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Abstract: Let fn be the nth Fibonacci number with f f 11 2= = . Recently, the exact values of k n f
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have been obtained only for s 1, 2= , where x⌊ ⌋ is the floor function. It has been an open problem for s 3≥ .
In this article, we consider the case of s 4= and show that
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where x x x{ } ≔ − ⌊ ⌋.
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1 Introduction and statement of main results

Let f 00 = , f 11 = , and f f fn n n1 2= +
− −

for all n 2≥ . The number fn is called the nth Fibonacci number. The
Fibonacci sequence is important and widely used in many mathematical areas, especially related to number
theory and combinatorics. For more detailed information, see [1]. Also, many generalizations of the Fi-
bonacci numbers have been introduced in [2–6]. For the recent results in view of the classical identities
such as Binet’s formula, the generating function, Catalan’s identity, Cassini’s identity, and some binomial
sums, see [7–10].

By contrast, the study on the reciprocal of the sum of convergent series is a relatively new research field,
see the references [6,11–21]. For example, the reciprocal sum of Fibonacci numbers was studied in 2008 [17].
By Binet’s formula, fn can be written as the explicit form fn
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for any nonnegative integer n, where
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− are two solutions of x x 1 02
− − = . Since fn is comparable to αn for sufficiently large

n, we see that
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converges for all s 1≥ . It follows that
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where ⌊⋅⌋ is the floor function. In this context, it is natural to consider the following problem.

Problem 1.1. For an integer s 3,≥ find explicit formulas for k n f
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The above problem has been an open problem.
In this article, we give an answer for Problem 1.1 for s 4= . It turns out that the formula itself is more

complicated in the sense that it includes some unexpected terms, and the method of the proof is essentially
different from those of (1.1) and (1.2). For all n �∈ , define
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In Section 6, we explain how we can find gn.
The following is the main theorem of this article.
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As a consequence of Theorem 1.2, we have the following.

Theorem 1.3. For any positive integer n, we have
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where x x x{ } [ ]≔ − is the decimal part of x.

In Section 2, we introduce the basic properties of the Fibonacci numbers and Lucas numbers, which are
defined as L L2, 10 1= = , and L L Ln n n1 2= +

− −
for all n 2≥ . These Lucas numbers are used for the proof of

our main result. In Section 3, we introduce the basic identities, which are used directly to prove our main
theorem. The key idea is that the principal part

g g f f f f g gn n n n n n n n2
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4 4
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4
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can be expressed as a polynomial with respect to one variable L n2 1+
(see Proposition 3.3). In Section 4, we

prove Theorem 1.2 using the identities proved in Section 3. In Section 5, we use the periodicity of fn modulo 5
to prove Theorem 1.3. In Section 6, we explain how we obtain the formula gn.
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Remark 1.4. Our main theorem is the first result regarding Problem 1.1. We expect that our result and
method can be used to solve the problem for any s 3≥ and any linear recurrence sequences.

2 Fibonacci numbers and Lucas numbers

The Fibonacci numbers satisfy the following well-known useful identities.

Lemma 2.1. [1] For any positive integers n and k, we have
(i) f f f f1n n k n k

n k
k

2 2( )= + −
+ −

+ ,

(ii) f f fn n n2 1
2

1
2

= +
+ +

.

It is more efficient to use the Lucas numbers when we compute the Fibonacci numbers. The Lucas
numbers are defined as follows:

L L L n L L Lfor all 3 with 2, 1, 3.n n n1 2 0 1 2= + ≥ = = =
− −

Then, the Lucas numbers are related to the Fibonacci numbers as follows:
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for any positive integer n.
Now, we explain the basic properties of Fibonacci numbers and Lucas numbers.

Lemma 2.2. [1,22] For any m n, �∈ , we have
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Now, we obtain the equivalent forms of gn defined as in (1.3). Note that
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By the first relation (2.1), we have
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In Section 4, we compute

g f f g
1 1 1 1
n n n n

4
1

4
2

⎜ ⎟
⎛

⎝

⎞

⎠
− + +

+ +

1644  WonTae Hwang et al.



for the proof of Theorem 1.2. In this section, we compute
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In Section 2, we obtained the following two equivalent forms of gn:
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In fact, three terms g gn n2 −
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Proposition 3.1. For any positive integer n, we have
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Proof. Here, we use the form (3.2) of gn.
(i) By Lemma 2.2 (iv) and (vi), we have
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f f f f L1
5

1 .n n n n n
n4

1
4

1
4

2 1
4

( ) ⎛
⎝

( ( ) )⎞
⎠

= = − −
+ + +

(iii) By Lemmas 2.1 (ii) and 2.2 (v), we have
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Proposition 3.2. For any positive integer n, we have
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By Lemmas 2.1 (i) and 2.2 (v), we have
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If we combine the above formulas, the proof is done. □

To simplify our formulas, we write

x L .n2 1≔
+

Then, Propositions 3.1 and 3.2 can be summarized as follows:

g g x x

f f x

f f x x

g g x x x A

1
5

3 2 1 6 ,

1
625

1 ,

1
25

3 4 1 18 ,

1
125

9 6 1 1 .

n n
n

n n
n

n n
n

n n
n

2
2

4
1

4 4

4
1

4 2

2
2 2

( ( ) )

( ( ) )

( ( ) )

( )( ( ) )

− = − − +

= − −

+ = + − +

= + − − − +

+

+

+

+

Proposition 3.3. Let F g g f f f f g gn n n n n n n n0 2
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and A is the form defined as in (3.3).

Here, the term A cannot be written in terms of x L n2 1=
+
. Instead, we obtain the bound of A as follows.

Lemma 3.4. In fact, A satisfies the inequality
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4 Proof of Theorem 1.2

In this section, we prove the main theorem using the identities of the previous section. The key idea is that
all important terms can be written as the function of the variable x L n2 1=

+
.

1646  WonTae Hwang et al.



Theorem 4.1. (Theorem 1.2 (i)) Let n �∈ be even and let cn f
1
n2 1

=

−

.

g
f

g c1 .n
k n k

n n4

1

⎜ ⎟
⎛

⎝

⎞

⎠
∑< < +

=

∞

−

Proof. Note that

g f f g
F

g g f f
1 1 1 1 ,
n n n n n n n n

4
1

4
2

0

2
4

1
4⎜ ⎟

⎛

⎝

⎞

⎠
− + + =

+ + + +

(4.1)

where F g g f f f f g gn n n n n n n n0 2
4

1
4 4

1
4

2( ) ( )= − − +
+ + + +

, which is the same as in Section 3.
(i) By Lemma 3.4, we have

A x x2
375

1 7 6 4
1,125

.( )( )≤ + − +
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Since c cn n 2>
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and g gn n2 >
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Similarly, as the proof of the previous theorem, we obtain
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4

1
4 4

1
4

2 2 2( ) ( )( )′ ≔ − + + + −
+ + + +

+ +

By Lemma 3.4, we have

A x x2
375

1 7 6 4
1,125

.( )( )≤ + + +

It follows that

F x x x x x x A

x x x

1
3,125

14 190 146 982 168 1
25

3 4 18

2
28,125

888 375 5,041 396 .

0
4 3 2 2

3 2

( ) ( )

( )

= − + − + − − +

≥ − + − +

By Lemma 2.2 (iv), we have

c c f f
f f

L
L

x
x

x
x

x5
9

5
9

5
1

for 4.n n
n n

n n

n

n
2

2 3 2 1

2 1 2 3

2 1

2 1
2 2 2( )

− =

−

=

+

=

+

≥

+

≥
+

+ −

− +

+

+

Note that

c g c g c g c g L x1
5

3 4 1
5

3 4 .n n n n n n n n n2 2 2 2 2 1( ) ( )+ > + > + = +
+

+ +
+

+

It follows that

F x
x

x x x x x x x5
1

1
625

1 1
25

3 4 18 1
5

3 4 1 1
125

10 13 59 18 .c 2
4 2 3 2

( )
( ) ( )⎛

⎝
( ) ⎞

⎠
( )′ >

+

⋅ + + − + + − = − + −

Thus, we have

F F F x x x1
28,125

474 2,175 3,193 3,528 00
3 2( )′ = + ′ > − + − >

for x 4≥ . Similarly as the proof of the previous theorem, we obtain

g c f f g c
1 1 1 1

n n n n n n
4

1
4

2 2
⎜ ⎟
⎛

⎝

⎞

⎠−

> + +

−
+ +

+

for any odd n. It completes the proof of the left inequality of Theorem 1.2 (ii). □

Corollary 4.3. glim 0n k n f n
1 1

k
4⎜ ⎟

⎛
⎝

⎞
⎠

( )
∑ − =

→∞
=

∞

−

.

Proof. It follows from squeeze property, Theorems 4.1 and 4.2. □
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5 Proof of Theorem 1.3

There are many previous results related to the periodicity modulo m �∈ of various linear recurrence
sequences such as the case for the Fibonacci sequence fn n 0{ }

=

∞ [23], and other generalized cases for
three-step Fibonacci sequence [24], a b,( )-Fibonacci sequence [25], and so on. We focus on the length of
the period modulo m of the Fibonacci sequence, which is called the Pisano period π m( ) after Fibonacci’s
real name, Leonard Pisano. For example,

π π π π π2 3, 3 8, 4 6, 5 20, 6 24, .( ) ( ) ( ) ( ) ( )= = = = = …

Now, we compute the value of k n f
1 1

k
4

⎢

⎣
⎢

⎥

⎦
⎥( )

∑

=

∞

−

using the periodicity of the Fibonacci sequence modulo 5.

Lemma 5.1. [23] The Pisano period π 5( ) is 20. Precisely, the Fibonacci sequence f f f f, , , , ,0 1 2 3{ }… modulo 5
has the repeating pattern

0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1{ }

of length 20. It is clear that π 5 20( ) = , since f 0 mod 520 ( )≡ and f 1 mod 521 ( )≡ .

Proof of Theorem 1.3. By Theorem 1.2 and the inequality f
2 5
75

1 1
5n2 1

± <

−

for n 4≥ , we have

f
f f f1 2

5
1 .

k n k
n n

n
n4

1
4

1
4

2 1⎜ ⎟

⎢

⎣

⎢
⎢

⎛

⎝

⎞

⎠

⎥

⎦

⎥
⎥

⎢

⎣⎢
( ) ⎥

⎦⎥
∑ = − + −

=

∞

−

− −
(5.1)

Now, we divide into the integer part and the decimal part of

f f f2
5

1 2
5

1 2
5

1 .n
n

n
n

n
n2 1 2 1 2 1( ) ⎢

⎣⎢
( ) ⎥

⎦⎥
( )

{ }
− = − + −

− − −

By Lemma 5.1, the sequence f n n2 1 1{ }
− =

∞ modulo 5 has the repeating pattern

1, 2, 0, 3, 4, 4, 3, 0, 2, 1{ }

of length 10.
(i) If n 4, 6, 8, 10, 12= … then the sequence f f f f f2 , 2 , 2 , 2 , 27 11 15 19 23{ }… modulo 5 has the repeating

pattern

1, 3, 0, 2, 4{ }

of length 5. It means that

f n2
5

2
5n2 1{ } { }

=

+

−
(5.2)

when n is even.
(ii) If n 5, 7, 9, 11, 13= … , then the sequence f f f f f2 , 2 , 2 , 2 , 2 ,9 13 17 21 25{ }… modulo 5 has the repeating

pattern

3, 1, 4, 2, 0{ }

of length 5. It means that

f n2
5

2
5n2 1{ } { }

− =

+

−
(5.3)

when n is odd.
By (5.2) and (5.3), we have

f f n2
5

1 2
5

1 2
5

n
n

n
n2 1 2 1( ) ⎢

⎣⎢
( ) ⎥

⎦⎥ { }
− = − +

+

− −
(5.4)
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for all n 4≥ . Combining (5.1) and (5.4), we conclude that

f
f f f n1 2 1

5
2

5k n k
n n

n
n4

1
4

1
4

2 1⎜ ⎟

⎢

⎣

⎢
⎢

⎛

⎝

⎞

⎠

⎥

⎦

⎥
⎥

( )
{ }

∑ = − +

−

−

+

=

∞

−

− −
(5.5)

for n 4≥ . We can easily show that identity (5.5) holds for n 3≤ by direct computation. It completes the proof
of Theorem 1.3. □

6 How to obtain the formula gn

In this final section, we need to explain how we guess the formula

g f f f2
5

1 2 5
75

.n n n
n

n
4

1
4

2 1( )= − + − +
− −

By using a computer software program, we have constructed the following table for the values of

h
f

f f1 .n k n
k

n n4

1
4

1
4

⎜ ⎟
⎛

⎝

⎞

⎠
( )∑≔ − −

=

∞

−

−

One can see that hn is positive for even n and negative for odd n in Table 1. Since hn∣ ∣ goes to infinity
as n → ∞, we must calculate hn. Some hn’s can be written as follows:

h
h
h
h
h
h

1.9674 2 0.0325
5.2698 5 0.2698

13.5442 14 0.4557
35.6611 35 0.6611

93.1409 94 0.8590
244.0598 243 1.0598 .

3

4

5

6

7

8

= − ⋯=− + ⋯

= ⋯= + ⋯

= − ⋯=− + ⋯

= ⋯= + ⋯

= − ⋯=− + ⋯

= ⋯= + ⋯

The above observation gives us the following expectation:

h d n γ1
5

3 ,n n n( )= + − +

where dn �∈ and γn approaches 5 0.05962847939999432
75 = ⋯ . See the following values of dn in Table 2.

Table 1: The values of hn for 3 ≤ n ≤ 6

n
⎛
⎝

⎞
⎠

∑
=k n

∞
f
1

−1

k
4

f f−n n
4

−1
4

⎛
⎝

⎞
⎠

∑ ( )= f f− −k n
∞

f n n
1

−1
4

−1
4

k
4

3 ⋯13.032567 15 −1.967432
4 ⋯70.269868 65 5.269869
5 ⋯530.455702 544 −13.544298
6 ⋯3506.661126 3,471 35.661126

Table 2: The values of dn for 1 ≤ n ≤ 18

n dn n dn n dn

1 −1 7 −94 13 − 30,012
2 0 8 243 14 78,565
3 −2 9 −640 15 − 205,694
4 5 10 1,671 16 538,505
5 −14 11 − 4,380 17 − 1,409,834
6 35 12 11,461 18 3,690,983
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Finally, we obtain the explicit form of dn, which is the main part of this section.

Theorem 6.1. For any positive integer n, we have

d f n2 1
5

1
5

3 .n
n

n2 1
( )

( )=

−

− −
−

By Theorem 6.1, it follows that

g f f γ2 1
5

,n n n
n

4
1

4 ( )
= − +

−

+
−

where γ 2 5
75= . From the above table, the sequence dn{ } satisfies the relation

d d d d n2 2 1, 6n n n n1 2 3= − + + − ≥
− − −

(6.1)
with

d d d2, 5, 14.3 4 5= − = = − (6.2)

If we define e d dn n n 1≔ −
−
, then the relation (6.1) is reduced to

e e e3 1n n n1 2= − − −
− −

with

e e7, 19.4 5= = −

Note that

e e e f e f e f f
e e e f e f e f f
e e e f e f e f f

3 1
8 3 2

21 8 6 .

6 5 4 4 5 2 4 1 2

7 5 4 6 5 4 4 2 3

8 5 4 8 5 6 4 3 4

( ) ( )

( ) ( )

= − + + = − + +

= + + = + +

= − + + = − + +

One can easily prove the following by induction.

Proposition 6.2. For any n 6≥ , we have

e f e f e f f1 .n
n

n n n n
1

2 8 5 2 10 4 5 4( ) { }= − + +

+

− − − −

Lemma 6.3. Let m �∈ .
(i) f f fk

m
k m m1 4 1 2 2 1∑ =

=
− +

, f f fk
m

k m m1 4 1 2 2 3∑ =

=
+ +

.

(ii) f f f f fm m m1
2

2
2 2

1+ + ⋯+ =
+
.

(iii) f f f f n2n n1
2

3
2

2 1
2 1

5 4( )+ + ⋯+ = +
−

.

(iv) f f f f n2 1n n2
2

4
2

2
2 1

5 4 2( )+ + ⋯+ = − −
+

.

(v) f f f5 2 2 1n n n
n2

2 2 1 ( )+ = − −
+

.

Proof. The formulas (i), (ii), (iii), and (iv) are known. Here, we prove (v) only. By Lemma 2.2 (v), we have

f f L f5 4 1 .n n n n
n2

2
2

2 ( )+ = + − −

Since L f fn n n1 1= +
− +

and f f Ln n n2 = , we have

f f f f f5 2 4 1 .n n n n n
n2

2 1 1 1
2( ) ( )+ = + − −

+ − +

By Lemma 2.1 (i) and (ii), we have

f f f f f5 2 2 1 2 2 1 . □n n n n
n

n
n2

2
2

1
2

2 1( ) ( ) ( )+ = + − − = − −
+ +

Lemma 6.4. Let m be any positive integer. Then,
(i) f f f1 1k

m k
k

m
m m1 2 1( ) ( )∑ − = −

=
+
.
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(ii) f f f1 1k
m k

k
m

m m1 2 2 3( ) ( )∑ − = −

=
+ +

.

(iii) f f
f f f m is even
f f f f f m is odd

1
,

,k
m k

k k
m

m m m
1 1

2
2

4
2 2

2
2

4
2

1
2

1
( )

⎧
⎨
⎩( )

∑ − =

+ + ⋯+

+ + ⋯+ −

=
+

− +

.

Proof. Since the proofs are similar, we prove (i) only. If m is even, then by Lemma 6.3 (i), we have

f f f f f f f f f f f f1 .
k

m
k

k m m m m m
1

2 2 4 6 8 2 2 2 3 7 2 1 1( ) ( ) ( ) ( )∑ − = − + + − + + ⋯+ − + = + + ⋯+ =

=

− − +

If m is odd, then by Lemma 6.3 (i), we have

f f f f f f f f L f f1 .
k

m
k

k m m m m m m m m
1

2 3 7 2 3 2 1 1( ) ( )∑ − = + + ⋯+ − = − = −

=

− − +

It completes the proof of (i). □

Proof of Theorem 6.1. Note that for any positive integer n 6≥ , we have

d d e f f f f14 7 1 19 1 1 .n
k

n

k
k

n
k

k
k

n
k

k
k

n
k

k k5
1

5

5
1

5

2
1

5

2 2
1

5

1( ) ( ) ( )∑ ∑ ∑ ∑= + = − + − − − + −

=

−

+

=

−

=

−

+

=

−

+

(i) If n is odd, then by Lemma 6.4, we have

d f f f f f f f f f f f f f14 7 19 14 19 7 .n n n n n n n n n n5 4 5 2 2
2

4
2

5
2

5 2 4 2
2

4
2

5
2( ) ( ) ( )= − + − + + + ⋯+ = − − − + + + ⋯+

− − − − − − − − −

A direct computation shows that

f f f f f f f f f f f f f f f f19 7 14 .n n n n n n n n n n n n n n n n5 2 4 5 4 1 5 3 1 3 4 1
2

2
2

4
2

5 4( ) ( ) ( )− = − = + + + = + + − +
− − − − + − − + + − − − − − − −

It follows that

d f f f f f f f f .n n n n n n n1
2

2
2

4
2

5 4 2
2

4
2

5
2( ) ( )= − + + − + + + ⋯+

− − − − − −

By Lemma 6.3 (ii), we have

f f f f f .n n n1
2

2
2

5
2

5 4+ + ⋯+ =
− − −

By Lemma 6.3 (iii) and (v), we have

d f f f f f n f f f n1
5

1 1
5

2 2 2
5

1
5

3 .n n n n n n n1
2

3
2

2
2

1
2

2 2 2 1 2 2 2 1( ) ( ) ( ) ( )= − + + ⋯+ − = − + − − − − = − − −
− − − − − −

(ii) If n is even, then by Lemma 6.4, we have

d f f f f

f f f f f f f f

14 7 1 19 1 1

14 19 7 .

n
k

n
k

k
k

n
k

k
k

n
k

k k

n n n n n n

1

5

2
1

5

2 2
1

5

1

5 2 4 2
2

4
2

6
2

5 4

( ) ( ) ( )

( ) ( )

∑ ∑ ∑= − + − − − + −

= − + − + + + ⋯+ −

=

−

=

−

+

=

−

+

− − − − − −

Similarly as in the case when n is odd, we obtain

f f f f f f f f19 7 14 .n n n n n n n n5 2 4 1
2

2
2

4
2

5 4( )− = + + + +
− − − − − − − −

By Lemma 6.3 (iv) and (v), we conclude that

d f f f f f f
f f f f

f n f f

f n

1
5

1 1
5

2 2

2
5

1
5

3 .

n n n n n

n n

n n n

n

1
2

2
2

4
2

2
2

4
2

6
2

2
2

4
2

2
2

1
2

2 2 2 1 2 2

2 1

( )

( )

( ) ( )

( )

= + + + + + ⋯+

= + + ⋯+ +

= − + + − +

= − −

− − − −

− −

− − −

−

It completes the proof of Theorem 6.1. □
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We will finish this section with proving Theorem 6.1 again using the theory of linear recurrence rela-
tions. Note that the characteristic equation of a nonhomogeneous linear recurrence relation (6.1) is

x x x1 3 1 02( )( )− + + = and has three distinct roots α β,2 2
− − , and 1, where α 1 5

2=

+ and β 1 5
2=

− . It is

easy to show that (6.1) has a particular solution d nn
1
5= − . Thus, there exist constants A B, , and C such that

d A α B β C n1
5

.n
n n2 2( ) ( )= − + − + −

From the conditions (6.2), the constants A B, , and C satisfy

α A β B C α A β B C α A β B C7
5

, 29
5

, 13.6 6 8 8 10 10
+ − = + + = + − =

Solving the system of linear equations, we obtain

A β
α α α β

B α
β β β α

C α β α β
α β

2 18 47
5 1

, 2 18 47
5 1

, 7 29 29 65
5 1 1

.
2

6 2 2 2

2

6 2 2 2

2 2 2 2

2 2
( )

( )( )

( )

( )( ) ( )( )
= −

−

+ −

= −

−

+ −

=

− + + −

+ +

The forms of A B, , and C are too complicated, but we can simplify them. Since α and β are roots of
x x 1 02

− − = , we obtain

A
α α β

B
β α β

C2
5

, 2
5

, 3
5

.
( ) ( )

=

−

= −

−

=

It follows that

d α β
α β

n2
5

1 3
5

1
5

.n
n

n n2 1 2 1
( )= −

−

−

+ −

− −

This is exactly the same as the form in Theorem 6.1 by Binet’s formula.

7 Conclusion and future work

In this article, we find an explicit formula for k n f
1 1

k
4

⎢

⎣
⎢

⎥

⎦
⎥( )

∑

=

∞

−

. It is given by the following expression:

f f f n2 1
5

2
5

.n n
n

n
4

1
4

2 1
( )

{ }
− +

−

−

+

− −

To obtain the desired formula, we start with guessing the leading terms f fn n
4

1
4

−
−

by observing

f f

f
lim 0.

n

k n f n n

n

1 1
4

1
4

4
k
4 ( )

( )
∑ − −

=

→∞

=

∞

−

−

After that, we note that the values of the sequence f fk n f n n
1 1

4
1

4
k
4 ( )

( )
∑ − −

=

∞

−

−

are proportional to fn
2 as

n increases, and we obtain the remaining term by direct computation. We give the detailed process
in Section 6.

This work might help in finding the formula for k n f
1 1

k
s

⎢

⎣
⎢

⎥

⎦
⎥( )

∑

=

∞

−

for s 3= or s 5≥ and might also be useful

for the problem of obtaining the formula for the reciprocal of the sums of the sequences that have homo-
geneous and non-homogeneous recurrence relations with second-order constant coefficients and some
other related problems.
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