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1 Introduction

All rings considered in this article are assumed to be commutative with non-zero identity and prime
nilradical. We use Nil(R) to denote the set of nilpotent elements of R and Z(R), the set of zero-divisors of
R. A ring with Nil(R) being divided prime (i.e., Nil(R) c xR for all x € R\Nil(R)) is called a ¢-ring. El Khalfi
et al. [1], and Chhiti et al. [2] studied when the amalgamation algebra along an ideal is a ¢-ring. Let H be
the set of all rings with divided prime nilradical. A ring R is called a strongly ¢-ring if R € H and
Z(R) = Nil(R). Let R be a ring and M be an R-module; we define

¢-tor(M) = {x e M|sx =0 forsome s € R\Nil(R)}.

If p-tor(M) = M, then M is called a ¢p-torsion module, and if ¢-tor(M) = 0, then M is called a ¢-torsion-free
module. It is worth noting that in the language of torsion theory, the class ¥ of all ¢-torsion modules is
a (hereditary) torsion class, whereas ¥ is closed under (submodules,) direct sums, epimorphic images,
and extensions. An ideal I of R is said to be nonnil if I ¢ Nil(R). An R-module M is said to be ¢-divisible
if M = sM for all s € R\Nil(R).

Among the many recent generalizations of the concept of a coherent ring in the literature, we can find
the following: due to Bacem and Ali [3], a ¢-ring R is called ¢-coherent if R /Nil(R) is a coherent domain (3,
Corollary 3.1]. A ¢-ring R is said to be nonnil-coherent if every finitely generated nonnil ideal is finitely
presented, which is equivalent to saying that R is ¢p-coherent and (O : r) is a finitely generated ideal of R for
each r € R\Nil(R), where (0 : r) = {x € R|rx = 0} [4, Proposition 1.3]. In [5], an R-module M is said to be
coherent if M is a finitely generated R-module and every finitely generated submodule of M is a finitely
presented R-module. In [6], an R-module M is said to be Noetherian if every submodule of M is finitely
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generated. In [7], Badawi introduced and studied a new class of ¢-rings, which are said to be nonnil-
Noetherian. A ¢-ring R is said to be nonnil-Noetherian if every nonnil ideal of R is finitely generated, which
is equivalent to saying that R /Nil(R) is a Noetherian domain ([7, Theorem 2.4]). In 2015, Yousefian Darani
[8] introduced a new class of modules that is closely related to the class of Noetherian modules. An
R-module M with Nil(M) := Nil(R)M, a divided prime submodule (i.e., Nil(M), is a prime submodule of M
and comparable with each submodule of M) is said to be nonnil-Noetherian if every nonnil submodule N of M
(i.e., N ¢ Nil(M)) is finitely generated. In 2020, Yousefian Darani and Rahmatinia [9] introduced and studied
¢-Noetherian modules as a new class of Noetherian modules. A module M is said to be ¢-Noetherian if Nil(M)
is divided prime and each submodule that properly contains Nil(M) is finitely generated.

Let R be a ring and E an R-module. Then R « E, the trivial ring extension of R by E, is the ring whose
additive structure is that of the external direct sum R & E and whose multiplication is defined by
(a, e)b,f) = (ab, af + be) for all a, b € R and all e, f € E (this construction is also known by other ter-
minologies and other notations, such as the idealization R(+)E) (see [5,10-12]).

Let A and B be two rings, let J be an ideal of B and let f: A — B be a ring homomorphism. In this
setting, we can consider the following subring of A x B :

Ax J={a, f(@)+]lacAje]}

called the amalgamation of A with B along J with respect to f (introduced and studied by D’Anna et al.
[13,14]). This construction is a generalization of the amalgamated duplication of a ring along an ideal
(introduced and studied by D’Anna and Fontana [15] and denoted by A x I).

This article consists of five sections including an Introduction. In Section 2, we introduce and study a
new class of modules over a ¢p-ring R which are called nonnil-coherent modules. Let M be an R-module and
N be a submodule of M. Then, N is said to be a ¢-submodule of M if M /N is a ¢-torsion module (see
Definition 2.1). Using Definition 2.1, an R-module M is said to be nonnil-coherent if M is finitely generated
and each finitely generated ¢-submodule of M is finitely presented (see Definition 2.4). We give some
properties that characterize these modules. In Section 3, we introduce and study another definition of
nonnil-Noetherian modules that is different from the definition of [8,9]. An R-module M is said to be
nonnil-Noetherian if M is a finitely generated module and every ¢-submodule of M is finitely generated
(see Definition 3.1). Next, we give some properties that characterize these modules. In Section 4, we study
the possible transfer of the properties of nonnil-coherent rings and nonnil-Noetherian rings in trivial ring
extensions. In the last section, we study the possible transfer of the properties of being ¢-coherent rings and
nonnil-Noetherian rings in an amalgamation algebra along an ideal.

For any undefined terminology and notation, the reader is referred to [5,6,16,17]. Throughout this
article, if S is a multiplicative subset of a ring R, then we assume that S n Nil(R) = @.

2 On nonnil-coherent modules

In this section, we introduce and study a new class of modules over a ¢-ring R, which are called nonnil-
coherent modules. Recall that in [5], an R-module M is said to be coherent if M is finitely generated and
every finitely generated submodule is finitely presented.

Recall that an R-module M is said to be ¢-torsion if, for all x € M, there exists s € R\Nil(R) such
that sx = 0.

Definition 2.1. Let R € H and M be an R-module. A submodule N of M is said to be a ¢p-submodule if M/N
is a ¢p-torsion module.

Example 2.2. A nonnil submodule is not in general a ¢p-submodule. For example, set R := Z, which is a
¢-ring, and M = C[X] as an R-module. It is easy to see that every nonzero subgroup N of M is a nonnil
submodule, in particular, the subgroup N = Q[X] is a nonnil submodule of M. But for any nonzero s € Z,
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we obtain si ¢ N. Hence, N is never a ¢-submodule of M. Therefore, we deduce that the class of nonnil-
submodules of an R-module is different from the class of ¢-submodules of that R-module.

There is a natural question: If R is a ¢p-ring, then is every submodule N of an R-module M (with Nil(M)
being prime divided) such that N contains properly Nil(M) a ¢p-submodule of M? The following example
shows that the answer to this question is negative.

Example 2.3. Let R=7Z, M = C, and N = Q. Then, Nil(M) = 0 is a divided prime submodule of M and N
properly contains Nil(M), but C /Q is never a torsion abelian group. Therefore, Q is not a ¢-subgroup of C.

Definition 2.4 allows us to generalize the definition of coherent modules over a ¢-ring.

Definition 2.4. Let R € H . An R-module M is said to be nonnil-coherent if M is finitely generated and every
finitely generated ¢p-submodule of M is finitely presented. In particular, every coherent module over
a ¢-ring is nonnil-coherent.

Remark 2.5. Note that for a ¢-torsion R-module M, we have
M is nonnil-coherent & M iscoherent.

Recall from [18] that an R-module F is said to be ¢-flat if f®z F is an R-monomorphism for any
R-monomorphism f, where Coker(f) is a ¢-torsion R-module. Recall in [3] that a ¢-ring is said to be
nonnil-coherent if every finitely generated nonnil ideal is finitely presented.

Now, we are able to give a new characterization of nonnil-coherent rings.

Theorem 2.6. The following are equivalent for a ¢-ring R:

(1) R is a nonnil-coherent ring.

(2) R is a nonnil-coherent R-module.

(3) Every finitely generated free R-module is nonnil-coherent.

(4) Every finitely presented module is nonnil-coherent.

(5) Every finitely generated ¢-submodule of a finitely presented R-module is finitely presented.
(6) Any direct product of ¢-flat R-modules is ¢-flat.

(7) R!is ¢-flat for any index set I.

Proof. (6) & (7) © (1) This follows from [3, Theorem 2.4].

(4) = (5) Straightforward.

(5) = (1) This follows immediately from the fact that every nonnil ideal of R is a ¢p-submodule of R.

(1) = (2) Assume that R is a nonnil-coherent ring and let I be a finitely generated ideal of R such that
R/I is ¢-torsion. If I ¢ Nil(R), then, for any r € R\Nil(R), there exists s € R\Nil(R) such that sr € I c Nil(R)
since R/I is a ¢-torsion R-module, a desired contradiction since Nil(R) is a prime ideal of R. Therefore, I is
anonnil ideal. As R is a nonnil-coherent ring, I is a finitely presented ideal. Therefore, R is a nonnil-coherent
R-module.

(2) = (1) Let I be a finitely generated nonnil ideal of R. Since R is a nonnil-coherent module and R/I
is ¢-torsion, I is finitely presented. Therefore, R is a nonnil-coherent ring.

(6) = (3) Let F be a finitely generated free R-module and N be a finitely generated ¢p-submodule of F.
Then, F and F/N are finitely presented R-modules. Since R! is a ¢-flat module for any index set I,
by [18, Theorem 3.2] we obtain the following commutative diagram with exact rows:

0 - N®rRl — For Rl — F/N®r Rl — 0

I

0 NI FI (F/N)YI —— 0
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Since the two right vertical arrows are isomorphisms by [17, Lemma 1.13.2], we obtain N ® R' = N/,
and so N is a finitely presented R-module by [17, Lemma 1.13.2]. Therefore, F is a nonnil-coherent R-module.

(3) = (4) Let M be a finitely presented R-module. Then, M = F /N, where F is a finitely generated free
R-module and N is a finitely generated submodule of F. Let X be a finitely generated ¢-submodule of M.
Then, X = L /N such that L is a finitely generated submodule of F with N c L. Since F is a nonnil-coherent
module and M /X = F/L is ¢-torsion, L is a finitely presented R-module. Now, it follows immediately from
[19, (4.54) Lemma] that X is finitely presented. Therefore, M is a nonnil-coherent module. (|

The following theorem characterizes when a finitely generated submodule of a nonnil-coherent module
is nonnil-coherent.

Theorem 2.7. Let R € H and M be a nonnil-coherent R-module. If N is a finitely generated ¢-submodule of M,
then N is a nonnil-coherent module.

Before proving Theorem 2.7, we need the following lemma.

Lemma 2.8. [20, Proposition 2.4] Let R € H and 0 — M’ L M5 M" = 0 be an exact sequence of R-mod-
ules and R-homomorphisms. Then, M is ¢-torsion if and only if M' and M" are ¢-torsion modules.

Proof of Theorem 2.7. Let M be a nonnil-coherent R-module and N be a finitely generated ¢p-submodule of
of M. We claim that N is a nonnil-coherent R-module. Let X be a finitely generated ¢-submodule of N.
Then, the following sequence 0 - N /X — M/X — M/N — 0 is exact. Since M /N and N /X are ¢-torsion
modules, so is M /X by Lemma 2.8. Therefore, X is finitely presented, and so N is a nonnil-coherent
module. O

Corollary 2.9. If R is a nonnil-coherent ring, then any finitely generated nonnil ideal of R is a nonnil-coherent
R-module.

Proof. This follows from Theorem 2.7. O

Theorem 2.10. Let R € ‘H and 0 - P - N — M — 0 be an exact sequence of R-modules and R-homomor-
phisms, where P is a finitely generated R-module. If N is a nonnil-coherent module, then so is M.

Proof. We can set M = N /P. Let X /P be a finitely generated ¢p-submodule of M. Since N is a nonnil-
coherent module and X is a finitely generated ¢p-submodule of N, it follows that X is finitely presented.
We claim that X /P is a finitely presented R-module. Actually it follows from [19, (4.54) Lemma] that X /P
is finitely presented, and so M is a nonnil-coherent module. O

Corollary 2.11 is a consequence of Theorem 2.10.

Corollary 2.11. Every factor module M / N of a nonnil-coherent module M by a finitely generated submodule N
is also a nonnil-coherent module. In particular, every factor module of a nonnil-coherent ring R by a finitely
generated ideal I of R is a nonnil-coherent R-module.

Proof. Straightforward. O

Corollary 2.12. Let R € ‘H and M and N be nonnil-coherent modules. Let f: M — N be an R-homo-
morphism. Then:

(1) IfIm(f) is a ¢-torsion R-module and ker(f) is finitely generated, then ker(f) is a nonnil-coherent module.
(2) Ifker(f) is finitely generated, then Im(f) is a nonnil-coherent module.
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(3) If Coker(f) is a ¢-torsion R-module and Im(f) is finitely generated, then Im(f) is a nonnil-coherent
module.
(4) IfIm(f) is finitely generated, then Coker(f) is a nonnil-coherent module.

Proof. By the following two exact sequences 0 — ker(f) » M — Im(f) - 0 and 0 — Im(f) > N —
Coker(f) — 0, the proof is finished using Theorems 2.7 and 2.10. O

Theorem 2.13. Let R € H and 0 — P L N2 M — 0 be an exact sequence of R-modules and R-homomor-
phisms. If P and M are nonnil-coherent modules, then so is N.

Proof. Let X be a finitely generated ¢-submodule of N. Then, we have the following commutative diagram
with exact rows:

0 0
0 —— ker(g X x 2 9(X) 0
l )
g
0 N M 0

Since X is a finitely generated module, so is g(X). Let x € M. Then, g(n) = x for somen € N. Since N/X
is a ¢-torsion module, sn € X for some s € R\Nil(R), and so sx € g(X). Therefore, M /g(X) is ¢-torsion.
As M is nonnil-coherent, g(X) is a finitely presented R-module. Therefore, ker(gy) is a finitely generated
R-module since X is finitely generated. Let x € P. Then, there exists t € R\Nil(R) such that tf(x) € X,
and so tf(x) € ker(gy) since g(tf(x)) = 0. We can consider f as an embedding, and so P/ ker(gy) is
a ¢-torsion module. Then, ker(g| x) is finitely presented since P is a nonnil-coherent module, and so X is
a finitely presented R-module. Therefore, N is a nonnil-coherent module. O

Corollary 2.14. Let R € H and {M}L, be a family of nonnil-coherent modules. Then, &% M; is a nonnil-
coherent module.

Proof. We prove this by induction on n. Consider the following exact sequence 0 — M; — &' M; —
o ,M; — 0 and apply Theorem 2.13. O

Corollary 2.15. Let R € H and let M and N be nonnil-coherent submodules of a nonnil-coherent R-module L.
IfM + N is a ¢-torsion R-module and M n N is finitely generated, then M + N and M n N are nonnil-coherent
modules.

Proof. We use the exact sequence0 - M NN —> Me& N — M+ N — 0 and Theorems 2.7 and 2.10. O

Corollary 2.16. Let R € H and I be a finitely generated nonnil ideal of R. Then, R is a nonnil-coherent ring
if and only if I and R /1 are nonnil-coherent R-modules.

Proof. Assume that R is a nonnil-coherent ring and let I be a finitely generated nonnil ideal of R.
By Corollary 2.11, R /I is a nonnil-coherent R-module, and so I is a nonnil-coherent R-module by Theorem 2.7.

Conversely, assume that I and R/I are nonnil-coherent R-modules for any finitely generated nonnil
ideal I of R. Then, R is a nonnil-coherent ring by Theorem 2.13. O

Next, Theorem 2.17 gives an analog of the well-known behavior of [5, Theorem 2.2.6].
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Theorem 2.17. Let R € H and S be a multiplicative subset of R. If M is a nonnil-coherent R-module, then S™'M
is a nonnil-coherent (S~'R)-module.

Proof. It is clear that SR € H and S~'M is a finitely generated (S"'R)-module. Let N be an R-module such
that S~IN is a ¢»-torsion (S~'R)-module. Then, N is a ¢-torsion R-module. Indeed, letn € N. Then, there exist

a € R\Nil(R) and s € S such that %% = %. Thus, (ta)n = 0 for some t € R\Nil(R), and so N is a ¢-torsion

R-module. Let X be a finitely generated (S~'R)-submodule of S™'M such that % is ¢p-torsion. Then, we can

set X = S7IK, where K is a finitely generated submodule of M. Therefore, S~I(M/K) is ¢-torsion, and so M/K
is a ¢-torsion R-module. Hence, K is a finitely presented R-module. Thus, X is a finitely presented
(57'R)-module. Therefore, S'M is a nonnil-coherent (S~'R)-module. O

Next, we pay attention to the localization of nonnil-coherent rings. Using Theorem 2.17, we obtain
immediately:

Corollary 2.18. If R is a nonnil-coherent ring and S is a multiplicative subset of R, then SR is a nonnil-
coherent ring.

Proof. Straightforward. O

Theorem 2.19. Let f: R — T be a finite surjective homomorphism of ¢-rings (i.e., T is a finitely generated
R-module). Let M be a finitely generated T-module which is a nonnil-coherent R-module. Then, M is a nonnil-
coherent T-module.

Proof. Let X be a finitely generated T-submodule of M. Then, X is a finitely generated R-module since f is
finite. If M /X is a ¢-torsion T-module, then M /X is a ¢-torsion R-module, and so X is a finitely presented
R-module. Therefore, X is a finitely presented T-module since X = T ®g X. Hence, M is a nonnil-coherent
T-module. O

Theorem 2.20. Let R € H and I be a finitely generated nil ideal of R. Let M be an (R /I)-module. Then, M is
a nonnil-coherent R-module if and only if M is a nonnil-coherent (R /I)-module.

In order to prove Theorem 2.20, we need the following lemmas.

Lemma 2.21. [5, Theorem 2.1.8] Let R be a ring and I be a finitely generated ideal of R. Let M be an
(R/I)-module. Then, M is a finitely presented R-module if and only if M is a finitely presented (R /I)-module.

Lemma 2.22. Let R € H and I be a nil ideal of R. Then, R/I € H .

Proof. Note that Nil(R/I) = Nil(R)/I and ﬁgﬂ) = R/Nil(R) is an integral domain, and so Nil(R/I) is a prime

ideal of R/I. If x € (R/[)\Nil(R/I), then x € R\Nil(R), and so Nil(R) c Rx. Therefore, Nil(R/I) c (R/I)x,
as desired. O

Proof of Theorem 2.20. Assume that M is a nonnil-coherent R-module. Since R/I € H by Lemma 2.22, M is
a nonnil-coherent (R/I)-module by Theorem 2.19.

Conversely, assume that M is a nonnil-coherent (R/I)-module. Then, M is a finitely generated
(R/I)-module, and so M is a finitely generated R-module. Let X be a finitely generated R-submodule of
M such that M/X is a ¢-torsion R-module. Thus, M/X is a ¢-torsion (R/I)-module, and so X is a finitely
presented (R/I)-module. By Lemma 2.21, X is a finitely presented R-module. Therefore, M is a nonnil-
coherent R-module. O
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Corollary 2.23. Let R € H and I be a finitely generated nil ideal of R. Then, R/I is a nonnil-coherent ring if and
only if R/I is a nonnil-coherent R-module.

Proof. Straightforward. O

Corollary 2.24. Let R be a nonnil-coherent ring and I be a finitely generated nil ideal of R. Then, R/I is
a nonnil-coherent ring.

Proof. This follows immediately from Corollaries 2.11 and 2.23. O

Corollary 2.25. Let R € ‘H and I be a finitely generated nil ideal of R. If R/ is a nonnil-coherent ring and I is
a nonnil-coherent R-module, then R is a nonnil-coherent ring.

Proof. This follows directly from Theorem 2.13 and Corollary 2.23. O

3 On nonnil-Noetherian modules

We introduce a new definition of nonnil-Noetherian modules which is different from that in [8]. In [6],
an R-module M is said to be Noetherian if every submodule of M is finitely generated.

Definition 3.1. Let R € H. An R-module M is said to be nonnil-Noetherian if every ¢p-submodule of M is
finitely generated. In particular, every Noetherian module over a ¢-ring is nonnil-Noetherian.

Remark 3.2.
(1) Note that for a ¢p-torsion R-module M, we have

M is nonnil-Noetherian & M is Noetherian.

(2) The definition of nonnil-Noetherian modules in Definition 3.1 is different from that of nonnil-Noetherian
modules in [8] by Example 2.2 and that of ¢p-Noetherian modules in [9] by Example 2.3. Although the
term “non-Noetherian module” used in [8] is the same as in Definition 3.1, we will still use it in the spirit
of [7] and following Theorem 3.3.

Recall that in [7], a ¢-ring R is said to be nonnil-Noetherian if every nonnil ideal of R is finitely
generated, equivalently R/Nil(R) is a Noetherian domain. The following theorem allows us to see that
each nonnil-Noetherian ring is a nonnil-Noetherian module over itself.

Theorem 3.3. Let R be a ¢-ring. Then, R is a nonnil-Noetherian ring if and only if R is a nonnil-Noetherian
module over itself.

Proof. Assume that R is a nonnil-Noetherian ring and let I be an ideal of R such that R/I is ¢-torsion. Then,
I is a nonnil ideal of R, and so I is finitely generated since R is nonnil-Noetherian. Therefore, R is a nonnil-
Noetherian module over itself.

Conversely, assume that R is a nonnil-Noetherian module over itself and let I be a nonnil ideal of R.
Then, R/I is ¢-torsion, and so I is finitely generated. Therefore, R is a nonnil-Noetherian ring. O

According to [3, Corollary 3.1], a ¢-ring R is said to be ¢-coherent if R/Nil(R) is a coherent domain. From
[7, Theorem 2.4], a ¢-ring R is nonnil-Noetherian if and only if R/Nil(R) is a Noetherian domain. Therefore,
every nonnil-Noetherian ring is ¢-coherent. The following theorem characterizes when a nonnil-Noetherian
ring is nonnil-coherent.
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Theorem 3.4. The following statements are equivalent for a nonnil-Noetherian ring R:
(1) R is nonnil-coherent.

(2) Rs is a finitely presented ideal of R for any s € R\Nil(R).

(3) Every nonnil ideal of R is finitely presented.

Proof. (1) = (3) = (2) They are straightforward.

(2) = (1) Assume that Rs is finitely presented for every s € R\Nil(R). Using the exact sequence
0 — (0:5) > R — Rs — 0, we obtain that (0 : s) is a finitely generated ideal of R. Since R is assumed
to be nonnil-Noetherian, and so ¢-coherent, R is a nonnil-coherent ring by [4, Proposition 1.3]. O

Recall that a ¢p-ring R is called a strongly ¢p-ring if Z(R) = Nil(R). Strongly ¢-rings are abundant. Indeed,
these rings can be generated from the following pullback introduced by Chang and Kim recently [21]. Let D
be a domain with K as its quotient field. Let K[X] be the polynomial ring over K, n > 2 be an integer and
K[6] = K[X]/{X™), where 0 := X + (X"). Denote by i : D—K the natural embedding map and 7 : K[0] » K
a ring homomorphism satisfying 7(f) = f(0). Consider the pullback of i and 7 as follows:

Ry, =D+ 0K[f] —— K][0)]

DC K

Then, R, = D + 6K[0] = {f € K[0]|f(0) € D} is a strongly ¢-ring.
Corollary 3.5. If R is a nonnil-Noetherian strongly ¢-ring, then R is a nonnil-coherent ring.

Proof. If R is a strongly ¢-ring, then every principal nonnil ideal is free. Therefore, R is a nonnil-coherent
ring if it is nonnil-Noetherian by Theorem 3.4. O

Theorem 3.6. Let 0 — M’ 5> M % M" — 0 be an exact sequence. If M' and M" are nonnil-Noetherian
modules, then so is M. In addition, if M' is a ¢-submodule of M, then the converse holds.

Proof. Assume that M’ and M" are nonnil-Noetherian. Let N be a ¢-submodule of M. Then, g(N) is
a ¢-submodule of M”. Indeed, if x € M", then g(m) = x for some m € M, and so there exists s € R\Nil(R)
such that sm € N. Thus, sx € g(N). Therefore, g(N) is a finitely generated submodule of M". Set g(N) =
Y. ,Rg(n;), where each n; € N. Let n € N. Then, g(n) = Y;_rg(n;) with r; € R. Thus, n - ¥;_,rn; € ker(g) =
Im(f), and son = f(y) + Zler,-n,- for some y € M'. In addition, M’ is finitely generated since it is nonnil-

Noetherian. Thus, M’ = thLani for some ny,1, n¢,,..., Ny € M, and so there exists 1,1, f42,..., i1 € R

such that f(y) = Zf:iﬂr,n,-. Hence, n = Zf:ir,-ni. Therefore, N is finitely generated, and so M is a nonnil-
Noetherian module.

Assume that M is a nonnil-Noetherian module and M’ is a ¢p-submodule of M. Let X be a ¢p-submodule
of M'. Then, 0 — M'/X — M/X — M" — 0 is exact with M’/X and M"¢-torsion, and so X is a ¢-submodule
of M. Thus, X is a finitely generated submodule of M'. Therefore, M’ is a nonnil-Noetherian module. Let N
be a submodule of M such that M’ ¢ N and N/M' is a ¢-submodule of M" = M/M'. We claim that N is
a ¢p-submodule of M. If x € M, then s(x + M") = M’ for some s € R\Nil(R) since M/M’ is ¢-torsion, and
sosx € M' c N. Thus, N is a ¢p-submodule of M. Therefore, N is a finitely generated submodule of M, and

so N/M' is a finitely generated submodule of M". Therefore, M" is a nonnil-Noetherian module. O

Corollary 3.7. Let R € H and M be a nonnil-Noetherian R-module. Then, every ¢-submodule of M is nonnil-
Noetherian.
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Proof. This follows immediately from Theorem 3.6. O

Corollary 3.8. Let R € H and {M;}1<i<n be a family of nonnil-Noetherian modules. Then, & ,M; is a nonnil-
Noetherian module.

Proof. We prove this by induction on n. Consider the following exact sequence 0 — M; — &' M; —
o ,M; — 0 and apply Theorem 3.6. O

Corollary 3.9. If R is a nonnil-Noetherian ring, then every finitely generated ¢-torsion module is nonnil-
Noetherian (and so is Noetherian).

Proof. If M is a finitely generated ¢-torsion R-module, then M = R™ /N, wheren € N and N is a submodule
of R, Since M is ¢p-torsion, N is a ¢p-submodule of R™, Using the exact sequence0 — N — R™ — M — 0
and Theorem 3.6, we can deduce that M is nonnil-Noetherian. O

Corollary 3.10. Let R € H and I be a finitely generated nonnil ideal of R. Then, R is a nonnil-Noetherian ring
if and only if I and R /I are nonnil-Noetherian R-modules.

Proof. This follows immediately from Theorem 3.6. O

Theorem 3.11. Let R € H . If M is a nonnil-Noetherian R-module, then every factor module of M is nonnil-
Noetherian.

Proof. Let M be a nonnil-Noetherian module and N be a submodule of M. We claim that M/N is a nonnil-
Noetherian module. Let P/N be a ¢p-submodule of M/N, where P is a submodule of M containing N. Since
M/N _ M

N EF is a ¢-torsion R-module, P is finitely generated, and so P/N is a finitely generated submodule of

M/N. Therefore, M/N is nonnil-Noetherian. O

Corollary 3.12. If R is a nonnil-Noetherian ring and I is an ideal of R, then R/I is a nonnil-Noetherian
R-module.

Proof. This follows immediately from Theorem 3.11. O

Corollary 3.13. Let R be a nonnil-Noetherian ring and M be an R-module. Then, M is a nonnil-Noetherian
module if and only if M is a finitely generated R-module.

Proof. If M is a nonnil-Noetherian module, then it is easy to see that M is a finitely generated module.
Conversely, if M is a finitely generated module, then M is a factor of R™, wheren < N. Since R™ is a nonnil-

Noetherian module by Corollary 3.8, M is a nonnil-Noetherian module by Theorem 3.11. O

Corollary 3.14. A ring R is nonnil-Noetherian if and only if every ¢-submodule of a finitely generated
R-module is finitely generated.

Proof. Straightforward. O

Theorem 3.15 establishes that every finitely generated ¢-torsion module over a nonnil-Noetherian ring
is finitely presented.

Theorem 3.15. Let R be a nonnil-Noetherian ring and M be a finitely generated ¢-torsion R-module. Then,
M is finitely presented.
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Proof. Let M be a finitely generated ¢-torsion R-module. Then, there exist n € N and a sequence
0 - N — R®™ — M — 0. Since R™ is a nonnil-Noetherian R-module by Corollary 3.8 and M is a ¢-torsion
module, N is a finitely generated module. Therefore, M is a finitely presented module. O

Theorem 3.16 establishes that the class of nonnil-Noetherian modules is closed under localizations.

Theorem 3.16. Let R be a ¢-ring and S be a multiplicative subset of R. If M is a nonnil-Noetherian R-module,
then S™M is a nonnil-Noetherian (S~'R)-module.

Proof. Let M be a nonnil-Noetherian R-module and S~'N be a ¢-submodule of S~'M, where N is a sub-
module of M. Then, N is a ¢-submodule of M, and so N is a finitely generated R-module. Thus, S7IN is

a finitely generated (S~'R)-module. Therefore, S™'M is a nonnil-Noetherian (S~'R)-module. O

Corollary 3.17. If R is a nonnil-Noetherian ring and S is a multiplicative subset of R, then S7'R is a nonnil-
Noetherian ring.

Proof. This follows immediately from Theorem 3.16. O
We end this section by the following theorem.

Theorem 3.18. Let R be a nonnil-Noetherian ring and I be a nil ideal of R. Then, R/I is a nonnil-
Noetherian ring.

R/I

Proof. Let J/I be a nonnil ideal of R/I. Then, 7I = R/] is a ¢-torsion R-module, and so J is a nonnil ideal
of R. As R is nonnil-Noetherian, J is a finitely generated ideal of R, and so J/I is a finitely generated ideal
of R/I. Therefore, R/I is nonnil-Noetherian. O

4 Transfer of nonnil-coherence and nonnil-Noetherianity in trivial
ring extensions

Now, we study the transfer of nonnil-coherent rings in the trivial ring extensions. From [1, Corollary 2.4],
a trivial ring extension R o« M is a ¢-ring if and only if R is a ¢-ring and M is a ¢-divisible module
(i.e., sM = M for all s € R\Nil(R)).

Let M be an R-module and r € R. Set (0 :) r) :== {m € M|rm = O}. It is easy to verify that (O :); 1)
is a submodule of M such that (0 : r)M c (O :p r). Therefore, (0 : r) o< (0 1 r) is an ideal of R « M by
[22, Theorem 3.1].

The following theorem characterizes when a trivial ring extension is a nonnil-coherent ring.

Theorem 4.1. Let A € H, M be a ¢-divisible A-module, and set R := A o< M. Then, the following statements
are equivalent:

(1) R is a nonnil-coherent ring.

(2) A is a nonnil-coherent ring and (0 : r) o< (0 3 r) is a finitely generated ideal of R for each r € A\Nil(A).
(3) A is a nonnil-coherent ring and R(r, 0) is finitely presented for all r ¢ A\Nil(A).

Before proving Theorem 4.1, we need the following lemmas:

Lemma 4.2. Let A € ‘H and M be a ¢-divisible A-module. Let ] be an ideal of R := A & M. Then, ] is a nonnil
ideal of R if and only if there exists a unique nonnil ideal I of A such that ] =1 oc M.



DE GRUYTER Nonnil-coherent modules and nonnil-Noetherian modules =— 1531

Proof. Assume that J is a nonnil ideal of R. Then, 0 oc M ¢ Nil(R oc M) ¢ J, and so J = I oc M for a unique
nonnil ideal I of R by [22, Theorem 3.1].

Conversely, assume that ] = I oc M for a unique nonnil ideal I of A. Then, it is clear that J is a nonnil
ideal of R. O

Lemma 4.3. Let A € H and M be a ¢-divisible A-module. Let ] =1 o« M be a nonnil ideal of R = A « M.
Then, ] is a finitely generated nonnil ideal of R if and only if I is a finitely generated nonnil ideal of A.

Proof. Assume that I is a finitely generated nonnil ideal of A. Then, I = Z;’zlAai, where each a; € A, and we
may assume that a; € A\Nil(A). First, it is easy to see that Z?le(ai, 0) c J. Conversely, let (a, 8) € J. Then
a =Y na; for somer; € A. Since M is ¢-divisible, B = a;v; for some v; € M, and so (a, B) = Y ,(a;, 0)(1;, v)),
where v; = 0 for all 2 < i < n. Therefore, J c Z?le(ai, 0), and so J = Z?le(ai, 0) is a finitely generated
nonnil ideal. The converse is straightforward. a

Lemma 4.4. Let A € H and M be a ¢-divisible A-module. Let r be a non-nilpotent element of A and
u € M. Then,

(0,0): (r,u)=(:1r) < (0:y71).

Proof. Let (r, u) € A\Nil(4) o« M and (a, B) € ((0, 0) : (r, w)). Since M is ¢p-divisible, u = rv for somev € M,
and so (r, u) = (r, 0)(1, v)

(a,B) € ((0,0) : (r,w) & (a, B)(r, u) = (0, 0)
& (a, B)(r, 0)1,v) = (0,0)
o (ar, arv + Br) = (0, 0)
@ B)e@©:r)oc (0:yr).

Therefore, ((0,0) : (r,u)) = (0 : 1) oc (0 :y 1). O

Lemma 4.5. [3, Theorem 2.1] A ¢-ring R is nonnil-coherent if and only if (O : r) is a finitely generated ideal for
every non-nilpotent element r € R, and the intersection of two finitely generated nonnil ideals of R is a finitely
generated nonnil ideal of R.

Proof of Theorem 4.1. (1) = (2) Assume that R is a nonnil-coherent ring. Let I and J be finitely generated
nonnil ideals of A. Then, I o« M and J o« M are finitely generated nonnil ideals of R by Lemma 4.3. Since R
is a nonnil-coherent ring, o« M) N (J oc M) = (I N J) o« M is a finitely generated nonnil ideal of R by
Lemma 4.5. Therefore, I nJ is a finitely generated nonnil ideal of A by Lemma 4.3. Let r € A\Nil(A).
Then, (0 : r) oc (0 :3; 1) is a finitely generated ideal of R by Lemma 4.4, and so (O : r) is a finitely generated
ideal of A. Therefore, A is a nonnil-coherent ring by Lemma 4.5.

(2) = (1) Assume that A is a nonnil-coherent ring and (0 : r) o (0 : r) is a finitely generated ideal of R
for each r € A\Nil(A). Let I « M and J o« M be finitely generated nonnil ideals of R. Then, I and ] are
finitely generated nonnil ideals of A. Since A is a nonnil-coherent ring, I N J is a finitely generated nonnil
ideal of A,and so (I oc M) N (J oc M) = (I N J) oc M is a finitely generated nonnil ideal of R by Lemma 4.3.
Let (r, u) € R\Nil(R). Then, ((0, 0) : (r,u)) = (0 : r) o< (0 :); r) is a finitely generated ideal of R by hypoth-
esis. Therefore, R is a nonnil-coherent ring by Lemma 4.5.

(2) © (3) Let r € A\Nil(A) and u € M. Then, the following sequence 0 — ((0,0) : (r,u)) > R —
R(r, 0) — 0 is exact. Therefore, by Lemma 4.4, (0 : r) o< (0 3 r) is a finitely generated ideal of R if and
only if R(r, 0) is finitely presented. O

Corollary 4.6. Let R = A o< M be a ¢-ring such that Z(A) = Nil(A). Then, R is a nonnil-coherent ring if and
only if A is a nonnil-coherent ring and (0 :y 1) is a finitely generated A-submodule of M for everyr € A\Nil(A).
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Proof. Let r € A\Nil(A). Since Z(A) = Nil(4), it follows that (O :r) = 0. Therefore, ((0,0) : (r, u)) =
0 o (0 :3 ). Now the assertion follows immediately from Theorem 4.1. O

Corollary 4.7. Let R = A o< M be a ¢-ring such that Z(A) = Nil(A) and M is a Noetherian A-module. Then,
R is a nonnil-coherent ring if and only if A is a nonnil-coherent ring.

Proof. This follows immediately from Theorem 4.1. O
For a ring R and an R-module M, set Zg(M) = {r € Rlrm = O for some nonzero m € M}.

Corollary 4.8. Let R = A o< M be a ¢-ring such that Z(A) = Nil(A) = Zy(M). Then, R is a nonnil-coherent ring
if and only if A is a nonnil-coherent ring.

Proof. It is easy to see that (0 : r) = 0 and (0 :3; r) = O for eachr € A\Nil(A). Now the proof follows directly
from Theorem 4.1. O

Example 4.9.
(1) Z « Q is a nonnil-coherent ring.
(2) Z/47Z « 7 /27 is a nonnil-coherent ring.

The following theorem studies the transfer of being a ¢p-coherent ring in trivial extensions.

Theorem 4.10. Let A € H and M be a ¢-divisible A-module. Then, A oc M is a ¢p-coherent ring if and only if
A is a ¢p-coherent ring.

Proof. First, note that Nil(A o« M) = Nil(A) occ M, and so % = A/Nil(A). Therefore, A oc M is

a ¢-coherent ring if and only if A is a ¢-coherent ring. O

Recently, Qi and Zhang [4] provided for the first time an example of a ¢-coherent ring, which is not
nonnil-coherent. Now, we give a concrete example by using Corollary 4.6 and Theorem 4.10.

Example 4.11. Let E = &°,Q/Z. Then, E is a divisible abelian group. Therefore, R = Z « E is a ¢-ring.
Since

0:x2)= {(% + Z) la; e Z and gcd(a;, b)) =1,b; € {1,2} Vi € N*},
i ieN*

1

which is an infinitely generated abelian group. Therefore, R is not a nonnil-coherent ring by Corollary 4.6.
Note that R is an example of a ¢-coherent ring, which is not nonnil-coherent by Theorem 4.10.

Now, we study the transfer of nonnil-Noetherian rings in the trivial ring extensions.

Theorem 4.12. Let A € H and M be a ¢-divisible R-module. Then, A &< M is a nonnil-Noetherian ring if and
only if A is a nonnil-Noetherian ring.

. . . . . . AoccM - A . . . .
Proof. A « M is nonnil-Noetherian ring if and only if NI o1 = M@ 15 @ Noetherian domain and A is

a nonnil-Noetherian ring. O

We give some examples of nonnil-Noetherian extension rings A o« M that are nonnil-coherent.
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Example 4.13. If R=A «« M is a ¢-ring such that Z(A) = Nil(A) = Zy(M), then for all r € A\Nil(4),
we obtain (0:r)=0 and (0:y r)=0, and so (A o« M)(r,0) = A «« M. Therefore, it follows from
Theorem 3.4 that A oc M is nonnil-coherent if it is nonnil-Noetherian.

Example 4.14. Let A be a strongly ¢-ring and M be a ¢-torsion-free A-module. If A oc M is a nonnil-
Noetherian ring, then A oc M is a nonnil-coherent ring.

Proof. Let (a, m) € A oc M such that (a, m)(r, 0) = (0, 0). Then, ar = 0, and rm = 0 and so (a, m) = (0, 0).
Thus, (A o« M)(r, 0) is a finitely generated free ideal. Hence, if A o« M is a nonnil-Noetherian ring, then
A o« M is a nonnil-coherent ring by Theorem 3.4. O

Recall that every nonnil-Noetherian ring is ¢p-coherent. The following Example 4.15 gives a ¢-coherent
ring that is not nonnil-Noetherian.

Example 4.15. Let R = (Z + XQ[[X]]) < gf(Q[[X]]). Then, R is a ¢-coherent ring that is not nonnil-
Noetherian.

Proof. First, it is easy to see that R is a ¢-ring by [1, Corollary 2.4]. By [23, Theorem 3], Z + XQ[[X]]
is a coherent domain, and so R is a ¢-coherent ring by Theorem 4.10. By [23, Theorem 3], Z + XQ[[X]]
is not a Noetherian domain, and so is not nonnil-Noetherian. Therefore, R is never a nonnil-Noetherian ring
by Theorem 4.12. O

Remark 4.16. Note that the ring R in Example 4.15 is nonnil-coherent since R is a strongly ¢-ring, and
a ¢-ring A is nonnil-coherent if and only if A is ¢-coherent and (0 : a) is a finitely generated ideal of A for
each a € A\Nil(A) ([4, Proposition 1.3]). Using Examples 4.11 and 4.15, we can deduce that the converse of
the following implications are not true in general:

nonnil-Noetherian = nonnil-coherent = ¢-coherent.

5 On transfer nonnil-Noetherian and ¢-coherent rings in the
amalgamation algebra along an ideal

In this section, we study the transfer of nonnil-Noetherian rings in the amalgamation algebra along an
ideal. El Khalfi et al. [1] studied when the amalgamation algebra along an ideal is a ¢-ring, a ¢-chained
ring, and a ¢-pseudo-valuation ring.

Our next result characterizes when the amalgamation of a ring is a nonnil-Noetherian ring. Before
starting this section, we need the following theorems.

Theorem 5.1. [1, Proposition 2.20] Let f : A — B be a ring homomorphism and ] be an ideal of B. Then,
Nil(A »/]) = {(a, f(a) + j)|la € Nil(A) and j €] n Nil(B)}.

Theorem 5.2. [1, Theorem 2.1] Let f: A — B be a ring homomorphism and ] be a nonnil ideal of B.
Set N(J) := J n Nil(B). The following statements are equivalent:

1 R=AxJeH.

(2) A is an integral domain, f1(J) = 0, and N(J) is a divided prime ideal of f(A) + J.

Theorem 5.3 studies the transfer of being a nonnil-Noetherian ring between a ¢-ring A and an amal-
gamation algebra A /] along a nonnil ideal J.
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Theorem 5.3. Let A and B be two rings and f : A — B be a ring homomorphism. Let ] be a nonnil ideal of B.
Define f : A — B/N(J) by f(a) = f(a) + N(J) for all a € A. If A x/] is a ¢-ring, then the following state-
ments are equivalent:

(1) A wf] is a nonnil-Noetherian ring.

2) Awf NL(]) is a Noetherian domain.

(3) f1(J) =1{0}, A, and f(A) + J/N(J) are Noetherian domains.
Before proving Theorem 5.3, we establish the following lemmas.
Lemma 5.4. With the notations of Theorem 5.3, we obtain f’l(] IN()) = 1.
Proof. Straightforward. O

Lemma 5.5. Let f : A — B be a ring homomorphism and ] be a nonzero ideal of B. Let J' be a subideal of |
and I be an ideal of A such that f(I) c J'. Define f : A/I — B/]' by f (@) = f(a), where @ = a + I and
f(@) = f(a) + J'. Then, we have the following ring isomorphism:

f ~
Aw] Ag)

Ixfpr 1 J°

Proof. Define
Aw] — émfz oA
Q: r
(a,f(a) +j)— @, f(@) +J).
It is easy to see that ¢ is a surjective ring homomorphism and for all (a, f(a) + j) € A x/]J, @, f(a) +j) =

(0,0) ifand only ifa € I and j € J' and (a, f(a) + j) € I xJ'. Therefore f;;f]], = ?Mf:%. O

Proof of Theorem 5.3. (1) = (2) Assume that A /] is a nonnil-Noetherian ring. Since A xfJ € H, A is an
integral domain by Theorem 5.2. Therefore, Nil(A x/J) = 0 x N(J). As A x/] is a nonnil-Noetherian ring,
wf
OA>< N(]])

(2) = (1) This follows immediately from Lemma 5.5.

(2) = (3) Assume that A x/J /N(J) is a Noetherian domain. By [13, Proposition 5.2] and Lemma 5.4,
f'J)=0 and f(A) +J/N(J) is an integral domain. By [13, Proposition 5.6], A and f(4) + J/N(J)
are Noetherian domains, as desired.

(3) = (2) By Lemma 5.4, we have f’l(]/N(])) = 0. By [13, Proposition 5.1], f(A) + J/N(J) = A % TIN(J),
which is a Noetherian domain, as desired. |

is a Noetherian domain. Therefore, A wf NL(]) is a Noetherian domain by Lemma 5.5.

Recall from [1, Corollary 2.6] that a polynomial ring R[X] is a ¢-ring if and only if R is an integral
domain.

Theorem 5.6. Let R be an integral domain. Then, R[X] is a nonnil-Noetherian ring if and only if R[X]
is a Noetherian domain.

Proof. By [1, Corollary 2.6], R[X] is a ¢-ring and R[X] = Rx/J, where J = XR[X] and j : R—R[X]. Since
J ¢ Nil(R[X]), it follows that R[X] is a nonnil-Noetherian ring if and only if Rx/J is a Noetherian domain
by Theorem 5.3. O
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Corollary 5.7. Let A be a ring and ] be a nonnil ideal of A. Assume that A x J € H. Then, A x ] is never
a nonnil-Noetherian ring.

Proof. Assume, on the contrary, that A x J is a nonnil-Noetherian ring. Then, A x J /N(J) is a Noetherian
domain, and so A is a Noetherian domain with J = N(J) by [13, Remark 5.3]. Therefore, J ¢ Nil(4), a desired
contradiction. O

Theorem 5.8 studies the transfer of being a nonnil-Noetherian ring between a ¢-ring A and an amal-
gamation algebra A /] along a nil ideal J.

Theorem 5.8. Let A and B be two rings and f : A — B be a ring homomorphism. Let ] be a nil ideal of B.
Assume that A w/] is a ¢-ring. Then, A wf] is a nonnil-Noetherian ring if and only if A is a nonnil-
Noetherian ring.

Proof. Note that J c Nil(B), and thus N(J) = J. So Nil(4 x/J) = Nil(A) xfJ. Therefore, A x/J is a nonnil-

f_A s J
Nil(A) w/J

a nonnil-Noetherian ring. O

Noetherian ring if and only i is a Noetherian domain, and ﬁw is a Noetherian domain, and A4 is

Example 5.9. R = Z[X] « qf(Z[X]) is a nonnil-Noetherian ring that is not a Noetherian ring.
Now, we study the transfer of being ¢-coherent rings in the amalgamation algebra along an ideal.

Theorem 5.10. Let A and B be two rings and f : A — B be a ring homomorphism. Let ] be a nonnil ideal of B.
Define f : A — B/N(J) by f(a) =f(a) + N(J) for any a € A. Assume that A »f] is a ¢-ring. Then,
the following statements are equivalent:

(1) A wfJ is a ¢-coherent ring.

2 A x/ NL(]) is a coherent domain.

3) f1J) = {0} and f(A) + ] /N(J) is a coherent domain.

Proof. (1) = (2) Assume that A x/J is a ¢p-coherent ring. Since A x/J € H, it follows that A is an integral

domain by Theorem 5.2, and so Nil(A x/]) = 0 x N(J). As A xf] is a ¢-coherent ring, OAX ‘:,f (J]) is a coherent

domain. Therefore, A wf NL(]) is a coherent domain by Lemma 5.5.

(2) = (1) This follows directly from Lemma 5.5.

(2) = (3) Assume that A x/J/N(J) is a coherent domain. From [13, Proposition 5.2] and Lemma 5.4,
f1(J) = 0 and f(A) + J/N(J) is an integral domain. From [13, Proposition 5.1], f(4) + J/N(J) = A x/J/N(J),
as desired.

(3) = (2) By Lemma 5.4 we have f ’1(] /N(J)) = 0 and from [13, Proposition 5.1], we obtain f(A) + J/N(J) =
A wf J/N(J), which is a coherent domain, as desired. O

Corollary 5.11. Let R be an integral domain. Then, R[X] is a ¢-coherent ring if and only if R[X] is a coherent
domain.

Proof. By [1, Corollary 2.6], we have that R[X]is a ¢-ring and R[X] = Rx/J, where ] = XR[X]and j : R—R[X].
Since J ¢ Nil(R[X]), it follows that R[X] is a ¢-coherent ring if and only if Rx/J is a coherent domain
by Theorem 5.10. O

Corollary 5.12 studies the transfer of being a nonnil-coherent ring between a ¢-ring A and an amalga-
mation algebra A /] along a nonnil ideal J.
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Corollary 5.12. Let A and B be tworings and f : A — B be a ring homomorphism. Let ] be a nonnil ideal of B.
Define f : A — B/N(J) by f(a) = f(a) + N(J) for any a € A. Assume A /] is a ¢-ring. Then, the following
statements are equivalent:
(1) A »f] is a nonnil-coherent ring,
(2) The following conditions hold:

@@ f'0) =1{0}.

(b) f(A) +J/N() is a coherent domain.

(©) (A wf])(r, f(r) +)) is a finitely presented ideal for any non-nilpotent element (r, f(r) + j) of A /].

Proof. This follows immediately from [4, Proposition 1.3] and Theorem 5.10 O

Theorem 5.13 studies the transfer of being a ¢p-coherent ring between a ¢-ring A and an amalgamation
algebra A x/J along a nil ideal J.

Theorem 5.13. Let A and B be two rings and f: A — B be a ring homomorphism. Let ] be a nil ideal of B.
Assume that A xf] is a ¢-ring. Then, A x/] is a ¢-coherent ring if and only if A is a ¢-coherent ring.

Proof. Since J c Nil(B), we have N(J) = J. It is easy to see that Nil(A »/]) = Nil(A) x/]. Therefore, A x/J

7o, . . . . .
A XJ s a coherent domain, —4_ is a coherent domain, and A is a ¢-coherent ring.

is a ¢p-coherent ring, N ] )
O

Corollary 5.14 studies the transfer of being a nonnil-coherent ring between a ¢-ring A and an amalga-
mation algebra A »/J along a nil ideal J.

Corollary 5.14. Let A and B be two rings and f : A — B be a ring homomorphism. Let ] be a nil ideal of B.

Assume that A xf] is a ¢-ring. Then, the following are equivalent:

(1) A wfJ is a nonnil-coherent ring.

(2) A is a ¢-coherent ring and (A »/J)(r, f(r) + j) is a finitely presented ideal for any non-nilpotent element
(r, f(r) + ) of A w].

Proof. This follows immediately from [4, Proposition 1.3] and Theorem 5.13. O
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