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Abstract: Let f, be the nth Fibonacci number with f; = f, = 1. Recently, the exact values of l(Zﬁn;s) J
k

have been obtained only for s = 1, 2, where | x| is the floor function. It has been an open problem for s > 3.
In this article, we consider the case of s = 4 and show that

1) 21" n+2
(Z—) :f;f—f)ilﬂLTzn—l—{ 5 },

4
k=nfk

where {x} == x — [x].
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1 Introduction and statement of main results

Let fo =0, fi =1, and f, = f,_1 + fn_> for all n > 2. The number f, is called the nth Fibonacci number. The
Fibonacci sequence is important and widely used in many mathematical areas, especially related to number
theory and combinatorics. For more detailed information, see [1]. Also, many generalizations of the Fi-
bonacci numbers have been introduced in [2-6]. For the recent results in view of the classical identities
such as Binet’s formula, the generating function, Catalan’s identity, Cassini’s identity, and some binomial
sums, see [7-10].

By contrast, the study on the reciprocal of the sum of convergent series is a relatively new research field,
see the references [6,11-21]. For example, the reciprocal sum of Fibonacci numbers was studied in 2008 [17].

By Binet’s formula, f,, can be written as the explicit form f, = a:%g" for any nonnegative integer n, where

l+2ﬁ andﬁz 1-5

a = 2

are two solutions of x2 — x — 1 = 0. Since f;, is comparable to a” for sufficiently large
n, we see that

- 1
F(s)= ) —

i

converges for all s > 1. It follows that
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-1
<1

lim —| =oo.

(3 7]

Motivated by the above observation, in [17], the floor functions of (Y%° 1/fi) and (¥3° 1/f2)" have been
obtained as follows: for any n € N,

OZO:l - | fas n > 2 iseven; )

ionJi “fia-1, n=3isodd, .
and

Oil - [ farfa-1, n=2iseven; w2

zr) | Uik n>1isodd, :

where | -] is the floor function. In this context, it is natural to consider the following problem.
-1
Problem 1.1. For an integer s > 3, find explicit formulas for l( Z‘;n%) J
k

The above problem has been an open problem.

In this article, we give an answer for Problem 1.1 for s = 4. It turns out that the formula itself is more
complicated in the sense that it includes some unexpected terms, and the method of the proof is essentially
different from those of (1.1) and (1.2). For all n € N, define

g fit St X % 13)

In Section 6, we explain how we can find g,.
The following is the main theorem of this article.

Theorem 1.2. Let ¢, = fL Then,
2n-1

-1
(i) g, < (Zﬁn%) < g, + ¢, when n is even;
k

-1
(il) g8, —cn < (Zﬁ;%) < g, when n is odd.
k
As a consequence of Theorem 1.2, we have the following.

Theorem 1.3. For any positive integer n, we have

-1
""i b g 2(-1)" fn+2
{(%f}?] ‘ —fn fn—l + 5 2n-1 { 5 };

where {x} := x — [x] is the decimal part of x.

In Section 2, we introduce the basic properties of the Fibonacci numbers and Lucas numbers, which are
defined as Lo =2,L;=1,and L, = L,_1 + L,_, for all n > 2. These Lucas numbers are used for the proof of
our main result. In Section 3, we introduce the basic identities, which are used directly to prove our main
theorem. The key idea is that the principal part

(gn+2 - gn)fr? r?+1 - (fnl' + fr?+1)gngn+2

can be expressed as a polynomial with respect to one variable Ly, (see Proposition 3.3). In Section 4, we
prove Theorem 1.2 using the identities proved in Section 3. In Section 5, we use the periodicity of f, modulo 5
to prove Theorem 1.3. In Section 6, we explain how we obtain the formula g,.
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Remark 1.4. Our main theorem is the first result regarding Problem 1.1. We expect that our result and
method can be used to solve the problem for any s > 3 and any linear recurrence sequences.

2 Fibonacci numbers and Lucas numbers
The Fibonacci numbers satisfy the following well-known useful identities.

Lemma 2.1. [1] For any positive integers n and k, we have
) f3 = farkfook + (“DKER,
(ii) foner = fr + faure

It is more efficient to use the Lucas numbers when we compute the Fibonacci numbers. The Lucas
numbers are defined as follows:

L,=L,1+L,» forall n > 3 with Ly=2,L,=1,L, =3.
Then, the Lucas numbers are related to the Fibonacci numbers as follows:
on = f;'ans Ln = fn—l + fn+1 (2-1)

for any positive integer n.
Now, we explain the basic properties of Fibonacci numbers and Lucas numbers.

Lemma 2.2. [1,22] For any m, n € N, we have
(i) fmfn = é(LmM - (‘Dan—n)-

(i) LyLy = Lypen + (-1)"Lpy_p.

(lll) ﬁl+4m +fn = L2mﬁ1+2m-

(V) fruram = fa = fmLnsom.

V) Ly =5f; + 4(-D™

(vi) Loy = Ly - 2(-D™

Now, we obtain the equivalent forms of g, defined as in (1.3). Note that

2-1)" -
8= U2+ BdUh + iU = o) + 25 o 4y = vt foafia + 2 oy 4,
where y = % By Lemma 2.2 (i), we have
1 1 4(-1)"
farifaz = E(LZn—l - (-D"2Ls) = ELZn—l - (5 ) .
By the first relation (2.1), we have
1 2(-1)n 1 2(-1)"
8, = Eon—lLZrl—l - (5 ) fon1+y = Efszz - (5 ) fon-1 + Y.

3 Basic identities

In Section 4, we compute

1 1 1 1
gn fn fn+1 gn+2
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for the proof of Theorem 1.2. In this section, we compute
FO = (gn+2 - gn)fr? rirl - (fr? + fr?+1)gngn+2'

In Section 2, we obtained the following two equivalent forms of g:
1
8 = Efzn—1(L2n—1 =2(-1)") +y

and

1 2(-)"
gn=§4n72— (5)f2n71+y'

— 1645

(3.1)

(3.2

In fact, three terms g,,, — 8, frfn.1» and f + fn,; in the definition of Fy can be expressed in terms

of L2n+1-

Proposition 3.1. For any positive integer n, we have
() 8u2 = 8n = 5831 = 2=D"Lons1 + 6).

(@) fifi = gzLanar — (FDM™

({il) fi + fnt = 55BLans + 4(=D"Lons1 + 18).

Proof. Here, we use the form (3.2) of g,.
(i) By Lemma 2.2 (iv) and (vi), we have

Guir — 81 = %(fz.m ~ funa) - %(—1)"(f2n+3 )

3 2
= EL4n+2 - E(_l)nLZrHl

1
= §(3L22n+1 — 2(=1)"Laps1 + 6).

(ii) By Lemma 2.2 (i), we have

4

PR = an £ = (%(Lmu . (—1>">) .

(iii) By Lemmas 2.1 (ii) and 2.2 (v), we have

1
frl[\t +frll‘+1 = (fr% +fr%+1)2 - zfgf}%‘f’l :f22n+1 - 2(fnﬁl+1)2 = E(BLZZrHl + 4(_1)’1LZVI+1 + 18)-

However, g,g,,, can be written in terms of Ly,,; and fo.1.

Proposition 3.2. For any positive integer n, we have
1
8nSn+2 = E(Lzznﬂ + 9)(L22n+1 - 6(_1)nL2n+1 - 1) + A,

where

. 25
A= %fz,m(nm+1 —6(-D)Y) +y2 withy = %

Proof. By (3.1), it follows that

(3.3)

gngn+2 = %on—lenH(LZn—l - 2(_1)n)(L2n+3 - 2(_1)n) + yz + %{erzfl(LZn—l - 2(_1))1) + f2n+3(L2n+3 - 2(_1)n)}_
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By Lemmas 2.1 (i) and 2.2 (v), we have
1
f2n—1f2n+3 :f22n+1 +1= E(L22n+1 + 9)'
By Lemmas 2.2 (ii) and (vi), we have
L2n—1L2n+3 = L4n+2 -7= L22n+1 - 5.

Note that

Lyn-1 + Lons3 = 3Lonsa.
Combining the above two identities, we have
(Lon-1 = 2(=1)"(Lonssz — 2(-D") = Lop-1Lans3 = 2(=1)"(Lon-1 + Lons3) + 4 = L3y — 6(=1)"Logsq — 1.

By (2.1) and Lemma 2.2 (iii), we have

fon-1Lan-1 = 2D + fonszLonsz = 2(=D") = (fan-2 + fanse) = 2-D"(fon-1 + fons3)
= 7on+1LZn+1 - 6(_1)nﬁn+1
= f2n+1(7L2n+1 - 6(_1)n)-

If we combine the above formulas, the proof is done. O

To simplify our formulas, we write

X = Lons1.

Then, Propositions 3.1 and 3.2 can be summarized as follows:
1
8ni2— 8 = §(3x2 - 2(-1)"x + 6),
4l 1 4
= —(x - ()M,
fn n+1 625( ( ) )
4 4 _ 1 2 n
fa +fan = 2—5(3X + 4(-1)"x + 18),

1
818nis = E(x2 +9)(x2-6(-D"x - 1) + A.

Proposition 33.Let Ky = (gn+2 - gn)fr? r?+1 - (frlz‘ + fr?+1)gngn+2' Then,
1

E =
°7 3125

{14x* + 190(-1)"x3 + 146x% + 982(-1)"x + 168} — 2%{3)(2 + 4(-1)"x + 18}A,
where x = Lyy,1 and A is the form defined as in (3.3).
Here, the term A cannot be written in terms of x = L,,.. Instead, we obtain the bound of A as follows.
Lemma 3.4. In fact, A satisfies the inequality
4 2

4
<A< x + D(7x - 6(-D)") + .
1,125 375( X 0" 1,125

2 n
ﬁx(h - 6(-1D") +

Proof. Note that L},,; < 5f2,,1 = L3;1 + 4 < (Lons1 + D2 O

4 Proof of Theorem 1.2

In this section, we prove the main theorem using the identities of the previous section. The key idea is that
all important terms can be written as the function of the variable x = L,,,.
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Theorem 4.1. (Theorem 1.2 (i)) Let n € N be even and let ¢, = %
(o) 1 -1
g, < (2—4) < g, + Cn.
k=n fk
Proof. Note that
i{%%%*L}_J%F (@)
gn fn fn+1 gn+2 gngn+2fnfn+1

where Fy = (8., — &) nfa1 — (fit + f.1)8,8n. 2> Which is the same as in Section 3.
(i) By Lemma 3.4, we have

2 4
A<—Mxx+1D)(Tx-6)+ .
375( X ) 1,125

Now, we will show that F, is positive for any even n € N. More precisely, Proposition 3.3 gives the inequality

Fy = ! (14x* + 190x3 + 146x2 + 982x + 168) — i(3x2 + 4x + 18)A
3,125 25

2
28,125

\%

(7623 + 315x% + 4,429x+1,044) > 0.
Since Fy > O for all n € N, identity (4.1) gives the inequality
1 (1 1 ) 1
— > + |+ —
En fn fn+l En+2
for all n € N. If we apply the above inequality repeatedly, it follows that
1 1 1 1 1 1 1 1
_>(_4+T)+—>(_4+T)+(4 ]+—> >Z
En fn fn+1 En+2 fn fn+1 fn+2 fn+3 En+a

which proves the left inequality of our theorem.
(ii) Note that

;L1P+L+ ! } F , (4.2
8n t Cn fi fia &uat Cne2 (81 + ) (8raz + Cns2ffrinn
where
F = (82 + Cni2) = (8 + cfifirs = (fd + Fa)(8 + C)(€nsa + Cnv2)-
Now, we will show that F is negative for all n € N. We write F = Fy — F., where
Fo = (802 — 8)fafris1 = (fi + fe1)8n8ni
and
E = (tn = caddfifirs + (Fd + fle) €8sz + Cusdy + CuCrs2)-

By Lemma 3.4, we have

Azix(7x—6)+ 4 .
375 1,125

It follows that

F, = —(14x“ + 190x3 + 146x% + 982x + 168) — —(3x2 +4x + 18)A <

(165x3 + 69x2 + 947x + 144).
3,125 5,625
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Since ¢, > 42 and g,,, > g,, we have
E > (fr? + fr?+1)(cngn+2 + Cn28y) > (fr? + fr?+1)(cngn + Cnv28ny2)-
Note that

a

f2n—1

1 1
Cn8y = E(LZn—l -2+ > E(LZH—I -2).

Since we have

1 1 1
Cn8y + Cni28nyp > E(L2n—l + Lz —4) = §(3L2n+1 -4) = EGX - 4),

we obtain
1
E > —(Gx? + 4x + 18)(3x — 4).
¢ 125( X )

It follows that

1

F=F -E«<
077 5 625

(-75x3 + 138x2 + 184x+3,528) < O.

Since F < 0 for all n € N, identity (4.2) gives the inequality

1 1 1 1
<NmZ+= |+ ————
En T Cn fn fn+1 Eni2 T Cne2

for all n € N. If we apply the above inequality repeatedly, it follows that

1 1 1 1
<Nt |t ———
8t Cn fn fn+1 8n+2 T Cn+2
<(L+L)+(L+L)+;
fi fan fava  fivs 8nis t Cnsa
v 1
<eer <& —,
;Z'nfk
which proves the right inequality of Theorem 1.2(i).

Theorem 4.2. (Theorem 1.2 (ii)) Let n € N be odd and let ¢, = leil.

1
- 1
gn—c,,<(ZF] <g,.
k=nJtk

Proof. (i) By Lemma 3.4, we have

Azix(7x+6)+ 4
375 1,125

for any odd n. It follows that

F= 1 (14x* - 190x3 + 146x2 — 982x + 168) — i(3x2 - 4x + 18)A
3,125 25
< 2 (-165x3 + 69x? — 947x + 144) < 0.
5,625

Similarly, as the proof of the previous theorem, we obtain

DE GRUYTER
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1 1 1 1
— < (—4 + = ) + —
gn fn fn+1 gn+2
for any odd n. It completes the proof of the right inequality of our theorem.
(ii) Note that

1 _(1 1,1 )_ F' 43)

8n — Cn f_r? ’ E 8ns2 ~ Cne2 - (81 — cn)(8pin — cns)fafrin ’
where
F' = (8012 = tnv2) = (€ — it = (fi + Fii0)(8y = )8z — Cnv2)-
We write F' = Fy + F., where
Fo = (82 = 8)fifits = (i + f11)818n12
and
Fo= (6n = audlfiifin + (fa + file)(Cuia + CnsaBy = CnCnsd)-

By Lemma 3.4, we have

2 4
A< —Mxx+1D)[Tx+6)+ .
375( X ) 1,125

It follows that
Fy = L(Mx“ - 190x3 + 146x% — 982x + 168) - i(3)(2 - 4x + 18)A
3,125 25
2
28,125

v

(-888x3 + 375x% — 5,041x + 396).

By Lemma 2.2 (iv), we have

= fon- 5L 5x 5x
Cn— Cnsa = f2n+3 on 1 _ 2n+1 > for x > 4.

Fonoifmes L2, +9 xX2+9  (x+1)?

Note that
1 1
Cr8pia + Cn+28pn > CnSp + Cns2Bnin > §(3L2,,+1 +4) = E(3X + 4).

It follows that

. 5x
c

1 1 1 1
~—x+14+—3x2—4x+18(—3x+4 —1):—10x3—13x2+59x—18.
(x + 1)? 625( ) 25( ) 5( ) 125( )

Thus, we have

1

F =Fy+F >
28,125

(47853 — 2,175x% + 3,193x - 3,528) > 0

for x > 4. Similarly as the proof of the previous theorem, we obtain

1 1 1 1
> (—4 + T) + —
&~ Cn fn fn+1 En+2 ~ Cn+2
for any odd n. It completes the proof of the left inequality of Theorem 1.2 (ii). O
-1
Corollary 4.3. limnﬂm(( ,‘j‘infika) - gn) - 0.

Proof. It follows from squeeze property, Theorems 4.1 and 4.2. O
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5 Proof of Theorem 1.3

There are many previous results related to the periodicity modulo m € N of various linear recurrence
sequences such as the case for the Fibonacci sequence {f,}s2, [23], and other generalized cases for
three-step Fibonacci sequence [24], (a, b)-Fibonacci sequence [25], and so on. We focus on the length of
the period modulo m of the Fibonacci sequence, which is called the Pisano period n(m) after Fibonacci’s
real name, Leonard Pisano. For example,

n2)=3, n1(3)=8, n4)=6, n()=20, a(6)=24,....

Now, we compute the value of l (ZZ‘;"%) J using the periodicity of the Fibonacci sequence modulo 5.
k

Lemma 5.1. [23] The Pisano period t(5) is 20. Precisely, the Fibonacci sequence {fy, fi, f>, f3, ...,} modulo 5
has the repeating pattern

{O’ 1’ 17 2’ 3! 0! 3’ 3! 1! 4’ O’ 4’ 4! 3! 2! O! 2’ 2! 4’ 1}
of length 20. It is clear that n(5) = 20, since f,o = 0 (mod 5) and f» = 1(mod 5).

2.5 + 1
75 fon1

Proof of Theorem 1.3. By Theorem 1.2 and the inequality

0 -1
(5455
k -

k=n

1
<3 for n > 4, we have

Now, we divide into the integer part and the decimal part of

2 2 2

2o = | 20 | + {2}

By Lemma 5.1, the sequence {f5,_1}5; modulo 5 has the repeating pattern
{1,2,0,3,4,4,3,0,2,1}

of length 10.
(i) f n=4,6,8,10,12... then the sequence {2f;, 2fi1, 2fi5, 2fi9, 2f>3 ...} modulo 5 has the repeating
pattern

{1,3,0,2, 4}

2 2
{oef - {757 o2
when n is even.

(ii) If n =5,7,9,11,13 ..., then the sequence {2fy, 2fi3, 2fi7, 2fn, 2f>, ...} modulo 5 has the repeating
pattern

of length 5. It means that

{3! 1) 4’ 2’ 0}

222

of length 5. It means that

when n is odd.
By (5.2) and (5.3), we have

2 n B g_ . n+?2
E(—l)fzﬂ,I—L( Dfos J+{ : } (5.4)
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for all n > 4. Combining (5.1) and (5.4), we conclude that

-1
1 2(-1)n 2
[(1{27171?) ‘ =fa = faa + s {n ;r } (5.5)

forn > 4. We can easily show that identity (5.5) holds for n < 3 by direct computation. It completes the proof
of Theorem 1.3. O

6 How to obtain the formula g,

In this final section, we need to explain how we guess the formula

2 25
&n :fri‘ _frll‘—l + E(_l)ann—l + 7_5

By using a computer software program, we have constructed the following table for the values of
1)
o = (Zk-nF) - f.
k

Table 1: The values of h, for3<n<é6

" (2= i)_l f = foa (== i)_l— (FE- )
k="fl? k=nfl? n n-1

3 13.032567 --- 15 -1.967432

4 70.269868 --- 65 5.269869

5 530.455702 --- 544 -13.544298

6 3506.661126 --- 3,471 35.661126

One can see that h, is positive for even n and negative for odd n in Table 1. Since |h,| goes to infinity
as n — oo, we must calculate h,. Some h,’s can be written as follows:

hy = -1.9674 ---=-2 + 0.0325 ---

h, =5.2698 ---= 5 + 0.2698 ---

hs = —13.5442 ---=-14 + 0.4557 ---
hg = 35.6611 ---= 35 + 0.6611 ---

h; = -93.1409 ---=-94 + 0.8590 ---
hg = 244.0598 ---= 243 + 1.0598 --- .

The above observation gives us the following expectation:
hn:dn+%(n—3)+yn,
where d, € Z and y, approaches %\/— = 0.0596284793999943 --- . See the following values of d,, in Table 2.

Table 2: The values of d,, for 1<n<18

n d, n d, n d,

1 -1 7 -94 13 -30,012
2 0 8 243 14 78,565
3 -2 9 -640 15 -205,694
4 5 10 1,671 16 538,505
5 -14 1 - 4,380 17 -1,409,834
6 35 12 11,461 18 3,690,983
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Finally, we obtain the explicit form of d,,, which is the main part of this section.

Theorem 6.1. For any positive integer n, we have

_ 2"

dy -

ﬁM—ém—ﬂ

By Theorem 6.1, it follows that

2(-1)n
&= fi - fia+ 2wy,
where y = % From the above table, the sequence {d,} satisfies the relation
dn = —2dn_1 + 2dn_2 + dn_3 -1, n=6 (6.1)
with
d=-2, d,=5, ds=-14. (6.2)

If we define e, := d, — d,_1, then the relation (6.1) is reduced to
e,=-3e,1—€e,2—1
with
e, =7, e5=-19.
Note that

es = —(3es + ey + 1) = —(faes + fres + fi o)
e;=8e+3e,+2=fees + fue, + o f3
eg = —(2les + 8e; + 6) = —(fzes + foes + f314).

One can easily prove the following by induction.

Proposition 6.2. For any n > 6, we have

en = (D)"Y fon_s€5 + fon-10€4 + fa_s fa-s}.

Lemma 6.3. Let m € N.

() Y fak-1 = fom Pmets Dpsfaker = fom fomes-
(i) f{ +f7 ++fm = fnfsr.

Wil f7+f5 +-+ o = 5(fan + 20).

@) f3 + 7+ fin = s(finv2 = 20 = D).
(V) 57 + fon = 21 — 2-D".

Proof. The formulas (i), (ii), (iii), and (iv) are known. Here, we prove (v) only. By Lemma 2.2 (v), we have
Sfa + fon = Ly + fon = 4(-D.
Since L, = f,_1 + frs1 and fo, = fuLn, we have
S + fon = 2fat for + fin) = 4D
By Lemma 2.1 (i) and (ii), we have
Sfa + fon = 20f7 + f7) = 2D = 21 - 2D O

Lemma 6.4. Let m be any positive integer. Then,

@) T DY = GO fon fonsa-
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(ii) kazl(_l)kﬁk+2 = (_1)mfmfm+3-
B+ ++ f m is even
(f22 +fl% +"'+fr$1—1) ~ fnfms1s m is odd '

Proof. Since the proofs are similar, we prove (i) only. If m is even, then by Lemma 6.3 (i), we have

(iit) Yty (D fic firr = {

YD = (fo + fu) + (fo + fo) 4 +(foma + fom) =5 + 7 + -+ fom1 = fnfnar:

k=1

If m is odd, then by Lemma 6.3 (i), we have

Z(_l)kuk = (f3 +f7 + "'+f2m—3) _me :fm—lfm _mem = _fmfm+1-

k=1

It completes the proof of (i). O

Proof of Theorem 6.1. Note that for any positive integer n > 6, we have
n-5 n-5 n-5 n-5
dy=ds+ ) exs=-14+7) (D = 19) (-D¥frez + Y. (DX fir-
k=1 k=1 k=1 k=1
(i) If n is odd, then by Lemma 6.4, we have
dy = =14 + Tfocsfoos = fnsfoa + (5 + 7 + - +fis) = =14 = fus(19n2 — Tfacs) + (fF + f2 + -+ +f3_5).
A direct computation shows that
fn—5(19fn—2 - 7ﬁ1—4) :fn—S(ﬁHA _ﬁl—l) :fn—S(ﬁz+3 +fn+1 +fn—3 +fn—4) :frf—l +fr$—2 +fr%—4 - 14 +fn—5ﬁ1—4-
It follows that
dy = —(frf-1 +fr%—2 +fr$—4) — fa-sf-s + (f22 +fz% + "'+fr%—5)-
By Lemma 6.3 (ii), we have
fi+6 ++fis=fausha

By Lemma 6.3 (iii) and (v), we have
1 1 2 1
dy = _(f12 +f3? + "'+fr%—2) - f;371 = —E(fzn—z +n-1) - E(Zon—l —fn2-2) = _Eon—l - g(n -3).
(ii) If n is even, then by Lemma 6.4, we have
n-5 n-5 n-5
dy=-14+7 Y (~D¥fu =19 Y (D + Y (D fin
k=1 k=1 k=1

=14+ fos(1%2 = Thas) + (f3 + fi +++fa6) = fa-sfo-se
Similarly as in the case when n is odd, we obtain
foosQa = Tfaa) = fao1 + faa + fas + 14 + fasfua
By Lemma 6.3 (iv) and (v), we conclude that

dnzf)%—l +fnz—2 +fr%—4 + (f22 +f3 +"'+f;$-e)
=(f3 +fF ++fr) + fia

- %(fzn—z ne1)+ %(zfz”_l fn2+2)
2 1
= Efzn—l - E(” -3).

It completes the proof of Theorem 6.1. O
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We will finish this section with proving Theorem 6.1 again using the theory of linear recurrence rela-
tions. Note that the characteristic equation of a nonhomogeneous linear recurrence relation (6.1) is

(x = D(x? + 3x + 1) = 0 and has three distinct roots —-a?, -2, and 1, where a = # and B = # It is

easy to show that (6.1) has a particular solution d,, = —%n. Thus, there exist constants A, B, and C such that
dy = A(-a®)" + B(—B2)" + C - %n.
From the conditions (6.2), the constants A, B, and C satisfy
a6A+,BéB—C:%, a8A+,BSB+C=§, al°A + B°B - C = 13.

Solving the system of linear equations, we obtain

201882 - 47) 2(18a - 47)  —703B? + 2902 + 29B2 - 65

T saS(a? + D@ - B2’ T 5B+ DB - )’ - 5(a2 + 1)(B% + 1)

The forms of A, B, and C are too complicated, but we can simplify them. Since @ and S are roots of
x2 - x = 1= 0, we obtain

A-—2 g2  ¢-3
5a(a - B) 5B(a - B) 5
It follows that
2n-1 _ A2n-1
dy= 2P 31,
5 a-p 5 5

This is exactly the same as the form in Theorem 6.1 by Binet’s formula.

7 Conclusion and future work

-1
In this article, we find an explicit formula for l(z,f’;nfla) J It is given by the following expression:
k
2(-1)" n+?2
fi = Fia + T Jwm1T {T}

To obtain the desired formula, we start with guessing the leading terms f, — f, ; by observing

o 1\! 4 4

Sag) - Gh-F)

lim 7
n—co 1

0.

-1
After that, we note that the values of the sequence (Zﬁn%) — (f4 = fi)) are proportional to f? as
k

n increases, and we obtain the remaining term by direct computation. We give the detailed process
in Section 6.

1
fi
for the problem of obtaining the formula for the reciprocal of the sums of the sequences that have homo-
geneous and non-homogeneous recurrence relations with second-order constant coefficients and some
other related problems.

-1
This work might help in finding the formula for l ( Yien ) J fors = 3 or s > 5 and might also be useful
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