normal subgroup, namely M,
then 11||M,| by an argument similar to N. It follows 112||M, x Ny|||A«|, a contradiction. Therefore, N is the
unique minimal normal subgroup of A.

It remains to show N = T. Since N has at most two orbits on VT, n||N|. This implies 4 - 11 - n||T]|.
Thus, (4 - n)™- 11™||N|||A| = 4n|Ag|. Then, (4 - n)™ 1. 11"||A,|. Since 112 } |A,| by Lemma 2.7, we have m = 1.
Thus, N = T, as required. O

We further determine graphs in the case where A is insolvable and R = 1.

Lemma 5.3. Assume that A is insolvable and R = 1.
(1) Ifnis a prime, thenT = Kj,.
(2) Ifn = pq, where p > q > 3 are two distinct primes, then (T, A, A,) is listed in the first three rows of Table 2.

Proof. By Lemma 5.3, T < A < Aut(T) for a nonabelian simple group, T has at most two orbits on VT, and
11||Ty. By Lemma 2.7, |A| = |VT||A||2'® - 38 - 5* - 72 - 11 - n. Thus, 44]||T| and |T||2'8 - 38 - 5* . 72 . 11 - n. There-
fore, such simple groups T are determined by Lemma 2.6 and are listed in Table 4.

We first deal with the case where T = PSL(2, p). Assume that T = PSL(2, p). Then, A = PSL(2, p) or
PGL(2, p). By the information of maximal subgroups of PSL(2, p) and PGL(2, p) in Lemma 2.2, we know
A, is solvable. Then, by Lemma 2.7, there are only three possibilities for A,, that are Z;;, D», and Dy, x Z;.In
particular, A, is a{2, 11}-group. Since|A| = 4n|A,|, where n has at most two prime divisors, we obtain |A| that
has at most four prime divisors, so does |T|. By [23], T = PSL(2, 23). Noting |PSL(2, 23)| = 23-3-11- 23 and
p > g, we have p = 23 and g = 3. Then, by Lemma 2.7, pair (4, A,) = (PGL(2, 23), D44) or (PSL(2, 23), D,)).
Computation with Magma [19] shows that, up to graph isomorphism, there is only one such graph T for pair
(PGL(2, 23), Dy,), say G, with automorphism group PGL(2, 23); and there are three graphs for pair
(PSL(2, 23), D), say G for 2 < i < 4, with automorphism group PSL(2, 23). Then, (T, A, A,) is as the
second and third rows of Table 2.

Now, we prove parts (1) and (2) of the lemma.

(1). Suppose that n is a prime.

Clearly, n # 2. If n =3, then |VI| = 12, which implies that ' = Kj. Actually, I = K, arises when
T = My, My,, App, PSL(2, 11) because each of them has a 2-transitive permutation representation of degree
12 (see [24]).

Therefore, we assume that n > 5. Since T has at most two orbits on VT, |T : T,| = 2n or 4n. By Atlas [20]
or direct computation in Magma [19], it is easy to check whether a simple group T in Table 4 has a subgroup
of index 2n or 4n and of order divisible by 11. For example, let T = Mj;, then Atlas [20] tells us that a maximal
subgroup of Mj; has index 11, 12, 55, 60, and 165 and the maximal subgroup of index 11 is Mg = Aq. 2.
Therefore, the only possibility for T, is As. However, this contradicts 11||T,|. Therefore, we can rule out the
case T = My;. Other simple groups can be ruled out similarly.

(2). Suppose that n = pq, where p > q > 3 are two distinct primes.
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We may assume that T # PSL(2, p)(p > 11). Assume T = M;; with order 2% -32.5 - 11. Then, A = Mj; as
Out(My;) = 1. Then, pq = 5 - 3 and A, is of order 22 - 3 - 11, contradicting Lemma 2.7. By an argument similar
to My;, we can rule out My, My, Ji, Co,, and Cos, those simple groups with outer automorphism group 1.

Assume N = M;, with order 26 - 33 . 5. 11. Then, A = M, or My,. Z, as Out(M;,) = 2, refer to [20]. Then,
pq =5-3and A, is of order 2% - 32 - 11 or 2° - 32 - 11. By Lemma 2.7, this is impossible. Similarly, we can rule
out other simple groups with nontrivial out automorphism groups in Table 4, except two groups PSL(2, 11)
and PSL(2, 112).

Assume T =PSL(2,11) with order 22.-3.5-11. Then, A =PSL(2,11) or PGL(2,11) as
Out(PSL(2, 11)) = Z,. In this case, pg = 5 - 3, and hence, |VT| = 60. Computation in Magma shows that there
is a unique such graph I" up to graph isomorphism, which is G¢o, its automorphism group and the vertex of
stabilizer are PGL(2, 11) and D, respectively. This is the first row of Table 2.

Assume T = PSL(2,112). Then, A =PSL(2,112).0, where o < Out(PSL(2,11)) = Z;. Note that
|PSL(2,11%)| = 23-3 - 5-11? - 61. By Lemma 2.7, 11 is the largest prime divisor of A,, thus pg = 61 - 11 and
so |VT|=4-11-61. If o =1, then A =PSL(2,11?) with |4, =2-3-5-11, contradicting Lemma 2.7.
If 0 = Out(PSL(2, 112)) = Z2, then |As| = 22-3-5-11, also contradicting Lemma 2.7. Therefore, 0 = Z,.
Then, |A,] =2%2-3-5-11,and so A, = PSL(2, 11) by Lemma 2.7. However, no such graph exists by computa-
tion with Magma [19]. O

At last, we complete the proof of Theorems 1.3 and 1.4 by dealing with the case where R # 1.

Lemma 5.4. Assume that A is insolvable and R+ 1. Then, p=19, q=7, and (I,A,A,) =
(Gs32, Z> x J1, PSL(2, 11)), as the fourth row of Table 2.

Proof. Since R # 1, A has a minimal normal subgroup N = Z" # 1 contained in R, where r is a prime. If N
has at most two orbits on VT, then 2n = |VT|/2||N], a contradiction. Therefore, N has at least three orbits on
VT. Considering the quotient graph I'y, by Lemma 2.8, we have N as semi-regular on VI, and hence, |N||4n
and Iy is a connected A /N -arc-transitive graph of valency 11. Put v a vertex of VIy.

Case 1. Suppose that n is a prime.

Then, we have r = 2. Then, N = Z, because if N = Z7, then Iy is a symmetric graph of odd order and
valency 11, which is impossible. Note that A /R is insolvable as A is insolvable. By Lemma 2.12, Iy = Kjj,11,
and so I' is a normal Z,-cover of Kj; ;;. However, there is no such graph I' by [21, Theorem 1.1]. This proves
Theorem 1.3.

Case 2. Suppose that n = pq, where p > q > 3 are two distinct primes.

Then, r € {p, q, 2} as |N||4pq. If r = q, then |VTy| = 4p. By Theorem 1.3 Iy = Kj,, and so p = 3, contra-
dicting p > q > 3. Therefore, r # q.

Assume that r = p. Then, |VIy| = 4q. By Theorem 1.3 Iy = K;,, and so g = 3. Note that a subgroup
H < Autly = Sy, is arc-transitive if and only if H is 2-transitive on 12 points. By the classification of 2-
transitive permutation groups, see, e.g., [24], possibilities for (A/N, (A/N),) are as follows:

(PSL(2, 11), Z11 : Z5), (PGL(2, 11), Zy1 : Zyp), (M, PSL(2, 11)), (412, A1), (S12, S11)-

If (A/N, (A/N),) + (PSL(2,11), Zy; : Zs), then A/N acts 2-arc-transitively on Iy = Kj,. Note that 2-arc-tran-
sitive cyclic cover of complete graph was determined in [25, Theorem 1.1], and from their result we can
obtain a contradiction.

Therefore, (A/N,(A/N),) = (PSL(2,11), Zy; : Z5). Then, A =Z, PSL(2,11). Since the Schur
multiplier of PSL(2, 11) is isomorphic to Z>, see Atlas [20], we have A = NA' = N x A’ = Z, x PSL(2, 11).
Let K = PSL(2, 11) < A. Note that |PSL(2, 11)| = 22 - 3 - 5 - 11. Therefore, K, # 1. Then, Lemma 2.7 implies that
K has at most two orbits on VI'. By Lemma 2.9, 11||K,|. Then p = 5. Since K has at most two orbits on VT,
IKa| = |K|/(Qpq) = 44 or |K|/(4pq) = 22. By Atlas [20], PSL(2, 11) has no subgroup of order 44 but has
subgroups isomorphic to D,, of order 22. Therefore, K, = Dy, and K is transitive on VT, and hence T is
K-arc-transitive. By computation in Magma [19], T = G40 with automorphism group PGL(2, 11), contra-
dicting the assumption that R # 1.
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Assume last that r = 2. Then, N = Z, and Iy satisfies Lemma 2.13. Since A /N is insolvable, the case (1)
of Lemma 2.13 is impossible.

Suppose that case (2) of Lemma 2.13 happens, that is, p = 19, q = 7, Autly = J;, and (Autly), = PSL(2, 11).
Now, A/N < Autly = J;. Note that |}] =23-3-5-7-11-19. Since A/N acts arc-transitively on Iy, |A/N| is
divisible by 11:|VIy| = 11 -2 - 7 - 19. By the information of maximal subgroups of J; in Atlas [20], we have
A/N = Ji. Then, A = Z,. J;. Since the Schur multiplier of J; is 1, also refer to Atlas [20], we have A = Z, x J;. Let
K = J; € A. Then, K, # 1, and Lemma 2.8 implies that K has at most two orbits on VT. If K has two orbits on
VT, then|K,| = |K|/2pq = 660; however, J; has no subgroup of order 660 by Atlas [20]. Thus, K is transitive on
VT, and henceT is arc-transitive by Lemma 2.9. Computation in Magma [19] shows that there is a unique such
graph I', which is Gs3,, with automorphism group 2, x J;.

Suppose that case (3) of Lemma 2.13 happens, then Autly = PSL(2, r) or PGL(2, r), where r is a prime
such that r = +1(mod 11). By Lemma 2.2, we have PSL(2,r) < A/N as A/N is insolvable. In addition, by
Lemma 2.2, we have (A/N), = Zy1, Dy or Z, x Dy,. Then, PSL(2, r) is a simple group with at most four prime
divisors and 11||PSL(2, r)|, and hence r = 23 by [23]. Then, we obtain p = 23 and g = 3. If A/N = PSL(2, 23),
then [(A/N),| = |PSL(2, 23)|/(2 - 3 - 23) = 44; however, PSL(2, 23) has no subgroup of order 44 by Lemma
2.2, a contradiction. If A/N = PGL(2, 23), then |(A/N),| = |Aq| = 88; however, PGL(2, 23) has no subgroup
of order 88, see Lemma 2.2, which is a contradiction. |
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Appendix A

Magma codes used in Example3.1

DE GRUYTER

TU:=[1;

j:=0;

G:=PSL(2,13);
H:=Subgroups(G:0rderEqual:=14);
for t in [1..#H] do
HH:=H[t]‘subgroup;
A:=CosetAction(G,HH);
0:=0rbits(A(HH));

for i in [1..#0] do

00:=SetToSequence(0[i]); GA:=OrbitalGraph(A(G),1,00[11);

if (IsConnected(GA) eq true) and (Valence(GA) eq 7) and
(not existst:t in TU IsIsomorphic(GA,t) eq true) then

Append( TU,GA);
J:=3+1;
end if;
end for;
end for;

i;
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