
Research Article

Younes El Haddaoui, Hwankoo Kim*, and Najib Mahdou

On nonnil-coherent modules and
nonnil-Noetherian modules

https://doi.org/10.1515/math-2022-0526
received May 27, 2022; accepted October 28, 2022
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1 Introduction

All rings considered in this article are assumed to be commutative with non-zero identity and prime
nilradical. We use RNil( ) to denote the set of nilpotent elements of R and Z R( ), the set of zero-divisors of
R. A ring with RNil( ) being divided prime (i.e., R xRNil( ) ⊂ for all x R RNil( )∈ ⧹ ) is called a ϕ-ring. El Khalfi
et al. [1], and Chhiti et al. [2] studied when the amalgamation algebra along an ideal is a ϕ-ring. Let � be
the set of all rings with divided prime nilradical. A ring R is called a strongly ϕ-ring if R �∈ and
Z R RNil( ) ( )= . Let R be a ring and M be an R-module; we define

ϕ M x M sx s R Rtor 0 for some Nil .( ) { ∣ ( )}- = ∈ = ∈ ⧹

If ϕ- M Mtor( ) = , then M is called a ϕ-torsion module, and if ϕ- Mtor 0( ) = , then M is called a ϕ-torsion-free
module. It is worth noting that in the language of torsion theory, the class T of all ϕ-torsion modules is
a (hereditary) torsion class, whereas T is closed under (submodules,) direct sums, epimorphic images,
and extensions. An ideal I of R is said to be nonnil if I RNil( )⊈ . An R-module M is said to be ϕ-divisible
if M sM= for all s R RNil( )∈ ⧹ .

Among the many recent generalizations of the concept of a coherent ring in the literature, we can find
the following: due to Bacem and Ali [3], a ϕ-ring R is called ϕ-coherent if R RNil( )/ is a coherent domain [3,
Corollary 3.1]. A ϕ-ring R is said to be nonnil-coherent if every finitely generated nonnil ideal is finitely
presented, which is equivalent to saying that R is ϕ-coherent and r0 :( ) is a finitely generated ideal of R for
each r R RNil( )∈ ⧹ , where r x R rx0 : 0( ) { ∣ }= ∈ = [4, Proposition 1.3]. In [5], an R-module M is said to be
coherent if M is a finitely generated R-module and every finitely generated submodule of M is a finitely
presented R-module. In [6], an R-module M is said to be Noetherian if every submodule of M is finitely
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generated. In [7], Badawi introduced and studied a new class of ϕ-rings, which are said to be nonnil-
Noetherian. A ϕ-ring R is said to be nonnil-Noetherian if every nonnil ideal of R is finitely generated, which
is equivalent to saying that R RNil( )/ is a Noetherian domain ([7, Theorem 2.4]). In 2015, Yousefian Darani
[8] introduced a new class of modules that is closely related to the class of Noetherian modules. An
R-module M with M R MNil Nil( ) ( )≔ , a divided prime submodule (i.e., MNil( ), is a prime submodule of M
and comparable with each submodule of M) is said to be nonnil-Noetherian if every nonnil submodule N of M
(i.e., N MNil( )⊈ ) is finitely generated. In 2020, Yousefian Darani and Rahmatinia [9] introduced and studied
ϕ-Noetherianmodules as a new class of Noetherianmodules. A module M is said to beϕ-Noetherian if MNil( )

is divided prime and each submodule that properly contains MNil( ) is finitely generated.
Let R be a ring and E an R-module. Then R E∝ , the trivial ring extension of R by E, is the ring whose

additive structure is that of the external direct sum R E⊕ and whose multiplication is defined by
a e b f ab af be, , ,( )( ) ( )≔ + for all a b R, ∈ and all e f E, ∈ (this construction is also known by other ter-
minologies and other notations, such as the idealization R E( )+ ) (see [5,10–12]).

Let A and B be two rings, let J be an ideal of B and let f A B: ⟶ be a ring homomorphism. In this
setting, we can consider the following subring of A B× :

A J a f a j a A j J, , ,f {( ( ) )∣ }⋈ = + ∈ ∈

called the amalgamation of A with B along J with respect to f (introduced and studied by D’Anna et al.
[13,14]). This construction is a generalization of the amalgamated duplication of a ring along an ideal
(introduced and studied by D’Anna and Fontana [15] and denoted by A I⋈ ).

This article consists of five sections including an Introduction. In Section 2, we introduce and study a
new class of modules over aϕ-ring R which are called nonnil-coherent modules. Let M be an R-module and
N be a submodule of M . Then, N is said to be a ϕ-submodule of M if M N/ is a ϕ-torsion module (see
Definition 2.1). Using Definition 2.1, an R-module M is said to be nonnil-coherent if M is finitely generated
and each finitely generated ϕ-submodule of M is finitely presented (see Definition 2.4). We give some
properties that characterize these modules. In Section 3, we introduce and study another definition of
nonnil-Noetherian modules that is different from the definition of [8,9]. An R-module M is said to be
nonnil-Noetherian if M is a finitely generated module and every ϕ-submodule of M is finitely generated
(see Definition 3.1). Next, we give some properties that characterize these modules. In Section 4, we study
the possible transfer of the properties of nonnil-coherent rings and nonnil-Noetherian rings in trivial ring
extensions. In the last section, we study the possible transfer of the properties of beingϕ-coherent rings and
nonnil-Noetherian rings in an amalgamation algebra along an ideal.

For any undefined terminology and notation, the reader is referred to [5,6,16,17]. Throughout this
article, if S is a multiplicative subset of a ring R, then we assume that S RNil( )∩ = ∅.

2 On nonnil-coherent modules

In this section, we introduce and study a new class of modules over a ϕ-ring R, which are called nonnil-
coherent modules. Recall that in [5], an R-module M is said to be coherent if M is finitely generated and
every finitely generated submodule is finitely presented.

Recall that an R-module M is said to be ϕ-torsion if, for all x M∈ , there exists s R RNil( )∈ ⧹ such
that sx 0= .

Definition 2.1. Let R �∈ and M be an R-module. A submodule N of M is said to be a ϕ-submodule if M N/
is a ϕ-torsion module.

Example 2.2. A nonnil submodule is not in general a ϕ-submodule. For example, set R �≔ , which is a
ϕ-ring, and M X�[ ]= as an R-module. It is easy to see that every nonzero subgroup N of M is a nonnil
submodule, in particular, the subgroup N X�[ ]= is a nonnil submodule of M . But for any nonzero s �∈ ,
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we obtain si N∉ . Hence, N is never a ϕ-submodule of M . Therefore, we deduce that the class of nonnil-
submodules of an R-module is different from the class of ϕ-submodules of that R-module.

There is a natural question: If R is a ϕ-ring, then is every submodule N of an R-module M (with MNil( )

being prime divided) such that N contains properly MNil( ) a ϕ-submodule of M? The following example
shows that the answer to this question is negative.

Example 2.3. Let R �= , M �= , and N �= . Then, MNil 0( ) = is a divided prime submodule of M and N
properly contains MNil( ), but � �/ is never a torsion abelian group. Therefore, � is not a ϕ-subgroup of �.

Definition 2.4 allows us to generalize the definition of coherent modules over a ϕ-ring.

Definition 2.4. Let R �∈ . An R-module M is said to be nonnil-coherent if M is finitely generated and every
finitely generated ϕ-submodule of M is finitely presented. In particular, every coherent module over
a ϕ-ring is nonnil-coherent.

Remark 2.5. Note that for a ϕ-torsion R-module M , we have

M Mis nonnil coherent is coherent .- ⇔

Recall from [18] that an R-module F is said to be ϕ-flat if f FR⊗ is an R-monomorphism for any
R-monomorphism f , where fCoker( ) is a ϕ-torsion R-module. Recall in [3] that a ϕ-ring is said to be
nonnil-coherent if every finitely generated nonnil ideal is finitely presented.

Now, we are able to give a new characterization of nonnil-coherent rings.

Theorem 2.6. The following are equivalent for a ϕ-ring R:
(1) R is a nonnil-coherent ring.
(2) R is a nonnil-coherent R-module.
(3) Every finitely generated free R-module is nonnil-coherent.
(4) Every finitely presented module is nonnil-coherent.
(5) Every finitely generated ϕ-submodule of a finitely presented R-module is finitely presented.
(6) Any direct product of ϕ-flat R-modules is ϕ-flat.
(7) RI is ϕ-flat for any index set I.

Proof. 6 7 1( ) ( ) ( )⇔ ⇔ This follows from [3, Theorem 2.4].
4 5( ) ( )⇒ Straightforward.
5 1( ) ( )⇒ This follows immediately from the fact that every nonnil ideal of R is a ϕ-submodule of R.
1 2( ) ( )⇒ Assume that R is a nonnil-coherent ring and let I be a finitely generated ideal of R such that

R I/ is ϕ-torsion. If I RNil( )⊂ , then, for any r R RNil( )∈ ⧹ , there exists s R RNil( )∈ ⧹ such that sr I RNil( )∈ ⊂

since R I/ is a ϕ-torsion R-module, a desired contradiction since RNil( ) is a prime ideal of R. Therefore, I is
a nonnil ideal. As R is a nonnil-coherent ring, I is a finitely presented ideal. Therefore, R is a nonnil-coherent
R-module.

2 1( ) ( )⇒ Let I be a finitely generated nonnil ideal of R. Since R is a nonnil-coherent module and R I/
is ϕ-torsion, I is finitely presented. Therefore, R is a nonnil-coherent ring.

6 3( ) ( )⇒ Let F be a finitely generated free R-module and N be a finitely generated ϕ-submodule of F .
Then, F and F N/ are finitely presented R-modules. Since RI is a ϕ-flat module for any index set I ,
by [18, Theorem 3.2] we obtain the following commutative diagram with exact rows:
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Since the two right vertical arrows are isomorphisms by [17, Lemma I.13.2], we obtain N R NR I I
⊗ ≅ ,

and so N is a finitely presented R-module by [17, Lemma I.13.2]. Therefore, F is a nonnil-coherent R-module.
3 4( ) ( )⇒ Let M be a finitely presented R-module. Then, M F N≅ / , where F is a finitely generated free

R-module and N is a finitely generated submodule of F . Let X be a finitely generated ϕ-submodule of M .
Then, X L N≅ / such that L is a finitely generated submodule of F with N L⊂ . Since F is a nonnil-coherent
module and M X F L/ ≅ / is ϕ-torsion, L is a finitely presented R-module. Now, it follows immediately from
[19, (4.54) Lemma] that X is finitely presented. Therefore, M is a nonnil-coherent module. □

The following theorem characterizes when a finitely generated submodule of a nonnil-coherent module
is nonnil-coherent.

Theorem 2.7. Let R �∈ and M be a nonnil-coherent R-module. If N is a finitely generatedϕ-submodule of M ,
then N is a nonnil-coherent module.

Before proving Theorem 2.7, we need the following lemma.

Lemma 2.8. [20, Proposition 2.4] Let R �∈ and M M M0 0
f g

→ ′ → → ″ → be an exact sequence of R-mod-
ules and R-homomorphisms. Then, M is ϕ-torsion if and only if M′ and M″ are ϕ-torsion modules.

Proof of Theorem 2.7. Let M be a nonnil-coherent R-module and N be a finitely generated ϕ-submodule of
of M . We claim that N is a nonnil-coherent R-module. Let X be a finitely generated ϕ-submodule of N .
Then, the following sequence N X M X M N0 0→ / → / → / → is exact. Since M N/ and N X/ are ϕ-torsion
modules, so is M X/ by Lemma 2.8. Therefore, X is finitely presented, and so N is a nonnil-coherent
module. □

Corollary 2.9. If R is a nonnil-coherent ring, then any finitely generated nonnil ideal of R is a nonnil-coherent
R-module.

Proof. This follows from Theorem 2.7. □

Theorem 2.10. Let R �∈ and P N M0 0→ → → → be an exact sequence of R-modules and R-homomor-
phisms, where P is a finitely generated R-module. If N is a nonnil-coherent module, then so is M .

Proof. We can set M N P= / . Let X P/ be a finitely generated ϕ-submodule of M . Since N is a nonnil-
coherent module and X is a finitely generated ϕ-submodule of N , it follows that X is finitely presented.
We claim that X P/ is a finitely presented R-module. Actually it follows from [19, (4.54) Lemma] that X P/
is finitely presented, and so M is a nonnil-coherent module. □

Corollary 2.11 is a consequence of Theorem 2.10.

Corollary 2.11. Every factor module M N/ of a nonnil-coherent module M by a finitely generated submodule N
is also a nonnil-coherent module. In particular, every factor module of a nonnil-coherent ring R by a finitely
generated ideal I of R is a nonnil-coherent R-module.

Proof. Straightforward. □

Corollary 2.12. Let R �∈ and M and N be nonnil-coherent modules. Let f M N: ⟶ be an R-homo-
morphism. Then:
(1) If fIm( ) is a ϕ-torsion R-module and fker( ) is finitely generated, then fker( ) is a nonnil-coherent module.
(2) If fker( ) is finitely generated, then fIm( ) is a nonnil-coherent module.
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(3) If fCoker( ) is a ϕ-torsion R-module and fIm( ) is finitely generated, then fIm( ) is a nonnil-coherent
module.

(4) If fIm( ) is finitely generated, then fCoker( ) is a nonnil-coherent module.

Proof. By the following two exact sequences f M f0 ker Im 0( ) ( )→ → → → and f N0 Im( )→ → →

fCoker 0( ) → , the proof is finished using Theorems 2.7 and 2.10. □

Theorem 2.13. Let R �∈ and P N M0 0
f g

→ → → → be an exact sequence of R-modules and R-homomor-
phisms. If P and M are nonnil-coherent modules, then so is N.

Proof. Let X be a finitely generated ϕ-submodule of N . Then, we have the following commutative diagram
with exact rows:

Since X is a finitely generated module, so is g X( ). Let x M∈ . Then, g n x( ) = for some n N∈ . Since N X/
is a ϕ-torsion module, sn X∈ for some s R RNil( )∈ ⧹ , and so sx g X( )∈ . Therefore, M g X( )/ is ϕ-torsion.
As M is nonnil-coherent, g X( ) is a finitely presented R-module. Therefore, gker X( )

∣
is a finitely generated

R-module since X is finitely generated. Let x P∈ . Then, there exists t R RNil( )∈ ⧹ such that tf x X( ) ∈ ,
and so tf x gker X( ) ( )∈

∣
since g tf x 0( ( )) = . We can consider f as an embedding, and so P gker X( )/

∣
is

a ϕ-torsion module. Then, gker X( )
∣

is finitely presented since P is a nonnil-coherent module, and so X is

a finitely presented R-module. Therefore, N is a nonnil-coherent module. □

Corollary 2.14. Let R �∈ and Mi i
n

1{ }
=

be a family of nonnil-coherent modules. Then, Mi
n i1⊕ = is a nonnil-

coherent module.

Proof. We prove this by induction on n. Consider the following exact sequence M M0 i
n i1 1→ → ⊕ →
=

M 0i
n i2⊕ →
=

and apply Theorem 2.13. □

Corollary 2.15. Let R �∈ and let M and N be nonnil-coherent submodules of a nonnil-coherent R-module L.
If M N+ is a ϕ-torsion R-module and M N∩ is finitely generated, then M N+ and M N∩ are nonnil-coherent
modules.

Proof. We use the exact sequence M N M N M N0 0→ ∩ → ⊕ → + → and Theorems 2.7 and 2.10. □

Corollary 2.16. Let R �∈ and I be a finitely generated nonnil ideal of R. Then, R is a nonnil-coherent ring
if and only if I and R I/ are nonnil-coherent R-modules.

Proof. Assume that R is a nonnil-coherent ring and let I be a finitely generated nonnil ideal of R.
By Corollary 2.11,R I/ is a nonnil-coherentR-module, and so I is a nonnil-coherentR-module byTheorem 2.7.

Conversely, assume that I and R I/ are nonnil-coherent R-modules for any finitely generated nonnil
ideal I of R. Then, R is a nonnil-coherent ring by Theorem 2.13. □

Next, Theorem 2.17 gives an analog of the well-known behavior of [5, Theorem 2.2.6].
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Theorem 2.17. Let R �∈ and S be a multiplicative subset of R. If M is a nonnil-coherent R-module, then S M1−
is a nonnil-coherent S R1( )− -module.

Proof. It is clear that S R1 �∈− and S M1− is a finitely generated S R1( )− -module. Let N be an R-module such
that S N1− is a ϕ-torsion S R1( )− -module. Then, N is a ϕ-torsion R-module. Indeed, let n N∈ . Then, there exist

a R RNil( )∈ ⧹ and s S∈ such that a
s

n
1

0
1= . Thus, ta n 0( ) = for some t R RNil( )∈ ⧹ , and so N is a ϕ-torsion

R-module. Let X be a finitely generated S R1( )− -submodule of S M1− such that S M
X

1−
is ϕ-torsion. Then, we can

set X S K1= − , where K is a finitely generated submodule of M . Therefore, S M K1( )/− is ϕ-torsion, and so M K/
is a ϕ-torsion R-module. Hence, K is a finitely presented R-module. Thus, X is a finitely presented
S R1( )− -module. Therefore, S M1− is a nonnil-coherent S R1( )− -module. □

Next, we pay attention to the localization of nonnil-coherent rings. Using Theorem 2.17, we obtain
immediately:

Corollary 2.18. If R is a nonnil-coherent ring and S is a multiplicative subset of R, then S R1− is a nonnil-
coherent ring.

Proof. Straightforward. □

Theorem 2.19. Let f R T: → be a finite surjective homomorphism of ϕ-rings (i.e., T is a finitely generated
R-module). Let M be a finitely generated T-module which is a nonnil-coherent R-module. Then, M is a nonnil-
coherent T-module.

Proof. Let X be a finitely generated T -submodule of M . Then, X is a finitely generated R-module since f is
finite. If M X/ is a ϕ-torsion T -module, then M X/ is a ϕ-torsion R-module, and so X is a finitely presented
R-module. Therefore, X is a finitely presented T -module since X T XR≅ ⊗ . Hence, M is a nonnil-coherent
T -module. □

Theorem 2.20. Let R �∈ and I be a finitely generated nil ideal of R. Let M be an R I( )/ -module. Then, M is
a nonnil-coherent R-module if and only if M is a nonnil-coherent R I( )/ -module.

In order to prove Theorem 2.20, we need the following lemmas.

Lemma 2.21. [5, Theorem 2.1.8] Let R be a ring and I be a finitely generated ideal of R. Let M be an
R I( )/ -module. Then, M is a finitely presented R-module if and only if M is a finitely presented R I( )/ -module.

Lemma 2.22. Let R �∈ and I be a nil ideal of R. Then, R I �/ ∈ .

Proof. Note that R I R INil Nil( ) ( )/ = / and R RNilR I
R INil ( )

( )
≅ /

/

/

is an integral domain, and so R INil( )/ is a prime

ideal of R I/ . If x R I R I¯ Nil( ) ( )∈ / ⧹ / , then x R RNil( )∈ ⧹ , and so R RxNil( ) ⊂ . Therefore, R I R I xNil ¯( ) ( )/ ⊂ / ,
as desired. □

Proof of Theorem 2.20. Assume that M is a nonnil-coherent R-module. Since R I �/ ∈ by Lemma 2.22, M is
a nonnil-coherent R I( )/ -module by Theorem 2.19.

Conversely, assume that M is a nonnil-coherent R I( )/ -module. Then, M is a finitely generated
R I( )/ -module, and so M is a finitely generated R-module. Let X be a finitely generated R-submodule of

M such that M X/ is a ϕ-torsion R-module. Thus, M X/ is a ϕ-torsion R I( )/ -module, and so X is a finitely
presented R I( )/ -module. By Lemma 2.21, X is a finitely presented R-module. Therefore, M is a nonnil-
coherent R-module. □
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Corollary 2.23. Let R �∈ and I be a finitely generated nil ideal of R. Then, R I/ is a nonnil-coherent ring if and
only if R I/ is a nonnil-coherent R-module.

Proof. Straightforward. □

Corollary 2.24. Let R be a nonnil-coherent ring and I be a finitely generated nil ideal of R. Then, R I/ is
a nonnil-coherent ring.

Proof. This follows immediately from Corollaries 2.11 and 2.23. □

Corollary 2.25. Let R �∈ and I be a finitely generated nil ideal of R. If R I/ is a nonnil-coherent ring and I is
a nonnil-coherent R-module, then R is a nonnil-coherent ring.

Proof. This follows directly from Theorem 2.13 and Corollary 2.23. □

3 On nonnil-Noetherian modules

We introduce a new definition of nonnil-Noetherian modules which is different from that in [8]. In [6],
an R-module M is said to be Noetherian if every submodule of M is finitely generated.

Definition 3.1. Let R �∈ . An R-module M is said to be nonnil-Noetherian if every ϕ-submodule of M is
finitely generated. In particular, every Noetherian module over a ϕ-ring is nonnil-Noetherian.

Remark 3.2.
(1) Note that for a ϕ-torsion R-module M , we have

M Mis nonnil Noetherian is Noetherian .- ⇔

(2) The definition of nonnil-Noetherian modules in Definition 3.1 is different from that of nonnil-Noetherian
modules in [8] by Example 2.2 and that of ϕ-Noetherian modules in [9] by Example 2.3. Although the
term “non-Noetherian module” used in [8] is the same as in Definition 3.1, we will still use it in the spirit
of [7] and following Theorem 3.3.

Recall that in [7], a ϕ-ring R is said to be nonnil-Noetherian if every nonnil ideal of R is finitely
generated, equivalently R RNil( )/ is a Noetherian domain. The following theorem allows us to see that
each nonnil-Noetherian ring is a nonnil-Noetherian module over itself.

Theorem 3.3. Let R be a ϕ-ring. Then, R is a nonnil-Noetherian ring if and only if R is a nonnil-Noetherian
module over itself.

Proof. Assume that R is a nonnil-Noetherian ring and let I be an ideal of R such that R I/ is ϕ-torsion. Then,
I is a nonnil ideal of R, and so I is finitely generated since R is nonnil-Noetherian. Therefore, R is a nonnil-
Noetherian module over itself.

Conversely, assume that R is a nonnil-Noetherian module over itself and let I be a nonnil ideal of R.
Then, R I/ is ϕ-torsion, and so I is finitely generated. Therefore, R is a nonnil-Noetherian ring. □

According to [3, Corollary 3.1], aϕ-ring R is said to beϕ-coherent if R RNil( )/ is a coherent domain. From
[7, Theorem 2.4], a ϕ-ring R is nonnil-Noetherian if and only if R RNil( )/ is a Noetherian domain. Therefore,
every nonnil-Noetherian ring isϕ-coherent. The following theorem characterizes when a nonnil-Noetherian
ring is nonnil-coherent.
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Theorem 3.4. The following statements are equivalent for a nonnil-Noetherian ring R:
(1) R is nonnil-coherent.
(2) Rs is a finitely presented ideal of R for any s R RNil( )∈ ⧹ .
(3) Every nonnil ideal of R is finitely presented.

Proof. 1 3 2( ) ( ) ( )⇒ ⇒ They are straightforward.
2 1( ) ( )⇒ Assume that Rs is finitely presented for every s R RNil( )∈ ⧹ . Using the exact sequence

s R Rs0 0 : 0( )→ → → → , we obtain that s0 :( ) is a finitely generated ideal of R. Since R is assumed
to be nonnil-Noetherian, and so ϕ-coherent, R is a nonnil-coherent ring by [4, Proposition 1.3]. □

Recall that aϕ-ring R is called a stronglyϕ-ring if Z R RNil( ) ( )= . Stronglyϕ-rings are abundant. Indeed,
these rings can be generated from the following pullback introduced by Chang and Kim recently [21]. Let D
be a domain with K as its quotient field. Let K X[ ] be the polynomial ring over K , n 2≥ be an integer and
K θ K X Xn[ ] [ ]= /⟨ ⟩, where θ X Xn

≔ + ⟨ ⟩. Denote by i D K: ↪ the natural embedding map and π K θ K: [ ]↠

a ring homomorphism satisfying π f f 0( ) ( )= . Consider the pullback of i and π as follows:

Then, R D θK θ f K θ f D0n [ ] { [ ]∣ ( ) }= + = ∈ ∈ is a strongly ϕ-ring.

Corollary 3.5. If R is a nonnil-Noetherian strongly ϕ-ring, then R is a nonnil-coherent ring.

Proof. If R is a strongly ϕ-ring, then every principal nonnil ideal is free. Therefore, R is a nonnil-coherent
ring if it is nonnil-Noetherian by Theorem 3.4. □

Theorem 3.6. Let M M M0 0
f g

→ ′ → → ″ → be an exact sequence. If M′ and M″ are nonnil-Noetherian
modules, then so is M. In addition, if M′ is a ϕ-submodule of M , then the converse holds.

Proof. Assume that M′ and M″ are nonnil-Noetherian. Let N be a ϕ-submodule of M . Then, g N( ) is
a ϕ-submodule of M″. Indeed, if x M∈ ″, then g m x( ) = for some m M∈ , and so there exists s R RNil( )∈ ⧹

such that sm N∈ . Thus, sx g N( )∈ . Therefore, g N( ) is a finitely generated submodule of M″. Set g N( ) =

Rg ni
t

i1 ( )∑
=

, where each n Ni ∈ . Let n N∈ . Then, g n rg ni
t

i i1( ) ( )= ∑
=

with r Ri ∈ . Thus, n rn gkeri
t

i i1 ( )− ∑ ∈ =
=

fIm( ), and so n f y rni
t

i i1( )= + ∑
=

for some y M∈ ′. In addition, M′ is finitely generated since it is nonnil-
Noetherian. Thus, M Rni t

t l
i1′ = ∑

= +

+ for some n n n M, , ,t t t l1 2 … ∈+ + + , and so there exists r r r R, , ,t t t l1 2 … ∈+ + +

such that f y rni t
t l

i i1( ) = ∑
= +

+ . Hence, n rni
t l

i i1= ∑
=

+ . Therefore, N is finitely generated, and so M is a nonnil-
Noetherian module.

Assume that M is a nonnil-Noetherian module and M′ is a ϕ-submodule of M . Let X be a ϕ-submodule

of M′. Then, M X M X M0 0→ ′/ → / → ″ → is exact with M X′/ and M″ϕ-torsion, and so X is a ϕ-submodule
of M . Thus, X is a finitely generated submodule of M′. Therefore, M′ is a nonnil-Noetherian module. Let N
be a submodule of M such that M N′ ⊂ and N M/ ′ is a ϕ-submodule of M M M″ ≅ / ′. We claim that N is
a ϕ-submodule of M . If x M∈ , then s x M M( )+ ′ = ′ for some s R RNil( )∈ ⧹ since M M/ ′ is ϕ-torsion, and
so sx M N∈ ′ ⊂ . Thus, N is a ϕ-submodule of M . Therefore, N is a finitely generated submodule of M , and

so N M/ ′ is a finitely generated submodule of M″. Therefore, M″ is a nonnil-Noetherian module. □

Corollary 3.7. Let R �∈ and M be a nonnil-Noetherian R-module. Then, every ϕ-submodule of M is nonnil-
Noetherian.
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Proof. This follows immediately from Theorem 3.6. □

Corollary 3.8. Let R �∈ and Mi i n1{ } ≤ ≤ be a family of nonnil-Noetherian modules. Then, Mi
n i1⊕ = is a nonnil-

Noetherian module.

Proof. We prove this by induction on n. Consider the following exact sequence M M0 i
n i1 1→ → ⊕ →
=

M 0i
n i2⊕ →
=

and apply Theorem 3.6. □

Corollary 3.9. If R is a nonnil-Noetherian ring, then every finitely generated ϕ-torsion module is nonnil-
Noetherian (and so is Noetherian).

Proof. If M is a finitely generatedϕ-torsion R-module, then M R Nn( )
≅ / , where n �∈ and N is a submodule

of R n( ). Since M is ϕ-torsion, N is a ϕ-submodule of R n( ). Using the exact sequence N R M0 0n( )
→ → → →

and Theorem 3.6, we can deduce that M is nonnil-Noetherian. □

Corollary 3.10. Let R �∈ and I be a finitely generated nonnil ideal of R. Then, R is a nonnil-Noetherian ring
if and only if I and R I/ are nonnil-Noetherian R-modules.

Proof. This follows immediately from Theorem 3.6. □

Theorem 3.11. Let R �∈ . If M is a nonnil-Noetherian R-module, then every factor module of M is nonnil-
Noetherian.

Proof. Let M be a nonnil-Noetherian module and N be a submodule of M . We claim that M N/ is a nonnil-
Noetherian module. Let P N/ be a ϕ-submodule of M N/ , where P is a submodule of M containing N . Since
M N
P N

M
P≅

/

/

is a ϕ-torsion R-module, P is finitely generated, and so P N/ is a finitely generated submodule of

M N/ . Therefore, M N/ is nonnil-Noetherian. □

Corollary 3.12. If R is a nonnil-Noetherian ring and I is an ideal of R, then R I/ is a nonnil-Noetherian
R-module.

Proof. This follows immediately from Theorem 3.11. □

Corollary 3.13. Let R be a nonnil-Noetherian ring and M be an R-module. Then, M is a nonnil-Noetherian
module if and only if M is a finitely generated R-module.

Proof. If M is a nonnil-Noetherian module, then it is easy to see that M is a finitely generated module.
Conversely, if M is a finitely generated module, then M is a factor of R n( ), where n �∈ . Since R n( ) is a nonnil-
Noetherian module by Corollary 3.8, M is a nonnil-Noetherian module by Theorem 3.11. □

Corollary 3.14. A ring R is nonnil-Noetherian if and only if every ϕ-submodule of a finitely generated
R-module is finitely generated.

Proof. Straightforward. □

Theorem 3.15 establishes that every finitely generated ϕ-torsion module over a nonnil-Noetherian ring
is finitely presented.

Theorem 3.15. Let R be a nonnil-Noetherian ring and M be a finitely generated ϕ-torsion R-module. Then,
M is finitely presented.
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Proof. Let M be a finitely generated ϕ-torsion R-module. Then, there exist n �∈ and a sequence
N R M0 0n( )
→ → → → . Since R n( ) is a nonnil-Noetherian R-module by Corollary 3.8 and M is a ϕ-torsion

module, N is a finitely generated module. Therefore, M is a finitely presented module. □

Theorem 3.16 establishes that the class of nonnil-Noetherian modules is closed under localizations.

Theorem 3.16. Let R be a ϕ-ring and S be a multiplicative subset of R. If M is a nonnil-Noetherian R-module,
then S M1− is a nonnil-Noetherian S R1( )− -module.

Proof. Let M be a nonnil-Noetherian R-module and S N1− be a ϕ-submodule of S M1− , where N is a sub-
module of M . Then, N is a ϕ-submodule of M , and so N is a finitely generated R-module. Thus, S N1− is
a finitely generated S R1( )− -module. Therefore, S M1− is a nonnil-Noetherian S R1( )− -module. □

Corollary 3.17. If R is a nonnil-Noetherian ring and S is a multiplicative subset of R, then S R1− is a nonnil-
Noetherian ring.

Proof. This follows immediately from Theorem 3.16. □

We end this section by the following theorem.

Theorem 3.18. Let R be a nonnil-Noetherian ring and I be a nil ideal of R. Then, R/I is a nonnil-
Noetherian ring.

Proof. Let J I/ be a nonnil ideal of R I/ . Then, R JR I
J I ≅ /
/

/

is a ϕ-torsion R-module, and so J is a nonnil ideal
of R. As R is nonnil-Noetherian, J is a finitely generated ideal of R, and so J I/ is a finitely generated ideal
of R I/ . Therefore, R I/ is nonnil-Noetherian. □

4 Transfer of nonnil-coherence and nonnil-Noetherianity in trivial
ring extensions

Now, we study the transfer of nonnil-coherent rings in the trivial ring extensions. From [1, Corollary 2.4],
a trivial ring extension R M∝ is a ϕ-ring if and only if R is a ϕ-ring and M is a ϕ-divisible module
(i.e., sM M= for all s R RNil( )∈ ⧹ ).

Let M be an R-module and r R∈ . Set r m M rm0 : 0M( ) { ∣ }≔ ∈ = . It is easy to verify that r0 :M( )

is a submodule of M such that r M r0 : 0 :M( ) ( )⊂ . Therefore, r r0 : 0 :M( ) ( )∝ is an ideal of R M∝ by
[22, Theorem 3.1].

The following theorem characterizes when a trivial ring extension is a nonnil-coherent ring.

Theorem 4.1. Let A �∈ , M be a ϕ-divisible A-module, and set R A M≔ ∝ . Then, the following statements
are equivalent:
(1) R is a nonnil-coherent ring.
(2) A is a nonnil-coherent ring and r r0 : 0 :M( ) ( )∝ is a finitely generated ideal of R for each r A ANil( )∈ ⧹ .
(3) A is a nonnil-coherent ring and R r, 0( ) is finitely presented for all r A ANil( )∈ ⧹ .

Before proving Theorem 4.1, we need the following lemmas:

Lemma 4.2. Let A �∈ and M be a ϕ-divisible A-module. Let J be an ideal of R A M≔ ∝ . Then, J is a nonnil
ideal of R if and only if there exists a unique nonnil ideal I of A such that J I M= ∝ .
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Proof. Assume that J is a nonnil ideal of R. Then, M R M J0 Nil( )∝ ⊂ ∝ ⊂ , and so J I M= ∝ for a unique
nonnil ideal I of R by [22, Theorem 3.1].

Conversely, assume that J I M= ∝ for a unique nonnil ideal I of A. Then, it is clear that J is a nonnil
ideal of R. □

Lemma 4.3. Let A �∈ and M be a ϕ-divisible A-module. Let J I M= ∝ be a nonnil ideal of R A M= ∝ .
Then, J is a finitely generated nonnil ideal of R if and only if I is a finitely generated nonnil ideal of A.

Proof. Assume that I is a finitely generated nonnil ideal of A. Then, I Aai
n

i1= ∑
=

, where each a Ai ∈ , and we
may assume that a A ANil1 ( )∈ ⧹ . First, it is easy to see that R a J, 0i

n
i1 ( )∑ ⊂

=
. Conversely, let α β J,( ) ∈ . Then

α rai
n

i i1= ∑
=

for some r Ai ∈ . Since M is ϕ-divisible, β a v1 1= for some v M1 ∈ , and so α β a r v, , 0 ,i
n

i i i1( ) ( )( )= ∑
=

,

where v 0i = for all i n2 ≤ ≤ . Therefore, J R a , 0i
n

i1 ( )⊂ ∑
=

, and so J R a , 0i
n

i1 ( )= ∑
=

is a finitely generated
nonnil ideal. The converse is straightforward. □

Lemma 4.4. Let A �∈ and M be a ϕ-divisible A-module. Let r be a non-nilpotent element of A and
u M∈ . Then,

r u r r0, 0 : , 0 : 0 : .M(( ) ( )) ( ) ( )= ∝

Proof. Let r u A A M, Nil( ) ( )∈ ⧹ ∝ and α β r u, 0, 0 : ,( ) (( ) ( ))∈ . Since M is ϕ-divisible, u rv= for some v M∈ ,
and so r u r v, , 0 1,( ) ( )( )=

α β r u α β r u
α β r v
αr αrv βr
α β r r

, 0, 0 : , , , 0, 0
, , 0 1, 0, 0
, 0, 0

, 0 : 0 : .M

( ) (( ) ( )) ( )( ) ( )

( )( )( ) ( )

( ) ( )

( ) ( ) ( )

∈ ⇔ =

⇔ =

⇔ + =

⇔ ∈ ∝

Therefore, r u r r0, 0 : , 0 : 0 : .M(( ) ( )) ( ) ( )= ∝ □

Lemma 4.5. [3, Theorem 2.1] A ϕ-ring R is nonnil-coherent if and only if r0 :( ) is a finitely generated ideal for
every non-nilpotent element r R∈ , and the intersection of two finitely generated nonnil ideals of R is a finitely
generated nonnil ideal of R.

Proof of Theorem 4.1. 1 2( ) ( )⇒ Assume that R is a nonnil-coherent ring. Let I and J be finitely generated
nonnil ideals of A. Then, I M∝ and J M∝ are finitely generated nonnil ideals of R by Lemma 4.3. Since R
is a nonnil-coherent ring, I M J M I J M( ) ( ) ( )∝ ∩ ∝ = ∩ ∝ is a finitely generated nonnil ideal of R by
Lemma 4.5. Therefore, I J∩ is a finitely generated nonnil ideal of A by Lemma 4.3. Let r A ANil( )∈ ⧹ .
Then, r r0 : 0 :M( ) ( )∝ is a finitely generated ideal of R by Lemma 4.4, and so r0 :( ) is a finitely generated
ideal of A. Therefore, A is a nonnil-coherent ring by Lemma 4.5.

2 1( ) ( )⇒ Assume that A is a nonnil-coherent ring and r r0 : 0 :M( ) ( )∝ is a finitely generated ideal of R
for each r A ANil( )∈ ⧹ . Let I M∝ and J M∝ be finitely generated nonnil ideals of R. Then, I and J are
finitely generated nonnil ideals of A. Since A is a nonnil-coherent ring, I J∩ is a finitely generated nonnil
ideal of A, and so I M J M I J M( ) ( ) ( )∝ ∩ ∝ = ∩ ∝ is a finitely generated nonnil ideal of R by Lemma 4.3.
Let r u R R, Nil( ) ( )∈ ⧹ . Then, r u r r0, 0 : , 0 : 0 :M(( ) ( )) ( ) ( )= ∝ is a finitely generated ideal of R by hypoth-
esis. Therefore, R is a nonnil-coherent ring by Lemma 4.5.

2 3( ) ( )⇔ Let r A ANil( )∈ ⧹ and u M∈ . Then, the following sequence r u R0 0, 0 : ,(( ) ( ))→ → →

R r, 0 0( ) → is exact. Therefore, by Lemma 4.4, r r0 : 0 :M( ) ( )∝ is a finitely generated ideal of R if and
only if R r, 0( ) is finitely presented. □

Corollary 4.6. Let R A M= ∝ be a ϕ-ring such that Z A ANil( ) ( )= . Then, R is a nonnil-coherent ring if and
only if A is a nonnil-coherent ring and r0 :M( ) is a finitely generated A-submodule of M for every r A ANil( )∈ ⧹ .
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Proof. Let r A ANil( )∈ ⧹ . Since Z A ANil( ) ( )= , it follows that r0 : 0( ) = . Therefore, r u0, 0 : ,(( ) ( )) =

r0 0 :M( )∝ . Now the assertion follows immediately from Theorem 4.1. □

Corollary 4.7. Let R A M= ∝ be a ϕ-ring such that Z A ANil( ) ( )= and M is a Noetherian A-module. Then,
R is a nonnil-coherent ring if and only if A is a nonnil-coherent ring.

Proof. This follows immediately from Theorem 4.1. □

For a ring R and an R-module M , set Z M r R rm m M0 for some nonzeroR( ) { ∣ }≔ ∈ = ∈ .

Corollary 4.8. Let R A M= ∝ be a ϕ-ring such that Z A A Z MNil A( ) ( ) ( )= = . Then, R is a nonnil-coherent ring
if and only if A is a nonnil-coherent ring.

Proof. It is easy to see that r0 : 0( ) = and r0 : 0M( ) = for each r A ANil( )∈ ⧹ . Now the proof follows directly
from Theorem 4.1. □

Example 4.9.
(1) � �∝ is a nonnil-coherent ring.
(2) 4 2� � � �/ ∝ / is a nonnil-coherent ring.

The following theorem studies the transfer of being a ϕ-coherent ring in trivial extensions.

Theorem 4.10. Let A �∈ and M be a ϕ-divisible A-module. Then, A M∝ is a ϕ-coherent ring if and only if
A is a ϕ-coherent ring.

Proof. First, note that A M A MNil Nil( ) ( )∝ = ∝ , and so A ANilA M
A MNil ( )

( )
≅ /

∝

∝

. Therefore, A M∝ is
a ϕ-coherent ring if and only if A is a ϕ-coherent ring. □

Recently, Qi and Zhang [4] provided for the first time an example of a ϕ-coherent ring, which is not
nonnil-coherent. Now, we give a concrete example by using Corollary 4.6 and Theorem 4.10.

Example 4.11. Let E i 1� �= ⊕ /
=

∞ . Then, E is a divisible abelian group. Therefore, R E�= ∝ is a ϕ-ring.
Since

a
b

a gcd a b b i0 : 2 and , 1, 1, 2 ,E
i

i i
i i i i� � �

�

⎜ ⎟( )
⎧

⎨
⎩

⎛

⎝

⎞

⎠
∣ ( ) { }

⎫

⎬
⎭

= + ∈ = ∈ ∀ ∈

∈

∗

∗

which is an infinitely generated abelian group. Therefore, R is not a nonnil-coherent ring by Corollary 4.6.
Note that R is an example of a ϕ-coherent ring, which is not nonnil-coherent by Theorem 4.10.

Now, we study the transfer of nonnil-Noetherian rings in the trivial ring extensions.

Theorem 4.12. Let A �∈ and M be a ϕ-divisible R-module. Then, A M∝ is a nonnil-Noetherian ring if and
only if A is a nonnil-Noetherian ring.

Proof. A M∝ is nonnil-Noetherian ring if and only if A M
A M

A
ANil Nil( ) ( )

≅
∝

∝

is a Noetherian domain and A is
a nonnil-Noetherian ring. □

We give some examples of nonnil-Noetherian extension rings A M∝ that are nonnil-coherent.
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Example 4.13. If R A M= ∝ is a ϕ-ring such that Z A A Z MNil A( ) ( ) ( )= = , then for all r A ANil( )∈ ⧹ ,
we obtain r0 : 0( ) = and r0 : 0M( ) = , and so A M r A M, 0( )( )∝ ≅ ∝ . Therefore, it follows from
Theorem 3.4 that A M∝ is nonnil-coherent if it is nonnil-Noetherian.

Example 4.14. Let A be a strongly ϕ-ring and M be a ϕ-torsion-free A-module. If A M∝ is a nonnil-
Noetherian ring, then A M∝ is a nonnil-coherent ring.

Proof. Let α m A M,( ) ∈ ∝ such that α m r, , 0 0, 0( )( ) ( )= . Then, αr 0= , and rm 0= and so α m, 0, 0( ) ( )= .
Thus, A M r, 0( )( )∝ is a finitely generated free ideal. Hence, if A M∝ is a nonnil-Noetherian ring, then
A M∝ is a nonnil-coherent ring by Theorem 3.4. □

Recall that every nonnil-Noetherian ring is ϕ-coherent. The following Example 4.15 gives a ϕ-coherent
ring that is not nonnil-Noetherian.

Example 4.15. Let R X X qf X� � �( [[ ]]) ( [[ ]])≔ + ∝ . Then, R is a ϕ-coherent ring that is not nonnil-
Noetherian.

Proof. First, it is easy to see that R is a ϕ-ring by [1, Corollary 2.4]. By [23, Theorem 3], X X� �[[ ]]+

is a coherent domain, and so R is a ϕ-coherent ring by Theorem 4.10. By [23, Theorem 3], X X� �[[ ]]+

is not a Noetherian domain, and so is not nonnil-Noetherian. Therefore, R is never a nonnil-Noetherian ring
by Theorem 4.12. □

Remark 4.16. Note that the ring R in Example 4.15 is nonnil-coherent since R is a strongly ϕ-ring, and
a ϕ-ring A is nonnil-coherent if and only if A is ϕ-coherent and a0 :( ) is a finitely generated ideal of A for
each a A ANil( )∈ ⧹ ([4, Proposition 1.3]). Using Examples 4.11 and 4.15, we can deduce that the converse of
the following implications are not true in general:

ϕnonnil Noetherian nonnil coherent coherent .- ⇒ - ⇒ -

5 On transfer nonnil-Noetherian and ϕ-coherent rings in the
amalgamation algebra along an ideal

In this section, we study the transfer of nonnil-Noetherian rings in the amalgamation algebra along an
ideal. El Khalfi et al. [1] studied when the amalgamation algebra along an ideal is a ϕ-ring, a ϕ-chained
ring, and a ϕ-pseudo-valuation ring.

Our next result characterizes when the amalgamation of a ring is a nonnil-Noetherian ring. Before
starting this section, we need the following theorems.

Theorem 5.1. [1, Proposition 2.20] Let f A B: → be a ring homomorphism and J be an ideal of B. Then,

A J a f a j a A and j J BNil , Nil Nil .f( ) {( ( ) )∣ ( ) ( )}⋈ = + ∈ ∈ ∩

Theorem 5.2. [1, Theorem 2.1] Let f A B: → be a ring homomorphism and J be a nonnil ideal of B.
Set N J J BNil( ) ( )≔ ∩ . The following statements are equivalent:
(1) R A Jf �= ⋈ ∈ .
(2) A is an integral domain, f J 01( ) =− , and N J( ) is a divided prime ideal of f A J( ) + .

Theorem 5.3 studies the transfer of being a nonnil-Noetherian ring between a ϕ-ring A and an amal-
gamation algebra A Jf

⋈ along a nonnil ideal J .
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Theorem 5.3. Let A and B be two rings and f A B: ⟶ be a ring homomorphism. Let J be a nonnil ideal of B.
Define f A B N J¯ : ( )⟶ / by f a f a N J¯( ) ( ) ( )= + for all a A∈ . If A Jf

⋈ is a ϕ-ring, then the following state-
ments are equivalent:
(1) A Jf
⋈ is a nonnil-Noetherian ring.

(2) A f J
N J

¯
( )

⋈ is a Noetherian domain.

(3) f J 01( ) { }=− , A, and f A J N J¯( ) ( )+ / are Noetherian domains.

Before proving Theorem 5.3, we establish the following lemmas.

Lemma 5.4. With the notations of Theorem 5.3, we obtain f J N J f J¯ 1 1( ( )) ( )/ =
− − .

Proof. Straightforward. □

Lemma 5.5. Let f A B: ⟶ be a ring homomorphism and J be a nonzero ideal of B. Let J′ be a subideal of J

and I be an ideal of A such that f I J( ) ⊂ ′. Define f A I B J: / ⟶ / ′ by f a f a( ) ( )= , where a a I≔ + and
f a f a J( ) ( )≔ + ′. Then, we have the following ring isomorphism:

A J
I J

A
I

J
J

.
f

f
f⋈

⋈ ′

≅ ⋈

′

Proof. Define

φ
A J A

I
J
J

a f a j a f a j
:

, , .

f f

( ( ) ) ( ( ) )

⋈ ⟶ ⋈

′

+ ⟼ +

It is easy to see that φ is a surjective ring homomorphism and for all a f a j A J, f( ( ) )+ ∈ ⋈ , a f a j,( ( ) )+ =

0, 0( ) if and only if a I∈ and j J∈ ′ and a f a j I J, f( ( ) )+ ∈ ⋈ ′. Therefore A J
I J

A
I

f J
J

f

f ≅ ⋈
⋈

⋈ ′ ′

. □

Proof of Theorem 5.3. 1 2( ) ( )⇒ Assume that A Jf
⋈ is a nonnil-Noetherian ring. Since A Jf �⋈ ∈ , A is an

integral domain by Theorem 5.2. Therefore, A J N JNil 0f( ) ( )⋈ = × . As A Jf
⋈ is a nonnil-Noetherian ring,

A J
N J0

f

( )

⋈

×

is a Noetherian domain. Therefore, A f J
N J

¯
( )

⋈ is a Noetherian domain by Lemma 5.5.

2 1( ) ( )⇒ This follows immediately from Lemma 5.5.

2 3( ) ( )⇒ Assume that A J N Jf̄ ( )⋈ / is a Noetherian domain. By [13, Proposition 5.2] and Lemma 5.4,
f J 01( ) =− and f A J N J¯( ) ( )+ / is an integral domain. By [13, Proposition 5.6], A and f A J N J¯( ) ( )+ /

are Noetherian domains, as desired.

3 2( ) ( )⇒ By Lemma 5.4, we have f J N J¯ 01
( ( ))/ =
− . By [13, Proposition 5.1], f A J N J A J N J¯ f̄( ) ( ) ( )+ / ≅ ⋈ / ,

which is a Noetherian domain, as desired. □

Recall from [1, Corollary 2.6] that a polynomial ring R X[ ] is a ϕ-ring if and only if R is an integral
domain.

Theorem 5.6. Let R be an integral domain. Then, R X[ ] is a nonnil-Noetherian ring if and only if R X[ ]

is a Noetherian domain.

Proof. By [1, Corollary 2.6], R X[ ] is a ϕ-ring and R X R Jj[ ] ≅ ⋈ , where J XR X[ ]= and j R R X: [ ]↪ . Since
J R XNil( [ ])⊄ , it follows that R X[ ] is a nonnil-Noetherian ring if and only if R Jj⋈ is a Noetherian domain
by Theorem 5.3. □
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Corollary 5.7. Let A be a ring and J be a nonnil ideal of A. Assume that A J �⋈ ∈ . Then, A J⋈ is never
a nonnil-Noetherian ring.

Proof. Assume, on the contrary, that A J⋈ is a nonnil-Noetherian ring. Then, A J N J( )⋈ / is a Noetherian
domain, and so A is a Noetherian domain with J N J( )= by [13, Remark 5.3]. Therefore, J ANil( )⊂ , a desired
contradiction. □

Theorem 5.8 studies the transfer of being a nonnil-Noetherian ring between a ϕ-ring A and an amal-
gamation algebra A Jf

⋈ along a nil ideal J .

Theorem 5.8. Let A and B be two rings and f A B: ⟶ be a ring homomorphism. Let J be a nil ideal of B.
Assume that A Jf

⋈ is a ϕ-ring. Then, A Jf
⋈ is a nonnil-Noetherian ring if and only if A is a nonnil-

Noetherian ring.

Proof. Note that J BNil( )⊂ , and thus N J J( ) = . So A J A JNil Nilf f( ) ( )⋈ = ⋈ . Therefore, A Jf
⋈ is a nonnil-

Noetherian ring if and only if A J
A JNil

f

f( )

⋈

⋈

is a Noetherian domain, and A
ANil( )

is a Noetherian domain, and A is

a nonnil-Noetherian ring. □

Example 5.9. R X qf X� �[ ] ( [ ])= ∝ is a nonnil-Noetherian ring that is not a Noetherian ring.

Now, we study the transfer of being ϕ-coherent rings in the amalgamation algebra along an ideal.

Theorem 5.10. Let A and B be two rings and f A B: ⟶ be a ring homomorphism. Let J be a nonnil ideal of B.
Define f A B N J¯ : ( )⟶ / by f a f a N J¯( ) ( ) ( )= + for any a A∈ . Assume that A Jf

⋈ is a ϕ-ring. Then,
the following statements are equivalent:
(1) A Jf
⋈ is a ϕ-coherent ring.

(2) A f J
N J

¯
( )

⋈ is a coherent domain.

(3) f J 01( ) { }=− and f A J N J¯( ) ( )+ / is a coherent domain.

Proof. 1 2( ) ( )⇒ Assume that A Jf
⋈ is a ϕ-coherent ring. Since A Jf �⋈ ∈ , it follows that A is an integral

domain by Theorem 5.2, and so A J N JNil 0f( ) ( )⋈ = × . As A Jf
⋈ is a ϕ-coherent ring, A J

N J0

f

( )

⋈

×

is a coherent

domain. Therefore, A f J
N J

¯
( )

⋈ is a coherent domain by Lemma 5.5.

2 1( ) ( )⇒ This follows directly from Lemma 5.5.

2 3( ) ( )⇒ Assume that A J N Jf̄ ( )⋈ / is a coherent domain. From [13, Proposition 5.2] and Lemma 5.4,

f J 01( ) =− and f A J N J¯( ) ( )+ / is an integral domain. From [13, Proposition 5.1], f A J N J A J N J¯ f̄( ) ( ) ( )+ / ≅ ⋈ / ,
as desired.

3 2( ) ( )⇒ By Lemma 5.4 we have f J N J¯ 01
( ( ))/ =
− and from [13, Proposition 5.1], we obtain f A J N J¯( ) ( )+ / ≅

A J N Jf̄ ( )⋈ / , which is a coherent domain, as desired. □

Corollary 5.11. Let R be an integral domain. Then, R X[ ] is a ϕ-coherent ring if and only if R X[ ] is a coherent
domain.

Proof. By [1, Corollary 2.6], we have that R X[ ] is aϕ-ring and R X R Jj[ ] ≅ ⋈ , where J XR X[ ]= and j R R X: [ ]↪ .
Since J R XNil( [ ])⊄ , it follows that R X[ ] is a ϕ-coherent ring if and only if R Jj⋈ is a coherent domain
by Theorem 5.10. □

Corollary 5.12 studies the transfer of being a nonnil-coherent ring between a ϕ-ring A and an amalga-
mation algebra A Jf

⋈ along a nonnil ideal J .
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Corollary 5.12. Let A and B be two rings and f A B: ⟶ be a ring homomorphism. Let J be a nonnil ideal of B.
Define f A B N J¯ : ( )⟶ / by f a f a N J¯( ) ( ) ( )= + for any a A∈ . Assume A Jf

⋈ is a ϕ-ring. Then, the following
statements are equivalent:
(1) A Jf
⋈ is a nonnil-coherent ring,

(2) The following conditions hold:
(a) f J 01( ) { }=− .

(b) f A J N J¯( ) ( )+ / is a coherent domain.

(c) A J r f r j,f( )( ( ) )⋈ + is a finitely presented ideal for any non-nilpotent element r f r j,( ( ) )+ of A Jf
⋈ .

Proof. This follows immediately from [4, Proposition 1.3] and Theorem 5.10 □

Theorem 5.13 studies the transfer of being a ϕ-coherent ring between a ϕ-ring A and an amalgamation

algebra A Jf
⋈ along a nil ideal J .

Theorem 5.13. Let A and B be two rings and f A B: ⟶ be a ring homomorphism. Let J be a nil ideal of B.
Assume that A Jf

⋈ is a ϕ-ring. Then, A Jf
⋈ is a ϕ-coherent ring if and only if A is a ϕ-coherent ring.

Proof. Since J BNil( )⊂ , we have N J J( ) = . It is easy to see that A J A JNil Nilf f( ) ( )⋈ = ⋈ . Therefore, A Jf
⋈

is a ϕ-coherent ring, A J
A JNil

f

f( )

⋈

⋈

is a coherent domain, A
ANil( )

is a coherent domain, and A is a ϕ-coherent ring.
□

Corollary 5.14 studies the transfer of being a nonnil-coherent ring between a ϕ-ring A and an amalga-
mation algebra A Jf

⋈ along a nil ideal J .

Corollary 5.14. Let A and B be two rings and f A B: ⟶ be a ring homomorphism. Let J be a nil ideal of B.
Assume that A Jf

⋈ is a ϕ-ring. Then, the following are equivalent:

(1) A Jf
⋈ is a nonnil-coherent ring.

(2) A is a ϕ-coherent ring and A J r f r j,f( )( ( ) )⋈ + is a finitely presented ideal for any non-nilpotent element

r f r j,( ( ) )+ of A Jf
⋈ .

Proof. This follows immediately from [4, Proposition 1.3] and Theorem 5.13. □
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