

Research Article

Younes El Haddaoui, Hwankoo Kim*, and Najib Mahdou

On nonnil-coherent modules and nonnil-Noetherian modules

<https://doi.org/10.1515/math-2022-0526>

received May 27, 2022; accepted October 28, 2022

Abstract: In this article, we introduce two new classes of modules over a ϕ -ring that generalize the classes of coherent modules and Noetherian modules. We next study the possible transfer of the properties of being nonnil-Noetherian rings, ϕ -coherent rings, and nonnil-coherent rings in the amalgamated algebra along an ideal.

Keywords: nonnil-coherent ring, ϕ -coherent ring, ϕ -submodule, nonnil-coherent module, nonnil-Noetherian ring, nonnil-Noetherian module

MSC 2020: 13A15, 13C05, 13E15, 13F05

1 Introduction

All rings considered in this article are assumed to be commutative with non-zero identity and prime nilradical. We use $\text{Nil}(R)$ to denote the set of nilpotent elements of R and $Z(R)$, the set of zero-divisors of R . A ring with $\text{Nil}(R)$ being divided prime (i.e., $\text{Nil}(R) \subset xR$ for all $x \in R \setminus \text{Nil}(R)$) is called a ϕ -ring. El Khalfi et al. [1], and Chhiti et al. [2] studied when the amalgamation algebra along an ideal is a ϕ -ring. Let \mathcal{H} be the set of all rings with divided prime nilradical. A ring R is called a *strongly ϕ -ring* if $R \in \mathcal{H}$ and $Z(R) = \text{Nil}(R)$. Let R be a ring and M be an R -module; we define

$$\phi\text{-tor}(M) = \{x \in M \mid sx = 0 \text{ for some } s \in R \setminus \text{Nil}(R)\}.$$

If $\phi\text{-tor}(M) = M$, then M is called a *ϕ -torsion module*, and if $\phi\text{-tor}(M) = 0$, then M is called a *ϕ -torsion-free module*. It is worth noting that in the language of torsion theory, the class \mathfrak{T} of all ϕ -torsion modules is a (hereditary) torsion class, whereas \mathfrak{T} is closed under (submodules,) direct sums, epimorphic images, and extensions. An ideal I of R is said to be *nonnil* if $I \not\subseteq \text{Nil}(R)$. An R -module M is said to be *ϕ -divisible* if $M = sM$ for all $s \in R \setminus \text{Nil}(R)$.

Among the many recent generalizations of the concept of a coherent ring in the literature, we can find the following: due to Bacem and Ali [3], a ϕ -ring R is called *ϕ -coherent* if $R/\text{Nil}(R)$ is a coherent domain [3, Corollary 3.1]. A ϕ -ring R is said to be *nonnil-coherent* if every finitely generated nonnil ideal is finitely presented, which is equivalent to saying that R is ϕ -coherent and $(0 : r)$ is a finitely generated ideal of R for each $r \in R \setminus \text{Nil}(R)$, where $(0 : r) = \{x \in R \mid rx = 0\}$ [4, Proposition 1.3]. In [5], an R -module M is said to be coherent if M is a finitely generated R -module and every finitely generated submodule of M is a finitely presented R -module. In [6], an R -module M is said to be Noetherian if every submodule of M is finitely

* Corresponding author: Hwankoo Kim, Division of Computer Engineering, Hoseo University, Asan, Republic of Korea, e-mail: hkkim@hoseo.edu

Younes El Haddaoui: Department of Mathematics, Modelling and Mathematical Structures Laboratory, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah, Fez, Morocco, e-mail: younes.elhaddaoui@usmba.ac.ma

Najib Mahdou: Department of Mathematics, Modelling and Mathematical Structures Laboratory, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah, Fez, Morocco, e-mail: mahdou@hotmail.com

generated. In [7], Badawi introduced and studied a new class of ϕ -rings, which are said to be nonnil-Noetherian. A ϕ -ring R is said to be *nonnil-Noetherian* if every nonnil ideal of R is finitely generated, which is equivalent to saying that $R/\text{Nil}(R)$ is a Noetherian domain ([7, Theorem 2.4]). In 2015, Yousefian Darani [8] introduced a new class of modules that is closely related to the class of Noetherian modules. An R -module M with $\text{Nil}(M) := \text{Nil}(R)M$, a divided prime submodule (i.e., $\text{Nil}(M)$, is a prime submodule of M and comparable with each submodule of M) is said to be *nonnil-Noetherian* if every nonnil submodule N of M (i.e., $N \not\subseteq \text{Nil}(M)$) is finitely generated. In 2020, Yousefian Darani and Rahmatinia [9] introduced and studied ϕ -Noetherian modules as a new class of Noetherian modules. A module M is said to be ϕ -Noetherian if $\text{Nil}(M)$ is divided prime and each submodule that properly contains $\text{Nil}(M)$ is finitely generated.

Let R be a ring and E an R -module. Then $R \times E$, the trivial ring extension of R by E , is the ring whose additive structure is that of the external direct sum $R \oplus E$ and whose multiplication is defined by $(a, e)(b, f) := (ab, af + be)$ for all $a, b \in R$ and all $e, f \in E$ (this construction is also known by other terminologies and other notations, such as the idealization $R(+E)$ (see [5,10–12]).

Let A and B be two rings, let J be an ideal of B and let $f : A \longrightarrow B$ be a ring homomorphism. In this setting, we can consider the following subring of $A \times B$:

$$A \bowtie^f J = \{(a, f(a) + j) | a \in A, j \in J\},$$

called the amalgamation of A with B along J with respect to f (introduced and studied by D'Anna et al. [13,14]). This construction is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied by D'Anna and Fontana [15] and denoted by $A \bowtie I$).

This article consists of five sections including an Introduction. In Section 2, we introduce and study a new class of modules over a ϕ -ring R which are called nonnil-coherent modules. Let M be an R -module and N be a submodule of M . Then, N is said to be a ϕ -submodule of M if M/N is a ϕ -torsion module (see Definition 2.1). Using Definition 2.1, an R -module M is said to be nonnil-coherent if M is finitely generated and each finitely generated ϕ -submodule of M is finitely presented (see Definition 2.4). We give some properties that characterize these modules. In Section 3, we introduce and study another definition of nonnil-Noetherian modules that is different from the definition of [8,9]. An R -module M is said to be nonnil-Noetherian if M is a finitely generated module and every ϕ -submodule of M is finitely generated (see Definition 3.1). Next, we give some properties that characterize these modules. In Section 4, we study the possible transfer of the properties of nonnil-coherent rings and nonnil-Noetherian rings in trivial ring extensions. In the last section, we study the possible transfer of the properties of being ϕ -coherent rings and nonnil-Noetherian rings in an amalgamation algebra along an ideal.

For any undefined terminology and notation, the reader is referred to [5,6,16,17]. Throughout this article, if S is a multiplicative subset of a ring R , then we assume that $S \cap \text{Nil}(R) = \emptyset$.

2 On nonnil-coherent modules

In this section, we introduce and study a new class of modules over a ϕ -ring R , which are called nonnil-coherent modules. Recall that in [5], an R -module M is said to be coherent if M is finitely generated and every finitely generated submodule is finitely presented.

Recall that an R -module M is said to be ϕ -torsion if, for all $x \in M$, there exists $s \in R \setminus \text{Nil}(R)$ such that $sx = 0$.

Definition 2.1. Let $R \in \mathcal{H}$ and M be an R -module. A submodule N of M is said to be a ϕ -submodule if M/N is a ϕ -torsion module.

Example 2.2. A nonnil submodule is not in general a ϕ -submodule. For example, set $R := \mathbb{Z}$, which is a ϕ -ring, and $M = \mathbb{C}[X]$ as an R -module. It is easy to see that every nonzero subgroup N of M is a nonnil submodule, in particular, the subgroup $N = \mathbb{Q}[X]$ is a nonnil submodule of M . But for any nonzero $s \in \mathbb{Z}$,

we obtain $si \notin N$. Hence, N is never a ϕ -submodule of M . Therefore, we deduce that the class of nonnil-submodules of an R -module is different from the class of ϕ -submodules of that R -module.

There is a natural question: If R is a ϕ -ring, then is every submodule N of an R -module M (with $\text{Nil}(M)$ being prime divided) such that N contains properly $\text{Nil}(M)$ a ϕ -submodule of M ? The following example shows that the answer to this question is negative.

Example 2.3. Let $R = \mathbb{Z}$, $M = \mathbb{C}$, and $N = \mathbb{Q}$. Then, $\text{Nil}(M) = 0$ is a divided prime submodule of M and N properly contains $\text{Nil}(M)$, but \mathbb{C}/\mathbb{Q} is never a torsion abelian group. Therefore, \mathbb{Q} is not a ϕ -subgroup of \mathbb{C} .

Definition 2.4 allows us to generalize the definition of coherent modules over a ϕ -ring.

Definition 2.4. Let $R \in \mathcal{H}$. An R -module M is said to be nonnil-coherent if M is finitely generated and every finitely generated ϕ -submodule of M is finitely presented. In particular, every coherent module over a ϕ -ring is nonnil-coherent.

Remark 2.5. Note that for a ϕ -torsion R -module M , we have

$$M \text{ is nonnil-coherent} \Leftrightarrow M \text{ is coherent.}$$

Recall from [18] that an R -module F is said to be ϕ -flat if $f \otimes_R F$ is an R -monomorphism for any R -monomorphism f , where $\text{Coker}(f)$ is a ϕ -torsion R -module. Recall in [3] that a ϕ -ring is said to be nonnil-coherent if every finitely generated nonnil ideal is finitely presented.

Now, we are able to give a new characterization of nonnil-coherent rings.

Theorem 2.6. The following are equivalent for a ϕ -ring R :

- (1) R is a nonnil-coherent ring.
- (2) R is a nonnil-coherent R -module.
- (3) Every finitely generated free R -module is nonnil-coherent.
- (4) Every finitely presented module is nonnil-coherent.
- (5) Every finitely generated ϕ -submodule of a finitely presented R -module is finitely presented.
- (6) Any direct product of ϕ -flat R -modules is ϕ -flat.
- (7) R^I is ϕ -flat for any index set I .

Proof. (6) \Leftrightarrow (7) \Leftrightarrow (1) This follows from [3, Theorem 2.4].

(4) \Rightarrow (5) Straightforward.

(5) \Rightarrow (1) This follows immediately from the fact that every nonnil ideal of R is a ϕ -submodule of R .

(1) \Rightarrow (2) Assume that R is a nonnil-coherent ring and let I be a finitely generated ideal of R such that R/I is ϕ -torsion. If $I \subset \text{Nil}(R)$, then, for any $r \in R \setminus \text{Nil}(R)$, there exists $s \in R \setminus \text{Nil}(R)$ such that $sr \in I \subset \text{Nil}(R)$ since R/I is a ϕ -torsion R -module, a desired contradiction since $\text{Nil}(R)$ is a prime ideal of R . Therefore, I is a nonnil ideal. As R is a nonnil-coherent ring, I is a finitely presented ideal. Therefore, R is a nonnil-coherent R -module.

(2) \Rightarrow (1) Let I be a finitely generated nonnil ideal of R . Since R is a nonnil-coherent module and R/I is ϕ -torsion, I is finitely presented. Therefore, R is a nonnil-coherent ring.

(6) \Rightarrow (3) Let F be a finitely generated free R -module and N be a finitely generated ϕ -submodule of F . Then, F and F/N are finitely presented R -modules. Since R^I is a ϕ -flat module for any index set I , by [18, Theorem 3.2] we obtain the following commutative diagram with exact rows:

$$\begin{array}{ccccccc} 0 & \longrightarrow & N \otimes_R R^I & \longrightarrow & F \otimes_R R^I & \longrightarrow & F/N \otimes_R R^I \longrightarrow 0 \\ & & \downarrow & & \downarrow \cong & & \downarrow \cong \\ 0 & \longrightarrow & N^I & \longrightarrow & F^I & \longrightarrow & (F/N)^I \longrightarrow 0 \end{array}$$

Since the two right vertical arrows are isomorphisms by [17, Lemma I.13.2], we obtain $N \otimes_R R^I \cong N^I$, and so N is a finitely presented R -module by [17, Lemma I.13.2]. Therefore, F is a nonnil-coherent R -module.

(3) \Rightarrow (4) Let M be a finitely presented R -module. Then, $M \cong F/N$, where F is a finitely generated free R -module and N is a finitely generated submodule of F . Let X be a finitely generated ϕ -submodule of M . Then, $X \cong L/N$ such that L is a finitely generated submodule of F with $N \subset L$. Since F is a nonnil-coherent module and $M/X \cong F/L$ is ϕ -torsion, L is a finitely presented R -module. Now, it follows immediately from [19, (4.54) Lemma] that X is finitely presented. Therefore, M is a nonnil-coherent module. \square

The following theorem characterizes when a finitely generated submodule of a nonnil-coherent module is nonnil-coherent.

Theorem 2.7. *Let $R \in \mathcal{H}$ and M be a nonnil-coherent R -module. If N is a finitely generated ϕ -submodule of M , then N is a nonnil-coherent module.*

Before proving Theorem 2.7, we need the following lemma.

Lemma 2.8. [20, Proposition 2.4] *Let $R \in \mathcal{H}$ and $0 \rightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \rightarrow 0$ be an exact sequence of R -modules and R -homomorphisms. Then, M is ϕ -torsion if and only if M' and M'' are ϕ -torsion modules.*

Proof of Theorem 2.7. Let M be a nonnil-coherent R -module and N be a finitely generated ϕ -submodule of M . We claim that N is a nonnil-coherent R -module. Let X be a finitely generated ϕ -submodule of N . Then, the following sequence $0 \rightarrow N/X \rightarrow M/X \rightarrow M/N \rightarrow 0$ is exact. Since M/N and N/X are ϕ -torsion modules, so is M/X by Lemma 2.8. Therefore, X is finitely presented, and so N is a nonnil-coherent module. \square

Corollary 2.9. *If R is a nonnil-coherent ring, then any finitely generated nonnil ideal of R is a nonnil-coherent R -module.*

Proof. This follows from Theorem 2.7. \square

Theorem 2.10. *Let $R \in \mathcal{H}$ and $0 \rightarrow P \rightarrow N \rightarrow M \rightarrow 0$ be an exact sequence of R -modules and R -homomorphisms, where P is a finitely generated R -module. If N is a nonnil-coherent module, then so is M .*

Proof. We can set $M = N/P$. Let X/P be a finitely generated ϕ -submodule of M . Since N is a nonnil-coherent module and X is a finitely generated ϕ -submodule of N , it follows that X is finitely presented. We claim that X/P is a finitely presented R -module. Actually it follows from [19, (4.54) Lemma] that X/P is finitely presented, and so M is a nonnil-coherent module. \square

Corollary 2.11 is a consequence of Theorem 2.10.

Corollary 2.11. *Every factor module M/N of a nonnil-coherent module M by a finitely generated submodule N is also a nonnil-coherent module. In particular, every factor module of a nonnil-coherent ring R by a finitely generated ideal I of R is a nonnil-coherent R -module.*

Proof. Straightforward. \square

Corollary 2.12. *Let $R \in \mathcal{H}$ and M and N be nonnil-coherent modules. Let $f: M \rightarrow N$ be an R -homomorphism. Then:*

- (1) *If $\text{Im}(f)$ is a ϕ -torsion R -module and $\ker(f)$ is finitely generated, then $\ker(f)$ is a nonnil-coherent module.*
- (2) *If $\ker(f)$ is finitely generated, then $\text{Im}(f)$ is a nonnil-coherent module.*

(3) If $\text{Coker}(f)$ is a ϕ -torsion R -module and $\text{Im}(f)$ is finitely generated, then $\text{Im}(f)$ is a nonnil-coherent module.
 (4) If $\text{Im}(f)$ is finitely generated, then $\text{Coker}(f)$ is a nonnil-coherent module.

Proof. By the following two exact sequences $0 \rightarrow \ker(f) \rightarrow M \rightarrow \text{Im}(f) \rightarrow 0$ and $0 \rightarrow \text{Im}(f) \rightarrow N \rightarrow \text{Coker}(f) \rightarrow 0$, the proof is finished using Theorems 2.7 and 2.10. \square

Theorem 2.13. Let $R \in \mathcal{H}$ and $0 \rightarrow P \xrightarrow{f} N \xrightarrow{g} M \rightarrow 0$ be an exact sequence of R -modules and R -homomorphisms. If P and M are nonnil-coherent modules, then so is N .

Proof. Let X be a finitely generated ϕ -submodule of N . Then, we have the following commutative diagram with exact rows:

$$\begin{array}{ccccccc}
 & 0 & & 0 & & 0 & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 0 & \longrightarrow & \ker(g|_X) & \xrightarrow{f} & X & \xrightarrow{g} & g(X) \longrightarrow 0 \\
 & & \downarrow i & & \downarrow j & & \downarrow k \\
 0 & \longrightarrow & P & \xrightarrow{f} & N & \xrightarrow{g} & M \longrightarrow 0
 \end{array}$$

Since X is a finitely generated module, so is $g(X)$. Let $x \in M$. Then, $g(n) = x$ for some $n \in N$. Since N/X is a ϕ -torsion module, $sn \in X$ for some $s \in R \setminus \text{Nil}(R)$, and so $sx \in g(X)$. Therefore, $M/g(X)$ is ϕ -torsion. As M is nonnil-coherent, $g(X)$ is a finitely presented R -module. Therefore, $\ker(g|_X)$ is a finitely generated R -module since X is finitely generated. Let $x \in P$. Then, there exists $t \in R \setminus \text{Nil}(R)$ such that $tf(x) \in X$, and so $tf(x) \in \ker(g|_X)$ since $g(tf(x)) = 0$. We can consider f as an embedding, and so $P/\ker(g|_X)$ is a ϕ -torsion module. Then, $\ker(g|_X)$ is finitely presented since P is a nonnil-coherent module, and so X is a finitely presented R -module. Therefore, N is a nonnil-coherent module. \square

Corollary 2.14. Let $R \in \mathcal{H}$ and $\{M_i\}_{i=1}^n$ be a family of nonnil-coherent modules. Then, $\oplus_{i=1}^n M_i$ is a nonnil-coherent module.

Proof. We prove this by induction on n . Consider the following exact sequence $0 \rightarrow M_1 \rightarrow \oplus_{i=1}^n M_i \rightarrow \oplus_{i=2}^n M_i \rightarrow 0$ and apply Theorem 2.13. \square

Corollary 2.15. Let $R \in \mathcal{H}$ and let M and N be nonnil-coherent submodules of a nonnil-coherent R -module L . If $M + N$ is a ϕ -torsion R -module and $M \cap N$ is finitely generated, then $M + N$ and $M \cap N$ are nonnil-coherent modules.

Proof. We use the exact sequence $0 \rightarrow M \cap N \rightarrow M \oplus N \rightarrow M + N \rightarrow 0$ and Theorems 2.7 and 2.10. \square

Corollary 2.16. Let $R \in \mathcal{H}$ and I be a finitely generated nonnil ideal of R . Then, R is a nonnil-coherent ring if and only if I and R/I are nonnil-coherent R -modules.

Proof. Assume that R is a nonnil-coherent ring and let I be a finitely generated nonnil ideal of R . By Corollary 2.11, R/I is a nonnil-coherent R -module, and so I is a nonnil-coherent R -module by Theorem 2.7.

Conversely, assume that I and R/I are nonnil-coherent R -modules for any finitely generated nonnil ideal I of R . Then, R is a nonnil-coherent ring by Theorem 2.13. \square

Next, Theorem 2.17 gives an analog of the well-known behavior of [5, Theorem 2.2.6].

Theorem 2.17. *Let $R \in \mathcal{H}$ and S be a multiplicative subset of R . If M is a nonnil-coherent R -module, then $S^{-1}M$ is a nonnil-coherent $(S^{-1}R)$ -module.*

Proof. It is clear that $S^{-1}R \in \mathcal{H}$ and $S^{-1}M$ is a finitely generated $(S^{-1}R)$ -module. Let N be an R -module such that $S^{-1}N$ is a ϕ -torsion $(S^{-1}R)$ -module. Then, N is a ϕ -torsion R -module. Indeed, let $n \in N$. Then, there exist $a \in R \setminus \text{Nil}(R)$ and $s \in S$ such that $\frac{a}{s}n = \frac{0}{1}$. Thus, $(ta)n = 0$ for some $t \in R \setminus \text{Nil}(R)$, and so N is a ϕ -torsion R -module. Let X be a finitely generated $(S^{-1}R)$ -submodule of $S^{-1}M$ such that $\frac{S^{-1}M}{X}$ is ϕ -torsion. Then, we can set $X = S^{-1}K$, where K is a finitely generated submodule of M . Therefore, $S^{-1}(M/K)$ is ϕ -torsion, and so M/K is a ϕ -torsion R -module. Hence, K is a finitely presented R -module. Thus, X is a finitely presented $(S^{-1}R)$ -module. Therefore, $S^{-1}M$ is a nonnil-coherent $(S^{-1}R)$ -module. \square

Next, we pay attention to the localization of nonnil-coherent rings. Using Theorem 2.17, we obtain immediately:

Corollary 2.18. *If R is a nonnil-coherent ring and S is a multiplicative subset of R , then $S^{-1}R$ is a nonnil-coherent ring.*

Proof. Straightforward. \square

Theorem 2.19. *Let $f : R \rightarrow T$ be a finite surjective homomorphism of ϕ -rings (i.e., T is a finitely generated R -module). Let M be a finitely generated T -module which is a nonnil-coherent R -module. Then, M is a nonnil-coherent T -module.*

Proof. Let X be a finitely generated T -submodule of M . Then, X is a finitely generated R -module since f is finite. If M/X is a ϕ -torsion T -module, then M/X is a ϕ -torsion R -module, and so X is a finitely presented R -module. Therefore, X is a finitely presented T -module since $X \cong T \otimes_R X$. Hence, M is a nonnil-coherent T -module. \square

Theorem 2.20. *Let $R \in \mathcal{H}$ and I be a finitely generated nil ideal of R . Let M be an (R/I) -module. Then, M is a nonnil-coherent R -module if and only if M is a nonnil-coherent (R/I) -module.*

In order to prove Theorem 2.20, we need the following lemmas.

Lemma 2.21. [5, Theorem 2.1.8] *Let R be a ring and I be a finitely generated ideal of R . Let M be an (R/I) -module. Then, M is a finitely presented R -module if and only if M is a finitely presented (R/I) -module.*

Lemma 2.22. *Let $R \in \mathcal{H}$ and I be a nil ideal of R . Then, $R/I \in \mathcal{H}$.*

Proof. Note that $\text{Nil}(R/I) = \text{Nil}(R)/I$ and $\frac{R/I}{\text{Nil}(R/I)} \cong R/\text{Nil}(R)$ is an integral domain, and so $\text{Nil}(R/I)$ is a prime ideal of R/I . If $\bar{x} \in (R/I) \setminus \text{Nil}(R/I)$, then $x \in R \setminus \text{Nil}(R)$, and so $\text{Nil}(R) \subset Rx$. Therefore, $\text{Nil}(R/I) \subset (R/I)\bar{x}$, as desired. \square

Proof of Theorem 2.20. Assume that M is a nonnil-coherent R -module. Since $R/I \in \mathcal{H}$ by Lemma 2.22, M is a nonnil-coherent (R/I) -module by Theorem 2.19.

Conversely, assume that M is a nonnil-coherent (R/I) -module. Then, M is a finitely generated (R/I) -module, and so M is a finitely generated R -module. Let X be a finitely generated R -submodule of M such that M/X is a ϕ -torsion R -module. Thus, M/X is a ϕ -torsion (R/I) -module, and so X is a finitely presented (R/I) -module. By Lemma 2.21, X is a finitely presented R -module. Therefore, M is a nonnil-coherent R -module. \square

Corollary 2.23. *Let $R \in \mathcal{H}$ and I be a finitely generated nil ideal of R . Then, R/I is a nonnil-coherent ring if and only if R/I is a nonnil-coherent R -module.*

Proof. Straightforward. □

Corollary 2.24. *Let R be a nonnil-coherent ring and I be a finitely generated nil ideal of R . Then, R/I is a nonnil-coherent ring.*

Proof. This follows immediately from Corollaries 2.11 and 2.23. □

Corollary 2.25. *Let $R \in \mathcal{H}$ and I be a finitely generated nil ideal of R . If R/I is a nonnil-coherent ring and I is a nonnil-coherent R -module, then R is a nonnil-coherent ring.*

Proof. This follows directly from Theorem 2.13 and Corollary 2.23. □

3 On nonnil-Noetherian modules

We introduce a new definition of nonnil-Noetherian modules which is different from that in [8]. In [6], an R -module M is said to be Noetherian if every submodule of M is finitely generated.

Definition 3.1. Let $R \in \mathcal{H}$. An R -module M is said to be *nonnil-Noetherian* if every ϕ -submodule of M is finitely generated. In particular, every Noetherian module over a ϕ -ring is nonnil-Noetherian.

Remark 3.2.

(1) Note that for a ϕ -torsion R -module M , we have

$$M \text{ is nonnil-Noetherian} \Leftrightarrow M \text{ is Noetherian.}$$

(2) The definition of nonnil-Noetherian modules in Definition 3.1 is different from that of nonnil-Noetherian modules in [8] by Example 2.2 and that of ϕ -Noetherian modules in [9] by Example 2.3. Although the term “non-Noetherian module” used in [8] is the same as in Definition 3.1, we will still use it in the spirit of [7] and following Theorem 3.3.

Recall that in [7], a ϕ -ring R is said to be nonnil-Noetherian if every nonnil ideal of R is finitely generated, equivalently $R/\text{Nil}(R)$ is a Noetherian domain. The following theorem allows us to see that each nonnil-Noetherian ring is a nonnil-Noetherian module over itself.

Theorem 3.3. *Let R be a ϕ -ring. Then, R is a nonnil-Noetherian ring if and only if R is a nonnil-Noetherian module over itself.*

Proof. Assume that R is a nonnil-Noetherian ring and let I be an ideal of R such that R/I is ϕ -torsion. Then, I is a nonnil ideal of R , and so I is finitely generated since R is nonnil-Noetherian. Therefore, R is a nonnil-Noetherian module over itself.

Conversely, assume that R is a nonnil-Noetherian module over itself and let I be a nonnil ideal of R . Then, R/I is ϕ -torsion, and so I is finitely generated. Therefore, R is a nonnil-Noetherian ring. □

According to [3, Corollary 3.1], a ϕ -ring R is said to be ϕ -coherent if $R/\text{Nil}(R)$ is a coherent domain. From [7, Theorem 2.4], a ϕ -ring R is nonnil-Noetherian if and only if $R/\text{Nil}(R)$ is a Noetherian domain. Therefore, every nonnil-Noetherian ring is ϕ -coherent. The following theorem characterizes when a nonnil-Noetherian ring is nonnil-coherent.

Theorem 3.4. *The following statements are equivalent for a nonnil-Noetherian ring R :*

- (1) R is nonnil-coherent.
- (2) Rs is a finitely presented ideal of R for any $s \in R \setminus \text{Nil}(R)$.
- (3) Every nonnil ideal of R is finitely presented.

Proof. (1) \Rightarrow (3) \Rightarrow (2) They are straightforward.

(2) \Rightarrow (1) Assume that Rs is finitely presented for every $s \in R \setminus \text{Nil}(R)$. Using the exact sequence $0 \rightarrow (0 : s) \rightarrow R \rightarrow Rs \rightarrow 0$, we obtain that $(0 : s)$ is a finitely generated ideal of R . Since R is assumed to be nonnil-Noetherian, and so ϕ -coherent, R is a nonnil-coherent ring by [4, Proposition 1.3]. \square

Recall that a ϕ -ring R is called a *strongly ϕ -ring* if $Z(R) = \text{Nil}(R)$. Strongly ϕ -rings are abundant. Indeed, these rings can be generated from the following pullback introduced by Chang and Kim recently [21]. Let D be a domain with K as its quotient field. Let $K[X]$ be the polynomial ring over K , $n \geq 2$ be an integer and $K[\theta] = K[X]/\langle X^n \rangle$, where $\theta := X + \langle X^n \rangle$. Denote by $i : D \hookrightarrow K$ the natural embedding map and $\pi : K[\theta] \rightarrow K$ a ring homomorphism satisfying $\pi(f) = f(0)$. Consider the pullback of i and π as follows:

$$\begin{array}{ccc} R_n := D + \theta K[\theta] & \longrightarrow & K[\theta] \\ \downarrow & & \downarrow \pi \\ D & \xrightarrow{i} & K \end{array}$$

Then, $R_n = D + \theta K[\theta] = \{f \in K[\theta] | f(0) \in D\}$ is a strongly ϕ -ring.

Corollary 3.5. *If R is a nonnil-Noetherian strongly ϕ -ring, then R is a nonnil-coherent ring.*

Proof. If R is a strongly ϕ -ring, then every principal nonnil ideal is free. Therefore, R is a nonnil-coherent ring if it is nonnil-Noetherian by Theorem 3.4. \square

Theorem 3.6. *Let $0 \rightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \rightarrow 0$ be an exact sequence. If M' and M'' are nonnil-Noetherian modules, then so is M . In addition, if M' is a ϕ -submodule of M , then the converse holds.*

Proof. Assume that M' and M'' are nonnil-Noetherian. Let N be a ϕ -submodule of M . Then, $g(N)$ is a ϕ -submodule of M'' . Indeed, if $x \in M''$, then $g(m) = x$ for some $m \in M$, and so there exists $s \in R \setminus \text{Nil}(R)$ such that $sm \in N$. Thus, $sx \in g(N)$. Therefore, $g(N)$ is a finitely generated submodule of M'' . Set $g(N) = \sum_{i=1}^t Rg(n_i)$, where each $n_i \in N$. Let $n \in N$. Then, $g(n) = \sum_{i=1}^t r_i g(n_i)$ with $r_i \in R$. Thus, $n - \sum_{i=1}^t r_i n_i \in \ker(g) = \text{Im}(f)$, and so $n = f(y) + \sum_{i=1}^t r_i n_i$ for some $y \in M'$. In addition, M' is finitely generated since it is nonnil-Noetherian. Thus, $M' = \sum_{i=t+1}^{t+l} Rn_i$ for some $n_{t+1}, n_{t+2}, \dots, n_{t+l} \in M$, and so there exists $r_{t+1}, r_{t+2}, \dots, r_{t+l} \in R$ such that $f(y) = \sum_{i=t+1}^{t+l} r_i n_i$. Hence, $n = \sum_{i=1}^{t+l} r_i n_i$. Therefore, N is finitely generated, and so M is a nonnil-Noetherian module.

Assume that M is a nonnil-Noetherian module and M' is a ϕ -submodule of M . Let X be a ϕ -submodule of M' . Then, $0 \rightarrow M'/X \rightarrow M/X \rightarrow M'' \rightarrow 0$ is exact with M'/X and $M''\phi$ -torsion, and so X is a ϕ -submodule of M . Thus, X is a finitely generated submodule of M' . Therefore, M' is a nonnil-Noetherian module. Let N be a submodule of M such that $M' \subset N$ and N/M' is a ϕ -submodule of $M'' \cong M/M'$. We claim that N is a ϕ -submodule of M . If $x \in M$, then $s(x + M') = M'$ for some $s \in R \setminus \text{Nil}(R)$ since M/M' is ϕ -torsion, and so $sx \in M' \subset N$. Thus, N is a ϕ -submodule of M . Therefore, N is a finitely generated submodule of M , and so N/M' is a finitely generated submodule of M'' . Therefore, M'' is a nonnil-Noetherian module. \square

Corollary 3.7. *Let $R \in \mathcal{H}$ and M be a nonnil-Noetherian R -module. Then, every ϕ -submodule of M is nonnil-Noetherian.*

Proof. This follows immediately from Theorem 3.6. \square

Corollary 3.8. *Let $R \in \mathcal{H}$ and $\{M_i\}_{1 \leq i \leq n}$ be a family of nonnil-Noetherian modules. Then, $\bigoplus_{i=1}^n M_i$ is a nonnil-Noetherian module.*

Proof. We prove this by induction on n . Consider the following exact sequence $0 \rightarrow M_1 \rightarrow \bigoplus_{i=1}^n M_i \rightarrow \bigoplus_{i=2}^n M_i \rightarrow 0$ and apply Theorem 3.6. \square

Corollary 3.9. *If R is a nonnil-Noetherian ring, then every finitely generated ϕ -torsion module is nonnil-Noetherian (and so is Noetherian).*

Proof. If M is a finitely generated ϕ -torsion R -module, then $M \cong R^{(n)}/N$, where $n \in \mathbb{N}$ and N is a submodule of $R^{(n)}$. Since M is ϕ -torsion, N is a ϕ -submodule of $R^{(n)}$. Using the exact sequence $0 \rightarrow N \rightarrow R^{(n)} \rightarrow M \rightarrow 0$ and Theorem 3.6, we can deduce that M is nonnil-Noetherian. \square

Corollary 3.10. *Let $R \in \mathcal{H}$ and I be a finitely generated nonnil ideal of R . Then, R is a nonnil-Noetherian ring if and only if I and R/I are nonnil-Noetherian R -modules.*

Proof. This follows immediately from Theorem 3.6. \square

Theorem 3.11. *Let $R \in \mathcal{H}$. If M is a nonnil-Noetherian R -module, then every factor module of M is nonnil-Noetherian.*

Proof. Let M be a nonnil-Noetherian module and N be a submodule of M . We claim that M/N is a nonnil-Noetherian module. Let P/N be a ϕ -submodule of M/N , where P is a submodule of M containing N . Since $\frac{M/N}{P/N} \cong \frac{M}{P}$ is a ϕ -torsion R -module, P is finitely generated, and so P/N is a finitely generated submodule of M/N . Therefore, M/N is nonnil-Noetherian. \square

Corollary 3.12. *If R is a nonnil-Noetherian ring and I is an ideal of R , then R/I is a nonnil-Noetherian R -module.*

Proof. This follows immediately from Theorem 3.11. \square

Corollary 3.13. *Let R be a nonnil-Noetherian ring and M be an R -module. Then, M is a nonnil-Noetherian module if and only if M is a finitely generated R -module.*

Proof. If M is a nonnil-Noetherian module, then it is easy to see that M is a finitely generated module. Conversely, if M is a finitely generated module, then M is a factor of $R^{(n)}$, where $n \in \mathbb{N}$. Since $R^{(n)}$ is a nonnil-Noetherian module by Corollary 3.8, M is a nonnil-Noetherian module by Theorem 3.11. \square

Corollary 3.14. *A ring R is nonnil-Noetherian if and only if every ϕ -submodule of a finitely generated R -module is finitely generated.*

Proof. Straightforward. \square

Theorem 3.15 establishes that every finitely generated ϕ -torsion module over a nonnil-Noetherian ring is finitely presented.

Theorem 3.15. *Let R be a nonnil-Noetherian ring and M be a finitely generated ϕ -torsion R -module. Then, M is finitely presented.*

Proof. Let M be a finitely generated ϕ -torsion R -module. Then, there exist $n \in \mathbb{N}$ and a sequence $0 \rightarrow N \rightarrow R^{(n)} \rightarrow M \rightarrow 0$. Since $R^{(n)}$ is a nonnil-Noetherian R -module by Corollary 3.8 and M is a ϕ -torsion module, N is a finitely generated module. Therefore, M is a finitely presented module. \square

Theorem 3.16 establishes that the class of nonnil-Noetherian modules is closed under localizations.

Theorem 3.16. *Let R be a ϕ -ring and S be a multiplicative subset of R . If M is a nonnil-Noetherian R -module, then $S^{-1}M$ is a nonnil-Noetherian $(S^{-1}R)$ -module.*

Proof. Let M be a nonnil-Noetherian R -module and $S^{-1}N$ be a ϕ -submodule of $S^{-1}M$, where N is a submodule of M . Then, N is a ϕ -submodule of M , and so N is a finitely generated R -module. Thus, $S^{-1}N$ is a finitely generated $(S^{-1}R)$ -module. Therefore, $S^{-1}M$ is a nonnil-Noetherian $(S^{-1}R)$ -module. \square

Corollary 3.17. *If R is a nonnil-Noetherian ring and S is a multiplicative subset of R , then $S^{-1}R$ is a nonnil-Noetherian ring.*

Proof. This follows immediately from Theorem 3.16. \square

We end this section by the following theorem.

Theorem 3.18. *Let R be a nonnil-Noetherian ring and I be a nil ideal of R . Then, R/I is a nonnil-Noetherian ring.*

Proof. Let J/I be a nonnil ideal of R/I . Then, $\frac{R/I}{J/I} \cong R/J$ is a ϕ -torsion R -module, and so J is a nonnil ideal of R . As R is nonnil-Noetherian, J is a finitely generated ideal of R , and so J/I is a finitely generated ideal of R/I . Therefore, R/I is nonnil-Noetherian. \square

4 Transfer of nonnil-coherence and nonnil-Noetherianity in trivial ring extensions

Now, we study the transfer of nonnil-coherent rings in the trivial ring extensions. From [1, Corollary 2.4], a trivial ring extension $R \propto M$ is a ϕ -ring if and only if R is a ϕ -ring and M is a ϕ -divisible module (i.e., $sM = M$ for all $s \in R \setminus \text{Nil}(R)$).

Let M be an R -module and $r \in R$. Set $(0 :_M r) := \{m \in M \mid rm = 0\}$. It is easy to verify that $(0 :_M r)$ is a submodule of M such that $(0 : r)M \subset (0 :_M r)$. Therefore, $(0 : r) \propto (0 :_M r)$ is an ideal of $R \propto M$ by [22, Theorem 3.1].

The following theorem characterizes when a trivial ring extension is a nonnil-coherent ring.

Theorem 4.1. *Let $A \in \mathcal{H}$, M be a ϕ -divisible A -module, and set $R := A \propto M$. Then, the following statements are equivalent:*

- (1) R is a nonnil-coherent ring.
- (2) A is a nonnil-coherent ring and $(0 : r) \propto (0 :_M r)$ is a finitely generated ideal of R for each $r \in A \setminus \text{Nil}(A)$.
- (3) A is a nonnil-coherent ring and $R(r, 0)$ is finitely presented for all $r \in A \setminus \text{Nil}(A)$.

Before proving Theorem 4.1, we need the following lemmas:

Lemma 4.2. *Let $A \in \mathcal{H}$ and M be a ϕ -divisible A -module. Let J be an ideal of $R := A \propto M$. Then, J is a nonnil ideal of R if and only if there exists a unique nonnil ideal I of A such that $J = I \propto M$.*

Proof. Assume that J is a nonnil ideal of R . Then, $0 \subset M \subset \text{Nil}(R \subset M) \subset J$, and so $J = I \subset M$ for a unique nonnil ideal I of R by [22, Theorem 3.1].

Conversely, assume that $J = I \subset M$ for a unique nonnil ideal I of A . Then, it is clear that J is a nonnil ideal of R . \square

Lemma 4.3. Let $A \in \mathcal{H}$ and M be a ϕ -divisible A -module. Let $J = I \subset M$ be a nonnil ideal of $R = A \subset M$. Then, J is a finitely generated nonnil ideal of R if and only if I is a finitely generated nonnil ideal of A .

Proof. Assume that I is a finitely generated nonnil ideal of A . Then, $I = \sum_{i=1}^n Aa_i$, where each $a_i \in A$, and we may assume that $a_1 \in A \setminus \text{Nil}(A)$. First, it is easy to see that $\sum_{i=1}^n R(a_i, 0) \subset J$. Conversely, let $(\alpha, \beta) \in J$. Then $\alpha = \sum_{i=1}^n r_i a_i$ for some $r_i \in A$. Since M is ϕ -divisible, $\beta = a_1 v_1$ for some $v_1 \in M$, and so $(\alpha, \beta) = \sum_{i=1}^n (a_i, 0)(r_i, v_i)$, where $v_i = 0$ for all $2 \leq i \leq n$. Therefore, $J \subset \sum_{i=1}^n R(a_i, 0)$, and so $J = \sum_{i=1}^n R(a_i, 0)$ is a finitely generated nonnil ideal. The converse is straightforward. \square

Lemma 4.4. Let $A \in \mathcal{H}$ and M be a ϕ -divisible A -module. Let r be a non-nilpotent element of A and $u \in M$. Then,

$$((0, 0) : (r, u)) = (0 : r) \subset (0 :_M r).$$

Proof. Let $(r, u) \in A \setminus \text{Nil}(A) \subset M$ and $(\alpha, \beta) \in ((0, 0) : (r, u))$. Since M is ϕ -divisible, $u = rv$ for some $v \in M$, and so $(r, u) = (r, 0)(1, v)$.

$$\begin{aligned} (\alpha, \beta) \in ((0, 0) : (r, u)) &\Leftrightarrow (\alpha, \beta)(r, u) = (0, 0) \\ &\Leftrightarrow (\alpha, \beta)(r, 0)(1, v) = (0, 0) \\ &\Leftrightarrow (\alpha r, \alpha rv + \beta r) = (0, 0) \\ &\Leftrightarrow (\alpha, \beta) \in (0 : r) \subset (0 :_M r). \end{aligned}$$

Therefore, $((0, 0) : (r, u)) = (0 : r) \subset (0 :_M r)$. \square

Lemma 4.5. [3, Theorem 2.1] A ϕ -ring R is nonnil-coherent if and only if $(0 : r)$ is a finitely generated ideal for every non-nilpotent element $r \in R$, and the intersection of two finitely generated nonnil ideals of R is a finitely generated nonnil ideal of R .

Proof of Theorem 4.1. (1) \Rightarrow (2) Assume that R is a nonnil-coherent ring. Let I and J be finitely generated nonnil ideals of A . Then, $I \subset M$ and $J \subset M$ are finitely generated nonnil ideals of R by Lemma 4.3. Since R is a nonnil-coherent ring, $(I \subset M) \cap (J \subset M) = (I \cap J) \subset M$ is a finitely generated nonnil ideal of R by Lemma 4.5. Therefore, $I \cap J$ is a finitely generated nonnil ideal of A by Lemma 4.3. Let $r \in A \setminus \text{Nil}(A)$. Then, $(0 : r) \subset (0 :_M r)$ is a finitely generated ideal of R by Lemma 4.4, and so $(0 : r)$ is a finitely generated ideal of A . Therefore, A is a nonnil-coherent ring by Lemma 4.5.

(2) \Rightarrow (1) Assume that A is a nonnil-coherent ring and $(0 : r) \subset (0 :_M r)$ is a finitely generated ideal of R for each $r \in A \setminus \text{Nil}(A)$. Let $I \subset M$ and $J \subset M$ be finitely generated nonnil ideals of R . Then, I and J are finitely generated nonnil ideals of A . Since A is a nonnil-coherent ring, $I \cap J$ is a finitely generated nonnil ideal of A , and so $(I \subset M) \cap (J \subset M) = (I \cap J) \subset M$ is a finitely generated nonnil ideal of R by Lemma 4.3. Let $(r, u) \in R \setminus \text{Nil}(R)$. Then, $((0, 0) : (r, u)) = (0 : r) \subset (0 :_M r)$ is a finitely generated ideal of R by hypothesis. Therefore, R is a nonnil-coherent ring by Lemma 4.5.

(2) \Leftrightarrow (3) Let $r \in A \setminus \text{Nil}(A)$ and $u \in M$. Then, the following sequence $0 \rightarrow ((0, 0) : (r, u)) \rightarrow R \rightarrow R(r, 0) \rightarrow 0$ is exact. Therefore, by Lemma 4.4, $(0 : r) \subset (0 :_M r)$ is a finitely generated ideal of R if and only if $R(r, 0)$ is finitely presented. \square

Corollary 4.6. Let $R = A \subset M$ be a ϕ -ring such that $Z(A) = \text{Nil}(A)$. Then, R is a nonnil-coherent ring if and only if A is a nonnil-coherent ring and $(0 :_M r)$ is a finitely generated A -submodule of M for every $r \in A \setminus \text{Nil}(A)$.

Proof. Let $r \in A \setminus \text{Nil}(A)$. Since $Z(A) = \text{Nil}(A)$, it follows that $(0 : r) = 0$. Therefore, $((0, 0) : (r, u)) = 0 \propto (0 :_M r)$. Now the assertion follows immediately from Theorem 4.1. \square

Corollary 4.7. *Let $R = A \propto M$ be a ϕ -ring such that $Z(A) = \text{Nil}(A)$ and M is a Noetherian A -module. Then, R is a nonnil-coherent ring if and only if A is a nonnil-coherent ring.*

Proof. This follows immediately from Theorem 4.1. \square

For a ring R and an R -module M , set $Z_R(M) := \{r \in R \mid rm = 0 \text{ for some nonzero } m \in M\}$.

Corollary 4.8. *Let $R = A \propto M$ be a ϕ -ring such that $Z(A) = \text{Nil}(A) = Z_A(M)$. Then, R is a nonnil-coherent ring if and only if A is a nonnil-coherent ring.*

Proof. It is easy to see that $(0 : r) = 0$ and $(0 :_M r) = 0$ for each $r \in A \setminus \text{Nil}(A)$. Now the proof follows directly from Theorem 4.1. \square

Example 4.9.

- (1) $\mathbb{Z} \propto \mathbb{Q}$ is a nonnil-coherent ring.
- (2) $\mathbb{Z}/4\mathbb{Z} \propto \mathbb{Z}/2\mathbb{Z}$ is a nonnil-coherent ring.

The following theorem studies the transfer of being a ϕ -coherent ring in trivial extensions.

Theorem 4.10. *Let $A \in \mathcal{H}$ and M be a ϕ -divisible A -module. Then, $A \propto M$ is a ϕ -coherent ring if and only if A is a ϕ -coherent ring.*

Proof. First, note that $\text{Nil}(A \propto M) = \text{Nil}(A) \propto M$, and so $\frac{A \propto M}{\text{Nil}(A \propto M)} \cong A / \text{Nil}(A)$. Therefore, $A \propto M$ is a ϕ -coherent ring if and only if A is a ϕ -coherent ring. \square

Recently, Qi and Zhang [4] provided for the first time an example of a ϕ -coherent ring, which is not nonnil-coherent. Now, we give a concrete example by using Corollary 4.6 and Theorem 4.10.

Example 4.11. Let $E = \bigoplus_{i=1}^{\infty} \mathbb{Q}/\mathbb{Z}$. Then, E is a divisible abelian group. Therefore, $R = \mathbb{Z} \propto E$ is a ϕ -ring. Since

$$(0 :_E 2) = \left\{ \left(\frac{a_i}{b_i} + \mathbb{Z} \right)_{i \in \mathbb{N}^*} \mid a_i \in \mathbb{Z} \text{ and } \gcd(a_i, b_i) = 1, b_i \in \{1, 2\} \forall i \in \mathbb{N}^* \right\},$$

which is an infinitely generated abelian group. Therefore, R is not a nonnil-coherent ring by Corollary 4.6. Note that R is an example of a ϕ -coherent ring, which is not nonnil-coherent by Theorem 4.10.

Now, we study the transfer of nonnil-Noetherian rings in the trivial ring extensions.

Theorem 4.12. *Let $A \in \mathcal{H}$ and M be a ϕ -divisible R -module. Then, $A \propto M$ is a nonnil-Noetherian ring if and only if A is a nonnil-Noetherian ring.*

Proof. $A \propto M$ is nonnil-Noetherian ring if and only if $\frac{A \propto M}{\text{Nil}(A) \propto M} \cong \frac{A}{\text{Nil}(A)}$ is a Noetherian domain and A is a nonnil-Noetherian ring. \square

We give some examples of nonnil-Noetherian extension rings $A \propto M$ that are nonnil-coherent.

Example 4.13. If $R = A \propto M$ is a ϕ -ring such that $Z(A) = \text{Nil}(A) = Z_A(M)$, then for all $r \in A \setminus \text{Nil}(A)$, we obtain $(0 : r) = 0$ and $(0 :_M r) = 0$, and so $(A \propto M)(r, 0) \cong A \propto M$. Therefore, it follows from Theorem 3.4 that $A \propto M$ is nonnil-coherent if it is nonnil-Noetherian.

Example 4.14. Let A be a strongly ϕ -ring and M be a ϕ -torsion-free A -module. If $A \propto M$ is a nonnil-Noetherian ring, then $A \propto M$ is a nonnil-coherent ring.

Proof. Let $(\alpha, m) \in A \propto M$ such that $(\alpha, m)(r, 0) = (0, 0)$. Then, $\alpha r = 0$, and $rm = 0$ and so $(\alpha, m) = (0, 0)$. Thus, $(A \propto M)(r, 0)$ is a finitely generated free ideal. Hence, if $A \propto M$ is a nonnil-Noetherian ring, then $A \propto M$ is a nonnil-coherent ring by Theorem 3.4. \square

Recall that every nonnil-Noetherian ring is ϕ -coherent. The following Example 4.15 gives a ϕ -coherent ring that is not nonnil-Noetherian.

Example 4.15. Let $R := (\mathbb{Z} + X\mathbb{Q}[[X]]) \propto qf(\mathbb{Q}[[X]])$. Then, R is a ϕ -coherent ring that is not nonnil-Noetherian.

Proof. First, it is easy to see that R is a ϕ -ring by [1, Corollary 2.4]. By [23, Theorem 3], $\mathbb{Z} + X\mathbb{Q}[[X]]$ is a coherent domain, and so R is a ϕ -coherent ring by Theorem 4.10. By [23, Theorem 3], $\mathbb{Z} + X\mathbb{Q}[[X]]$ is not a Noetherian domain, and so is not nonnil-Noetherian. Therefore, R is never a nonnil-Noetherian ring by Theorem 4.12. \square

Remark 4.16. Note that the ring R in Example 4.15 is nonnil-coherent since R is a strongly ϕ -ring, and a ϕ -ring A is nonnil-coherent if and only if A is ϕ -coherent and $(0 : a)$ is a finitely generated ideal of A for each $a \in A \setminus \text{Nil}(A)$ ([4, Proposition 1.3]). Using Examples 4.11 and 4.15, we can deduce that the converse of the following implications are not true in general:

$$\text{nonnil-Noetherian} \Rightarrow \text{nonnil-coherent} \Rightarrow \phi\text{-coherent}.$$

5 On transfer nonnil-Noetherian and ϕ -coherent rings in the amalgamation algebra along an ideal

In this section, we study the transfer of nonnil-Noetherian rings in the amalgamation algebra along an ideal. El Khalfi et al. [1] studied when the amalgamation algebra along an ideal is a ϕ -ring, a ϕ -chained ring, and a ϕ -pseudo-valuation ring.

Our next result characterizes when the amalgamation of a ring is a nonnil-Noetherian ring. Before starting this section, we need the following theorems.

Theorem 5.1. [1, Proposition 2.20] *Let $f : A \rightarrow B$ be a ring homomorphism and J be an ideal of B . Then,*

$$\text{Nil}(A \bowtie^f J) = \{(a, f(a) + j) \mid a \in \text{Nil}(A) \text{ and } j \in J \cap \text{Nil}(B)\}.$$

Theorem 5.2. [1, Theorem 2.1] *Let $f : A \rightarrow B$ be a ring homomorphism and J be a nonnil ideal of B . Set $N(J) := J \cap \text{Nil}(B)$. The following statements are equivalent:*

- (1) $R = A \bowtie^f J \in \mathcal{H}$.
- (2) A is an integral domain, $f^{-1}(J) = 0$, and $N(J)$ is a divided prime ideal of $f(A) + J$.

Theorem 5.3 studies the transfer of being a nonnil-Noetherian ring between a ϕ -ring A and an amalgamation algebra $A \bowtie^f J$ along a nonnil ideal J .

Theorem 5.3. Let A and B be two rings and $f : A \rightarrow B$ be a ring homomorphism. Let J be a nonnil ideal of B . Define $\bar{f} : A \rightarrow B/N(J)$ by $\bar{f}(a) = f(a) + N(J)$ for all $a \in A$. If $A \bowtie^f J$ is a ϕ -ring, then the following statements are equivalent:

- (1) $A \bowtie^f J$ is a nonnil-Noetherian ring.
- (2) $A \bowtie^{\bar{f}} \frac{J}{N(J)}$ is a Noetherian domain.
- (3) $f^{-1}(J) = \{0\}$, A , and $\bar{f}(A) + J/N(J)$ are Noetherian domains.

Before proving Theorem 5.3, we establish the following lemmas.

Lemma 5.4. With the notations of Theorem 5.3, we obtain $\bar{f}^{-1}(J/N(J)) = f^{-1}(J)$.

Proof. Straightforward. □

Lemma 5.5. Let $f : A \rightarrow B$ be a ring homomorphism and J be a nonzero ideal of B . Let J' be a subideal of J and I be an ideal of A such that $f(I) \subset J'$. Define $\bar{f} : A/I \rightarrow B/J'$ by $\bar{f}(\bar{a}) = \overline{f(a)}$, where $\bar{a} := a + I$ and $\overline{f(a)} := f(a) + J'$. Then, we have the following ring isomorphism:

$$\frac{A \bowtie^f J}{I \bowtie^f J'} \cong \frac{A \bowtie^{\bar{f}} J}{I \bowtie^{\bar{f}} J'}.$$

Proof. Define

$$\varphi : \begin{aligned} A \bowtie^f J &\longrightarrow \frac{A \bowtie^{\bar{f}} J}{I \bowtie^{\bar{f}} J'} \\ (a, f(a) + j) &\longmapsto (\bar{a}, \overline{f(a)} + \bar{j}). \end{aligned}$$

It is easy to see that φ is a surjective ring homomorphism and for all $(a, f(a) + j) \in A \bowtie^f J$, $(\bar{a}, \overline{f(a)} + \bar{j}) = (\bar{0}, \bar{0})$ if and only if $a \in I$ and $j \in J'$ and $(a, f(a) + j) \in I \bowtie^f J'$. Therefore $\frac{A \bowtie^f J}{I \bowtie^f J'} \cong \frac{A \bowtie^{\bar{f}} J}{I \bowtie^{\bar{f}} J'}$. □

Proof of Theorem 5.3. (1) \Rightarrow (2) Assume that $A \bowtie^f J$ is a nonnil-Noetherian ring. Since $A \bowtie^f J \in \mathcal{H}$, A is an integral domain by Theorem 5.2. Therefore, $\text{Nil}(A \bowtie^f J) = 0 \times N(J)$. As $A \bowtie^f J$ is a nonnil-Noetherian ring, $\frac{A \bowtie^f J}{0 \times N(J)}$ is a Noetherian domain. Therefore, $A \bowtie^{\bar{f}} \frac{J}{N(J)}$ is a Noetherian domain by Lemma 5.5.

(2) \Rightarrow (1) This follows immediately from Lemma 5.5.

(2) \Rightarrow (3) Assume that $A \bowtie^{\bar{f}} J/N(J)$ is a Noetherian domain. By [13, Proposition 5.2] and Lemma 5.4, $f^{-1}(J) = 0$ and $\bar{f}(A) + J/N(J)$ is an integral domain. By [13, Proposition 5.6], A and $\bar{f}(A) + J/N(J)$ are Noetherian domains, as desired.

(3) \Rightarrow (2) By Lemma 5.4, we have $\bar{f}^{-1}(J/N(J)) = 0$. By [13, Proposition 5.1], $\bar{f}(A) + J/N(J) \cong A \bowtie^{\bar{f}} J/N(J)$, which is a Noetherian domain, as desired. □

Recall from [1, Corollary 2.6] that a polynomial ring $R[X]$ is a ϕ -ring if and only if R is an integral domain.

Theorem 5.6. Let R be an integral domain. Then, $R[X]$ is a nonnil-Noetherian ring if and only if $R[X]$ is a Noetherian domain.

Proof. By [1, Corollary 2.6], $R[X]$ is a ϕ -ring and $R[X] \cong R \bowtie^j J$, where $J = XR[X]$ and $j : R \hookrightarrow R[X]$. Since $J \not\subset \text{Nil}(R[X])$, it follows that $R[X]$ is a nonnil-Noetherian ring if and only if $R \bowtie^j J$ is a Noetherian domain by Theorem 5.3. □

Corollary 5.7. *Let A be a ring and J be a nonnil ideal of A . Assume that $A \bowtie J \in \mathcal{H}$. Then, $A \bowtie J$ is never a nonnil-Noetherian ring.*

Proof. Assume, on the contrary, that $A \bowtie J$ is a nonnil-Noetherian ring. Then, $A \bowtie J / N(J)$ is a Noetherian domain, and so A is a Noetherian domain with $J = N(J)$ by [13, Remark 5.3]. Therefore, $J \subset \text{Nil}(A)$, a desired contradiction. \square

Theorem 5.8 studies the transfer of being a nonnil-Noetherian ring between a ϕ -ring A and an amalgamation algebra $A \bowtie^f J$ along a nil ideal J .

Theorem 5.8. *Let A and B be two rings and $f : A \longrightarrow B$ be a ring homomorphism. Let J be a nil ideal of B . Assume that $A \bowtie^f J$ is a ϕ -ring. Then, $A \bowtie^f J$ is a nonnil-Noetherian ring if and only if A is a nonnil-Noetherian ring.*

Proof. Note that $J \subset \text{Nil}(B)$, and thus $N(J) = J$. So $\text{Nil}(A \bowtie^f J) = \text{Nil}(A) \bowtie^f J$. Therefore, $A \bowtie^f J$ is a nonnil-Noetherian ring if and only if $\frac{A \bowtie^f J}{\text{Nil}(A) \bowtie^f J}$ is a Noetherian domain, and $\frac{A}{\text{Nil}(A)}$ is a Noetherian domain, and A is a nonnil-Noetherian ring. \square

Example 5.9. $R = \mathbb{Z}[X] \cong qf(\mathbb{Z}[X])$ is a nonnil-Noetherian ring that is not a Noetherian ring.

Now, we study the transfer of being ϕ -coherent rings in the amalgamation algebra along an ideal.

Theorem 5.10. *Let A and B be two rings and $f : A \longrightarrow B$ be a ring homomorphism. Let J be a nonnil ideal of B . Define $\bar{f} : A \longrightarrow B / N(J)$ by $\bar{f}(a) = f(a) + N(J)$ for any $a \in A$. Assume that $A \bowtie^f J$ is a ϕ -ring. Then, the following statements are equivalent:*

- (1) $A \bowtie^f J$ is a ϕ -coherent ring.
- (2) $A \bowtie^{\bar{f}} \frac{J}{N(J)}$ is a coherent domain.
- (3) $f^{-1}(J) = \{0\}$ and $\bar{f}(A) + J / N(J)$ is a coherent domain.

Proof. (1) \Rightarrow (2) Assume that $A \bowtie^f J$ is a ϕ -coherent ring. Since $A \bowtie^f J \in \mathcal{H}$, it follows that A is an integral domain by Theorem 5.2, and so $\text{Nil}(A \bowtie^f J) = 0 \times N(J)$. As $A \bowtie^f J$ is a ϕ -coherent ring, $\frac{A \bowtie^f J}{0 \times N(J)}$ is a coherent domain. Therefore, $A \bowtie^{\bar{f}} \frac{J}{N(J)}$ is a coherent domain by Lemma 5.5.

(2) \Rightarrow (1) This follows directly from Lemma 5.5.

(2) \Rightarrow (3) Assume that $A \bowtie^{\bar{f}} J / N(J)$ is a coherent domain. From [13, Proposition 5.2] and Lemma 5.4, $f^{-1}(J) = 0$ and $\bar{f}(A) + J / N(J)$ is an integral domain. From [13, Proposition 5.1], $\bar{f}(A) + J / N(J) \cong A \bowtie^{\bar{f}} J / N(J)$, as desired.

(3) \Rightarrow (2) By Lemma 5.4 we have $\bar{f}^{-1}(J / N(J)) = 0$ and from [13, Proposition 5.1], we obtain $\bar{f}(A) + J / N(J) \cong A \bowtie^{\bar{f}} J / N(J)$, which is a coherent domain, as desired. \square

Corollary 5.11. *Let R be an integral domain. Then, $R[X]$ is a ϕ -coherent ring if and only if $R[X]$ is a coherent domain.*

Proof. By [1, Corollary 2.6], we have that $R[X]$ is a ϕ -ring and $R[X] \cong R \bowtie^j J$, where $J = XR[X]$ and $j : R \hookrightarrow R[X]$. Since $J \not\subset \text{Nil}(R[X])$, it follows that $R[X]$ is a ϕ -coherent ring if and only if $R \bowtie^j J$ is a coherent domain by Theorem 5.10. \square

Corollary 5.12 studies the transfer of being a nonnil-coherent ring between a ϕ -ring A and an amalgamation algebra $A \bowtie^f J$ along a nonnil ideal J .

Corollary 5.12. *Let A and B be two rings and $f : A \rightarrow B$ be a ring homomorphism. Let J be a nonnil ideal of B . Define $\bar{f} : A \rightarrow B/N(J)$ by $\bar{f}(a) = f(a) + N(J)$ for any $a \in A$. Assume $A \bowtie^f J$ is a ϕ -ring. Then, the following statements are equivalent:*

- (1) $A \bowtie^f J$ is a nonnil-coherent ring,
- (2) The following conditions hold:
 - (a) $f^{-1}(J) = \{0\}$,
 - (b) $\bar{f}(A) + J/N(J)$ is a coherent domain.
 - (c) $(A \bowtie^f J)(r, f(r) + j)$ is a finitely presented ideal for any non-nilpotent element $(r, f(r) + j)$ of $A \bowtie^f J$.

Proof. This follows immediately from [4, Proposition 1.3] and Theorem 5.10 □

Theorem 5.13 studies the transfer of being a ϕ -coherent ring between a ϕ -ring A and an amalgamation algebra $A \bowtie^f J$ along a nil ideal J .

Theorem 5.13. *Let A and B be two rings and $f : A \rightarrow B$ be a ring homomorphism. Let J be a nil ideal of B . Assume that $A \bowtie^f J$ is a ϕ -ring. Then, $A \bowtie^f J$ is a ϕ -coherent ring if and only if A is a ϕ -coherent ring.*

Proof. Since $J \subset \text{Nil}(B)$, we have $N(J) = J$. It is easy to see that $\text{Nil}(A \bowtie^f J) = \text{Nil}(A) \bowtie^f J$. Therefore, $A \bowtie^f J$ is a ϕ -coherent ring, $\frac{A \bowtie^f J}{\text{Nil}(A) \bowtie^f J}$ is a coherent domain, $\frac{A}{\text{Nil}(A)}$ is a coherent domain, and A is a ϕ -coherent ring. □

Corollary 5.14 studies the transfer of being a nonnil-coherent ring between a ϕ -ring A and an amalgamation algebra $A \bowtie^f J$ along a nil ideal J .

Corollary 5.14. *Let A and B be two rings and $f : A \rightarrow B$ be a ring homomorphism. Let J be a nil ideal of B . Assume that $A \bowtie^f J$ is a ϕ -ring. Then, the following are equivalent:*

- (1) $A \bowtie^f J$ is a nonnil-coherent ring.
- (2) A is a ϕ -coherent ring and $(A \bowtie^f J)(r, f(r) + j)$ is a finitely presented ideal for any non-nilpotent element $(r, f(r) + j)$ of $A \bowtie^f J$.

Proof. This follows immediately from [4, Proposition 1.3] and Theorem 5.13. □

Acknowledgements: We would like to thank the reviewers for their valuable comments and suggestions that significantly improved our manuscript.

Funding information: H.K. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3047469).

Author contributions: Y.E.H. and N.M. conceived of the presented idea. All authors developed the theory, discussed the results, contributed to the final manuscript.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] A. El Khalfi, H. Kim, and N. Mahdou, *Amalgamated algebras issued from ϕ -chained rings and ϕ -pseudo-valuation rings*, Bull. Iranian Math. Soc. **47** (2021), no. 5, 1599–1609, DOI: <https://doi.org/10.1007/s41980-020-00461-y>.
- [2] M. Tamekkante, K. Louartiti, and M. Chhiti, *Chain conditions in amalgamated algebras along an ideal*, Arab. J. Math. **2** (2013), no. 4, 403–408, DOI: <https://doi.org/10.1007/s40065-013-0075-0>.
- [3] K. Bacem and B. Ali, *Nonnil-coherent rings*, Beitr. Algebra Geom. **57** (2016), no. 2, 297–305, DOI: <http://doi.org/10.1007/s13366-015-0260-8>.
- [4] W. Qi and X. Zhang, *Some remarks on nonnil-coherent rings and ϕ -IF rings*, J. Algebra Appl. **21** (2022), no. 11, 2250211, DOI: <https://doi.org/10.1142/S0219498822502115>.
- [5] S. Glaz, *Commutative coherent rings*, Lecture Notes in Mathematics, Vol. 1371, Springer-Verlag, Berlin, Heidelberg, 1989, DOI: <https://doi.org/10.1007/BFb0084570>.
- [6] F. Wang and H. Kim, *Foundations of Commutative Rings and Their Modules*, Algebra and Applications, Springer, Singapore, 2016, DOI: <https://doi.org/10.1007/978-981-10-3337-7>.
- [7] A. Badawi, *On Nonnil-Noetherian rings*, Comm. Algebra **31** (2003), no. 4, 1669–1677, DOI: <http://doi.org/10.1081/AGB-120018502>.
- [8] A. Yousefian Darani, *Nonnil-Noetherian modules over commutative rings*, J. Algebr. Syst. **3** (2015), no. 2, 201–210, DOI: <https://doi.org/10.22044/jas.2015.618>.
- [9] M. Rahmatinia and A. Yousefian Darani, *Noetherian modules with prime nilradical*, Palest. J. Math. **9** (2020), no. 1, 112–117.
- [10] J. A. Huckaba, *Commutative rings with zero divisors*, Pure and Applied Mathematics: A Series of Monographs and Textbooks, Marcel Dekker, New York, 1988.
- [11] C. Bakkari, S. Kabbaj, and N. Mahdou, *Trivial extensions defined by Prüfer conditions*, J. Pure Appl. Algebra **214** (2010), no. 1, 53–60, DOI: <http://doi.org/10.1016/j.jpaa.2009.04.011>.
- [12] S. E. Kabbaj, *Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey*, Moroccan J. Algebra Geometry Appl. **1** (2022), no. 1, 1–17.
- [13] M. D'Anna, C. A. Finocchiaro, and M. Fontana, *Amalgamated algebras along an ideal*, In: M. Fontana, S. Kabbaj, B. Olberding, and I. Swanson (eds.) *Commutative Algebra and Applications: Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications*, De Gruyter, Berlin, New York, 2009, pp. 155–172, DOI: <http://doi.org/10.1515/9783110213188.155>.
- [14] M. D'Anna, C. A. Finocchiaro, and M. Fontana, *Properties of chains of prime ideals in amalgamated algebras along an ideal*, J. Pure Appl. Algebra **214** (2010), no. 9, 1633–1641, DOI: <http://doi.org/10.1016/j.jpaa.2009.12.008>.
- [15] M. D'Anna and M. Fontana, *An amalgamated duplication of a ring along an ideal: the basic properties*, J. Algebra Appl. **6** (2007), no. 3, 443–459, DOI: <http://doi.org/10.1142/S0219498807002326>.
- [16] R. Gilmer, *Multiplicative Ideal Theory*, Vol. 90, Queen's University, Kingston, 1992.
- [17] B. Stenström, *Rings of quotients: An introduction to methods of ring theory*, Grundlehren der mathematischen Wissenschaften, vol. 217, Springer-Verlag Berlin, Heidelberg, 1975, DOI: <https://doi.org/10.1007/978-3-642-66066-5>.
- [18] W. Zhao, F. Wang, and G. Tang, *On ϕ -von Neumann regular rings*, J. Korean Math. Soc. **50** (2013), no. 1, 219–229, DOI: <https://doi.org/10.4134/JKMS.2013.50.1.219>.
- [19] T. Y. Lam, *Lectures on modules and rings*, Graduate Texts in Mathematics, Vol. 189, Springer New York, NY, 1999, DOI: <https://doi.org/10.1007/978-1-4612-0525-8>.
- [20] W. Zhao, *On ϕ -flat modules and ϕ -Prüfer rings*, J. Korean Math. Soc. **55** (2018), no. 5, 1221–1233, DOI: <https://doi.org/10.4134/JKMS.j170667>.
- [21] G. W. Chang and H. Kim, *Prüfer rings in a certain pullback*, Comm. Algebra, DOI: <https://doi.org/10.1080/00927872.2022.2149766>.
- [22] D. D. Anderson and W. Winders, *Idealization of a module*, J. Commut. Algebra, **1** (2009), no. 1, 3–56, DOI: <http://doi.org/10.1216/JCA-2009-1-1-3>.
- [23] J. W. Brewer and E. A. Rutter, *$D + M$ constructions with general overrings*, Michigan Math. J. **23** (1976), no. 1, 33–42, DOI: <http://doi.org/10.1307/mmj/1029001619>.