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Abstract: Let f be a C2-diffeomorphism with Axiom A and no cycle condition on a two-dimensional smooth
manifold. In this article, we prove that if f is C2-robustly weak measure expansive, then it is Q2-Anosov.
Moreover, we expand the results of the C2-diffeomorphism case into the C2-vector field on a three-dimen-
sional smooth manifold. Let X be aC2-vector field with Axiom A and no cycle condition. We prove that if X is
C2-robustly weak measure expansive, then it is Q2-Anosov.

Keywords: expansive, weak measure expansive, continuum-wise expansive, Q2-Anosov, Axiom A

MSC 2020: Primary 37C20, 37C55, 37D20

1 Introduction

Under mainlyC1-topology, the main research topic of dynamical systems is the study of hyperbolicity using
various properties for diffeomorphisms or flows. Franks’ lemma [1] and Closing lemma [2], famous proper-
ties in dynamical system studies, only work well for theC1-topology and play an essential role several times
in the proof. In fact, we can see that Franks’ lemma is used in the proof process of [3,4] and [5], and the
closing lemma is used in [6] and [7]. To study more similar (closer) dynamics to a given dynamics, many
mathematicians are studying C2-topology. The papers that directly motivated our research are the
following.

Theorem A. (Pujals and Sambarino [8]) Let f be a C2 surface diffeomorphism and fΛ Ω( )⊂ be a compact
f -invariant set admitting a dominated splitting T M E F.Λ = ⊕ Assume that all periodic points in Λ are hyper-
bolic saddles. Then Λ Λ Λ ,1 2= ∪ where
– Λ1 is a hyperbolic set and
– Λ2 is the union of finitely many pairwise disjoint normally hyperbolic circles C C, , k1 …

such that f C Cm
i ii ( ) = and f C C:m

i ii → is an irrational rotation for some m 1.i ≥ Here mi denotes the minimal
number such that f C Cm

i ii ( ) = .

From this result, the following two theorems have been proved by adding a shadowing property view
point.

Theorem B. (Sakai [9]) Let f satisfy C2-stably shadowing property on a compact surface. If periodic points
of f are dense in the non-wandering set and there is a dominated splitting on the closure of periodic points
of saddle type, then f satisfies both Axiom A and the strong transversality condition.
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Theorem C. (Lee [10]) Let f satisfy C2-stably inverse shadowing property on a compact surface. If periodic
points of f are dense in the non-wandering set and there is a dominated splitting on the closure of periodic
points of saddle type, then f satisfies both Axiom A and the strong transversality condition.

In addition, Artigue showed the following by adding an expansivity view point in [11].

Theorem D. (Artigue [11]) Let f be a C2-diffeomorphism with Axiom A and no cycle condition on a compact
surface. If it is C2-robustly CW-expansive, then f is Q2-Anosov. Here, the meaning of a Q2-Anosov diffeo-
morphism is that it is Axiom A, has no cycles, and there is no 2-tangency.

It is well known that the relationship between the various expansivities is as follows.

In particular, we refer to [3] for an example of a homeomorphism f that satisfies weak measure
expansivity but not measure expansivity. More precisely, an irrational rotation map on the unit circle is
weak measure expansive but not Lebesgue measure expansive. From this example, we can see that weak
measure expansivity is clearly different from other expansivities, and it can be seen that the research value
is a sufficient subject.

Theorem D became the motivation of one of the main theorems in this article as follows.

Theorem 1.1. Let f be a C2-star diffeomorphism with Axiom A and no cycle condition on a two-dimensional
smooth manifold. If f is a C2-robustly weak measure expansive diffeomorphism, then it is Q2-Anosov.

This problem is worth studying because there is no relationship between CW-expansivity and weak
measure expansivity. Particularly,Q1-Anosov is quasi-Anosov and quasi-Anosov is closely related to expan-
sivities. The fact that a C1-robustly expansive, N -expansive, CW-expansive, measure expansive, and weak
measure expansive diffeomorphism is quasi-Anosov has already been proven. However, since we do not
know the relation between weak measure expansive diffeomorphism and Q2-Anosov in C2-dynamics,
we will prove it in Theorem 1.1.

Moreover, we propose an extension of theQ2-Anosov definition of a diffeomorphism to a flow and prove
the following second main result.

Theorem 1.2. Let X be a C2-vector field with Axiom A and no cycle condition on a three-dimensional smooth
manifold. If X is a C2-robustly weak measure expansive vector field, then it is Q2-Anosov.

This result extends the result of the first main theorem, which is obtained for the case of diffeomorph-
isms to the case of continuous flows.

2 Basic definitions

2.1 Discrete dynamics

Let M d,( ) be a compact smooth n 1( )≥ -dimensional manifold without boundary and let MDiff r( ) (r 1≥ ) be a
set of Cr diffeomorphisms with the Cr topology. Let β be the Borel σ-algebra on M. Denote by M� ( ) the set
of Borel probability measures on M endowed with the weak∗ topology. We say that μ M� ( )∈ is atomic if
there exists a point x M∈ such that μ x 0.({ }) > Let M� ( )∗ be the set of nonatomic measures μ M .� ( )∈
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Recently, Morales and Sirvent [12] introduced a general notion of expansivity as follows: Let μ M� ( )∈

be given, we say that f is μ-expansive if there exists a constant δ 0> such that μ xΓ 0δ
f( ( )) = for all x M,∈

where x y M d f x f y δ iΓ : , , .δ
f i i �( ) { ( ( ) ( )) }= ∈ ≤ ∈ Such a δ is called an μ-expansivity constant of f.

From this, a concept of weak measure expansivity is introduced in [3]. It is the generalizing notion of
measure expansivity and it is based on the concept of measure-sensitive partition in [13]. To do this, we say
that a finite collection A A A, , , k1 2� { }= … of subsets of M is a finite δ-partition (δ 0> ) of M if
(i) Ai’s are disjoint, and A Mi

n i1∪ =
=

;

(ii) each Ai is measurable for a Borel probability measure, Aint i( ) ≠ ∅, and A δdiam i ≤ for all i k1, 2, , .= …

It can be easily checked that for any δ 0> there is a finite δ-partition A A A, , , k1 2� { }= … of M. For
convenience, we omit the “δ” and just say that � is a finite partition of M . However, if exact constants
are needed to compare the size of elements of partitions, we will use “δ 0> ” and so on (for more details,
see [3]). Now we introduce the notion of weak measure expansivity by using a finite partition as follows.

Definition 2.1. [3] For any μ M ,� ( )∈ a homeomorphism f M M: → is said to be weak μ-expansive if there
is a finite partition A A A, , , k1 2� { }= … of M such that μ xΓ 0f

�( ( )) = for all x M,∈ where

x y M f y P f x iΓ : for all .f i i ��( ) { ( ) ( ( )) }= ∈ ∈ ∈

The set xΓf
�( ) is called the dynamic � -ball of x M∈ with respect to f , and P x( ) denotes the element of �

containing x. Denote xΓf
�( ) by xΓ�( ) for simplicity if there is no confusion. Note that

x f P f xΓ .
i

i i

�

�( ) ( ( ( )))= ⋂

∈

−

A diffeomorphism f M M: → is called weak measure expansive if it is weak μ-expansive for all μ M .� ( )∈
∗

Note that if a diffeomorphism f M M: → is weak μ-expansive for μ M ,� ( )∈ then μ is clearly nona-
tomic. Therefore, we can assume that μ is always an element of M� ( )∗ in this article.

Given x M,∈ we can take δ δ, 01 2 > , and a C2-coordinate chart φ U M δ δ δ δ: , ,1 1 2 2[ ] [ ]⊂ → − × − , (here
U is a neighborhood of x) such thatφ x 0, 0( ) ( )= and twoC2 functions g g δ δ δ δ, : , ,s u 1 1 2 2[ ] [ ]− → − such that
the graph of gs and gu is the local expression of the local stable and the local unstable manifold of x,
respectively. If the degree r 1( )≥ Taylor polynomials of gs and gu at 0 coincide we say that there is an
r-tangency at x.

Definition 2.2. [11] We say that Cr-diffeomorphism f is Qr-Anosov if it is Axiom A, has no cycles, and there
is no r-tangency.

Particularly, Q1-Anosov is quasi-Anosov and quasi-Anosov is closely related to expansivities. It has
already been demonstrated that a C1-robustly expansive, N -expansive, CW-expansive, measure expansive,
and weak measure expansive diffeomorphism is quasi-Anosov. However, since we do not know the relation
between weak measure expansive diffeomorphism and Q2-Anosov in C2-dynamics, we will prove it in
Theorem 1.1.

2.2 Continuous dynamics

Let MrX ( ) (r 1≥ ) be the set of Cr vector fields X M TM: → endowed with the Cr topology.
Then every X MrX ( )∈ generates a Cr flow X M M: ,t �× → that is, a family of diffeomorphisms on M

such that X X Xs t s t∘ = + for all s t, �∈ , X0 is the identity map and X x t X xd dt t 0( ) ∣ ( )∕ == for any x M.∈ Here
Xt is called the integrated flow of X .

For each t �∈ the map X M M:t → defined by X p X p t,t( ) ( )= is a Cr diffeomorphism. In addition,
X x X x t ε ε: ,ε ε t, ( ) { ( ) ( )}( ) = ∈ −− and we denote the orbit of x with respect to Xt as O x X x t: .t ��( ) { ( ) }= ∈
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For any subset A M⊂ we say μ A 0( ) = if μ B 0( ) = for every Borel set B A.⊂ Let M�( ) be the set of Borel
probability measures on M endowed with the weak∗ topology and M μ M μ O x: 0X �� �( ) { ( ) ( ( ))= ∈ =

∗

x Mfor all .}∈

For any μ M�( )∈ , we say that X is μ-expansive if there exists a constant δ 0> such that μ xΓ 0δ
X( ( )) = for

all x M,∈ where x y M d X x X y δΓ : ,δ
X

t h t( ) { ( ( ) ( ))( )= ∈ ≤ for some h Rep∈ and all t .�}∈ HereRep is the set of
continuous maps h : � �→ with h 0 0( ) = and h is said a reparametrization. Such a δ is called an μ-expan-
sivity constant of f.

For X M ,rX ( )∈ a finite partition � of M and x M,∈ the dynamic � -ball of x M∈ with respect

to X x, Γt
Xt
�( ) is defined by

y M X y P X x h t: for some Rep and all ,h t t �{ ( ) ( ( )) }( )∈ ∈ ∈ ∈

where P x( ) stands for the element of � containing x. Denote xΓ�( ) by xΓXt
�( ) for simplicity if there is no

confusion.

Definition 2.3. [5] For any μ M�( )∈ , X is said to be weak μ-expansive if there is a finite partition
A A A, , , k1 2� { }= … of M such that μ xΓ 0�( ( )) = for all x M.∈ We say that X is weak measure expansive

if it is weak μ-expansive for all μ MX� ( )∈
∗ .

3 Partially hyperbolic diffeomorphisms

In this section, we assume that M is a compact surface, i.e., Mdim 2.( ) =

Lemma 3.1. [11, Lemma 4.1] Let p M∈ andU M⊂ be a neighborhood of p. Then there are ε 0> and an one-
parameter family ofC∞ diffeomorphism f M M θ ε: , 1 ,θ ∣ ∣→ − < such that for all θ f p p f x x: ,θ θ( ) ( )= = for
all x M U D f θ Id, . .p θ∈ ⧹ = Moreover, the function θ fθ↦ is continuous in the C2-topology.

Lemma 3.1 plays a very important role in the proof process of Theorem 1.1.
Recall that a point x M∈ is called a (Lyapunov) stable point for f M M: → if for any ε 0,> there is δ 0>

such that if d x y δ,( ) < then d f x f y ε,n n( ( ) ( )) < for all n 0.≥ Since M is compact, we can take subsequences
f xnk{ ( )} and f ynk{ ( )} converging to points x1 and y1, respectively, such thatd x y, 01 1( ) > andd f x f y ε,n n

1 1( ( ) ( )) ≤

for every n .�∈ For p M,∈ we say that p is periodic of period n for f M M: → if f p pn( ) = for some n ,�∈ but
f p pm( ) ≠ for all m n0 .< < Wedenote byn the period π p( ) and by fPer( ) the set of periodic points of f . Apoint
x M∈ is called nonwandering of f if for any neighborhoodU of x in M, there is n 1≥ such that f U U .n( ) ∩ ≠ ∅

The set of nonwandering points of f is called the nonwandering set of f and is denoted by fΩ .( ) It is clear
that f fPer Ω .( ) ( )⊂

Lemma 3.2. If f is a weak measure expansive diffeomorphism on M then no periodic point is stable.

Proof. Assume that f admits a stable point q fPer .( )∈ Let A A A, , , k1 2� { }= … be a finite ε-partition of M
for any ε 0.> Then there exists δ 0> such that

q B q AΓ δ i�( ) [ ]⊂ ⊂

for some i k1, 2, , ,{ }∈ … where B qδ[ ] is the closed δ-ball centered at q. Since q is a stable point,
f B q qn

δ( [ ]) { }→ as n .→ ∞ For sufficiently large N 0,>

f B q qΓ .N
δ �( [ ]) ( )⊂ (3.1)

Put f B qN
δ� ( [ ])= and let M� be a normalized Lebesgue measure on .� Define ν M� ( )∈

∗ by

ν U UM ��( ) ( )= ∩

for any measurable set U of M (this is well-defined). Then we obtain ν q νΓ 1��( ( )) ( )≥ = by (3.1) and this
is a contradiction. So proof is completed. □
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For a diffeomorphism f , a property “P” is said to be Cr-robust if there is a Cr-neighborhood
MDiff r� ( )⊂ of f such that for any g ,�∈ g satisfies “P”.

Let f be a diffeomorphism on M and p be a periodic point of f . We say that p is sink (resp. source) if all
eigenvalues of D fp

π p( ) have norm less than 1 (resp. bigger than 1). In other cases, we call p is saddle.

Theorem 3.3. If f is C2-robustly weak measure expansive diffeomorphism on M , then every periodic point p
of f with period π p( ) is saddle.

Proof. Let U be a neighborhood of p such that f p U ,i( ) ∉ for all i π p1, , 1.( )= … − Suppose that the
eigenvalues of D fp

π p( ) are smaller or equal than 1 in modulus. By Lemma 3.1, take a C2-diffeomorphism
fμ of M fixing p and being the identity outside U. In particular, fμ is the identity in a neighborhood of the

points f p f p, , .π p 1( ) ( )( )
…

− Assume that μ 0, 1( )∈ is closer to 1. Define g f f .μ= ∘ Then
• p is a periodic point of g with period π p ,( )

• g is C2-close to f , and
• eigenvalues of D gp

π p( ) are μλ μλ,1 2 (where λ λ,1 2 : eigenvalues of D fp
π p( )) such that modulus (strictly)

smaller than 1.
Then p is a hyperbolic sink for g. Since f is a C2-robustly weak measure expansive diffeomorphism, g is
a weak measure expansive diffeomorphism. But it is contradiction by Lemma 3.2.

Finally, if the eigenvalues of D fp
π p( ) are bigger, or equal to 1 in modulus, then we can obtain the

contradiction through a similar method to the above process. Therefore, we can complete the proof. □

We say that f is a C r 1r( )≥ -star diffeomorphism if there is a Cr-neighborhood f�( ) of f such that every
periodic orbit of every g f�( )∈ is a hyperbolic set. In the case of r 1= , Smale et al. proved that the
following three statements are equivalent.
(1) f satisfies Axiom A and no cycle condition,
(2) f is Ω-stable,
(3) f is a star diffeomorphism.

“(1)⇒ (2)” was proved by Smale in [14], “(2)⇒ (1)” was proved by Palis in [15], and “(3)⇒ (1)” was proved
by Hayashi in [16] and Aoki in [17], respectively.

However, we do not yet know whether an equivalence relation exists inC2-dynamics, so we propose the
following question. “If a diffeomorphism f of 2-dimensional manifold M or any dimensional manifold M
is C2-star, then does it satisfy Axiom A?” Below we give a partial answer to the question above.

Theorem 3.4. Every C2-robustly weak measure expansive diffeomorphism f on a compact surface M
is a C2-star diffeomorphism.

Proof. To derive a contradiction, we suppose that there is a non-hyperbolic point p gPer( )∈ for some
g f .�( )∈ Here, f�( ) is a C2-neighborhood of f and gPer( ) is the set of periodic points of g. Then D gp

π p( )

has either only one eigenvalue λ with λ 1,∣ ∣ = or only one pair of complex conjugated eigenvalues.
Case 1 : Let λ 11 = and λ 12 < (or λ 12 > ).
Then by Lemma 3.1, we canmake aC2-diffeomorphism gθ such that eigenvaluesθλ1 andθλ2 of D gp θ

π p( ) are less
than 1 (or bigger than 1). This means that gθ has a sink point p, and this is a contradiction by Lemma 3.2.

Case 2 : We can prove the second case similarly and complete the proof. □

The following proof is essentially contained in the proof of Theorem 4.4 in [11].

Proof of Theorem 1.1. Suppose that f is not Q2-Anosov. Then there is a wandering point p M∈ with an
2-tangency. Take a C2-local coordinate ψ U V M: 2�× ⊂ → at p, where U V, �⊂ are open sets.
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Let g g U V, :s u → be C2 functions which describe the graphs of the local stable and local unstable manifolds
of p, respectively.

By the hypothesis, there exists a 2-tangency at p. So we may assume that the Taylor polynomials
of order 2 of gs and gu vanish at 0.

Define the C2-diffeomorphism ξ U U: � �× → × by

ξ x y x g x g x y, , .s u( ) ( ( ) ( ) )= − +

For θ 0,> define φ U V U:θ �× → × by

φ x y ς x y θ ξ x y, , ,θ
2 2( ) ( ) ( )= + ∕ ⋅

where ς : 0, 1� [ ]→ is a C∞-function such that

ς a
ς a a

ς a a

1 for 1
2

,

0 for 1.
( )

⎧

⎨
⎩

( )

( )

=

= ≤

= ≥

Let f M M:θ → be defined by

f q
f ψ φ ψ q q ψ B
f q

for 0, 0 ,
otherwise.θ

θ θ
1

( )
⎧

⎨
⎩

( ) ( ( ))

( )
=

∘ ∘ ∘ ∈
−

Let θ θ.1 < If x y θ ,2 2
1+ < then φ x y ξ x y, , .θ( ) ( )= Then we have

ξ x g x x g x g x g x x g x, , , ,u s u u s( ( )) ( ( ) ( ) ( )) ( ( ))= − + =

that is, ξ is a map that sends the graph of gu to the graph of g .s
Let A A A, , , k1 2� { }= … be a finite θ-partition on M. There are θ θ2 1< and an arc γ =

ψ x g x x θ M, :s 2{ ( ( )) ∣ ∣ }< ⊂ such that
– f γdiam 0θ

n( ( )) > if n is finite,
– f γdiam 0θ

n( ( )) → as n ,→ ±∞

– γ Aint i( )⊂ for some Ai �∈ , and

– f γ Aθ
i

j( ) ⊂ for some Aj �∈ containing f p .θ
i ( )

Let γM be a normalized Lebesgue measure on γ. Define ν Mfθ� ( )∈
∗ by

ν B B γγM( ) ( )= ∩

for any measurable set B of M (this is well-defined). For the wandering point p, the dynamic � -ball
p q M f q P f pΓ :f

θ
i

θ
iθ

�( ) { ( ) ( ( ))= ∈ ∈ of p with respect to fθ for all i �}∈ contains the arc γ. Then we obtain

ν p ν γΓ 1.fθ
�( ) ( )( ) ≥ =

This fact shows that fθ is not weak measure expansive, i.e., f is not C2-robustly weak measure expansive.
Therefore, this contradiction proves the theorem. □

4 Partially hyperbolic flows

Let M d,( ) be as before with Mdim 3.( ) = Let γ be a closed orbit of a vector field X M .2X ( )∈ Through a point
x γ0 ∈ we consider a section Nx0 transversal to the field X.

The orbit through x0 returns to intersection Nx0 at time τ, where τ is the period or γ. By the continuity of
the flow of X the orbit through a point x Nx0∈ sufficiently close to x0 also returns to intersection Nx0 at a time
close to τ. Thus, ifV Nx0⊂ is a sufficiently small neighborhood of x0 we can define a map V N: x0� → which
to each point x V∈ associates x ,�( ) the first point where the orbit of x returns to intersection N .x0 This map
is called the Poincaré map associated with the orbit γ (and the section Nx0).
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For any X M2X ( )∈ and σ M,∈ σ is singular if X σ 0 .σ( ) = Denote by Sing X( ) the set of singular points of
X. We say that p is periodic if X p pπ p ( )( ) = for some π p 0,( ) > but X p pt( ) ≠ for all t π p0 ,( )< < and
denoted by XPer( ) is the set of periodic point of X. And p is regular if it is not singular nor periodic.
A singularity or a periodic orbit of X are both called a critical orbit or a critical point of X and we denote
by X X XCrit Per Sing( ) ( ) ( )= ∪ is the set of critical orbits.

The next lemma which is called tubular flow theorem describes the local behavior of the orbits in
a neighborhood of a regular point.

Lemma 4.1. [18] Let X M2X ( )∈ and let p M∈ be a regular point of X. Let C x x x x, , , : 1n
n

i1 2 �{( ) ∣ ∣ }= … ∈ <

and let XC be the vector field on C defined by X x 1, 0, ,0 .C( ) ( )= … Then there exists a Cr diffeomorphism
g V C: p → , for some neighborhood Vp of p in M, taking orbits of X to orbits of XC.

A tubular flow for X MrX ( )∈ is a pair F f,( ) where F is an open set in M and f is a Cr diffeomorphism of
F onto the cube I I I x y x, : 1n n n1 1� �{( ) ∣ ∣= × = ∈ × <

− − and y i n1, 1, , 1i∣ ∣ }< = … − , which takes the

orbits of X in F to the straight lines I y I I .n 1{ }× ⊂ ×
− If f X∗ denotes the field in I n induced by f and X,

that is, f X x y Df X f x y, , ,f x y,
11( ) ( ( ))( )= ⋅∗

−
− then f X∗ is parallel to the constant field x y, 1, 0 .( ) ( )→

The open set F is called a flow box for the vector field X. By the tubular flow theorem, we know that if
p M∈ is a regular point of X , then there is a flow box containing p.

Let X be aC∞ vector field on M , γ a closed orbit of X , and Σ a transversal section through a point p Σ.∈

Let X M2X�( ) ( )⊂ be a neighborhood of X and let V Σ⊂ be neighborhood of p such that, for all Y X ,�( )∈

the Poincaré map of Y is defined on V .
Next lemma is a C2-vector field version of [11, Lemma 4.1].

Lemma 4.2. Let p M∈ and X M2X ( )∈ . For any neighborhood U of 0p in n� and ε 0,′ > there are ε ε0 < < ′

and a one-parameter family of C∞-vector field X θ ε: , 1 ,θ
n n� � ∣ ∣→ − < such that

(1) for any θ, the flow ϕt
θ is generated by X ,θ the Poincaré map θ� is defined by I I: 1 1 ,θ

n n1 1� { } { }− × → ×
− −

then one has D ω θωθ1 0 � ( )({ } ) =− × for all ω I .n 1
∈

−

(2) X Xθ = in U.n� ⧹

(3) X X ε .θ Cr‖ − ‖ < ′

Proof. Let F f,( ) be a tubular flow with center p such that f X∗ is the constant vector field C on I1, 1 .n 1[ ]− ×
−

Let C̃ be a C∞ vector field on f F n�( ) ⊂ such that C̃ is transversal to I1 n 1{ }− ×
− and I1 n 1{ } ×

− and each orbit
of Xθ through a point of I1 n 1{ }− ×

− meets I1 .n 1{ } ×
− Then we can define a map J I I: 1 1C

n n˜ 1 1{ } { }− × → ×
− −

which associates with each point of I1 n 1{ }− ×
− the intersection of its orbit with I1 .n 1{ } ×

− By the Tubular
Flow Theorem, JC̃ is a diffeomorphism.

We claim that, given a neighborhoodU of0p and ε 0,′ > there is ε 0> such that for any θ ε0 1< − < we can

find a C∞ vector field C̃ such that C C ε˜ Cr‖ − ‖ < ′ on I C C1, 1 , ˜n 1[ ]− × =
− on Un� ⧹ , and J v θv1, 1,C̃ 0 0( ) ( )− =

if v I .n
0 1 4

1
∈

∕

−

Let ψ : 1, 1 �[ ]− →
+ be a C∞ function such that

ψ t t

ψ t t

0 for 1, 1
2

1
2

, 1 ,

0 for 1
2

, 1
2

.

⎧

⎨

⎪

⎩
⎪

( ) ⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

( ) ⎛
⎝

⎞
⎠

= ∈ − − ∪

> ∈ −

Take g I: n 1 �→
− + such that

g v v

g v v

g v v

0, 3
4

1, 1
2

0, 1
2

3
4

.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

( )

= ‖ ‖ ≥

= ‖ ‖ ≤

> < ‖ ‖ <
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We define C x v ρg v ψ x v˜ , 1,( ) ( ( ) ( ) )= and find ρ �∈ where C̃ satisfies the required conditions. We can
immediately see from the definition that C C˜ = is established on Un� ⧹ . The differential equation associated
with C̃ can be written as

x
t
v
t

ρg v ψ x v

d
d

1,

d
d

.

⎧

⎨

⎪

⎩
⎪ ( ) ( )

=

=

(4.1)

Let v I n
0

1
∈

− satisfy v 1 4.0‖ ‖ ≤ ∕ We have g v 10( ) = and g v 1( ) = in a neighborhood of v0 (it is clear by the
definition of g). The solution of (4.1) with initial conditions x 0 1( ) = − and v v0 0( ) = can be written as

x t t v t v ρg v s ψ s v s s1 and 1 d .
t

0

0

( ) ( ) ( ( )) ( ) ( )∫= − = + −

By the continuity of v t ,( ) there is l 0> such that g v s 1( ( )) = for all s l0, ,1
2⎡⎣ ⎤⎦

∈ − + i.e., v t v0( ) = +

ρψ s v s s1 d
t

0
( ) ( )∫ − on l0, .1

2⎡⎣ ⎤⎦
− + Then we obtain

v t v ρ ψ s sexp 1 d
t

0

0

( )
⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟
∫= × −

on l0, 1
2⎡⎣ ⎤⎦

− + by solving the differential equation. Put η t ρ ψ s sexp 1 d
t

0
( ) ( )( )∫= − . Then clearly η 0 1( ) =

and ρ .η t

ψ s s

ln

1 d
t

0

( )

( )
=

∫ −

Take ε .
ψ s s

ln2

1 d
0

2
( )

=

∫ −

Then since η is increasing, for ρ ε0 < < we have η0 2 2.( )< ≤ Thus,

v s v2 1 2.0( )‖ ‖ ≤ ‖ ‖ ≤ ∕ Therefore, g v s 1( ( )) = for all s 0, 2 ,[ ]∈ so that

v s η s v J v ηvand 1, 1, .C0 ˜ 0 0( ) ( ) ( ) ( )= − =

It is straightforward to find out that we can select ρ to form η θ2( ) = for θ ε0 1 ,< − < so that J v1,C̃ 0( )− =

θv1, .0( ) Moreover, we explicitly obtain C C ε˜ Cr‖ − ‖ < ′ by taking ρ small.

Let Xθ be the vector field on M , which is equal to X outside f I1, 1 n1 1([ ] )− ×
− − and f C̃1( )−

∗

on f I1, 1 .n1 1([ ] )− ×
− − It is clear that Xθ is C∞ and X X ε .θ Cr‖ − ‖ < ′ The expression for the Poincaré map

in the local chart is v θ v1, 1,θ� �( ) ( )= if v 1 4.‖ ‖ ≤ ∕ Thus, D ω θωθ1 0 � ( )({ } ) =− × for all ω I .n 1
∈

− □

Lemma 4.3. Let X be a C2 weak μ-expansive vector field for any μ MX� ( )∈
∗ . Then μ Xsupp Sing( ) ( )∩ = ∅,

where μ x M μ Vsupp : 0( ) { ( )= ∈ > for any open neighborhood V of x .}

Proof. Since X is weak μ expansive for every μ M ,X� ( )∈
∗ there is a finite partition A A A, , , k1 2� { }= … of M

satisfying μ xΓ 0Xt
�( )( ) = for all x M.∈ Let τ M∈ be a singularity of X and V P τint .( )= It is clear that

τ τΓ P .Xt
�( ) ( )= Thus, we obtain

μ V μ P τ μ τΓ 0,Xt
�( ) ( ( )) ( )( )≤ = =

this fact means τ μsupp .( )∉ □

We state that a point x M∈ is called a stable point for a vector field X if for any ε 0,> there is δ 0> such
that if d x y δ,( ) < then d X x X y ε,t t( ( ) ( )) < for all t 0.≥

Remark 4.4. If X is a weak measure expansive vector field on M, then every closed orbit is not stable. We
already proved this fact holds for diffeomorphisms in Lemma 3.2. This property can naturally be extended
to flows.
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For a vector field X, a property “P” is said to be Cr-robust if there is a Cr-neighborhood MrX� ( )⊂ of X
in such that for any Y ,�∈ Y satisfies “P.”

A compact invariant set T is transitive if T ω qX( )= for some q T∈ and attracting if T X Vt t0 ( )= ∩ ≥ for
some neighborhoodT ofC satisfying X V Vt( ) ⊂ for all t 0.≥ An attractor of X is a transitive attracting set of
X and a repeller is an attractor for X.− A sink of X is a trivial attractor of X, namely it reduces to a single orbit
of X and a source of X is a trivial repeller of X. Otherwise, the single orbit is called a saddle.

Theorem 4.5. If X is a C2-robustly weak measure expansive vector field on M , then every periodic orbit
γ XPer( )∈ is a saddle.

Proof. To induce contradiction, assume that there exists γ XPer( )∈ with periodT which is not saddle. This
means that for a Poincaré map � of X there is q γ∈ with periodT such that Dq� has eigenvalues λ 11∣ ∣ < and
λ 12∣ ∣ = (or λ 11∣ ∣ > and λ 1,2∣ ∣ = respectively). Let U be a neighborhood of q. By Lemma 4.2, take a Poincaré
map q N q N:θ q q� { } { }× → × of Xθ fixing q and being identity outside U. Here N X q T MSpan .q q( ( ))= ⊂

⊥

Assume that θ 0, 1( )∈ is closer to 1. Then
• q is a periodic point of θ� with period T,
• θ� is C2-close to � , and
• eigenvalues of Dq θ� are θλ θλ,1 2 such that modulus (strictly) smaller than 1.

Therefore, q is a sink for ,θ� that is, it is a sink for X .θ Since X is aC2-robustly weak measure expansive flow,
Xθ is a weak measure expansive flow. But it is contradiction by Lemma 4.4. □

We say that X is aC r 1r( )≥ -star vector field if there is aCr-neighborhood � of X such that every critical
orbit of everyY �∈ is a hyperbolic set. In the case of r 1,= Gan and Wen proved that any nonsingular star
flow satisfies Axiom A and the no cycle condition in [4]. However, as in the case of discrete dynamics, we do
not yet know whether an equivalent relationship exists in C2-dynamics in continuous dynamical systems,
so we propose the following question. “If a vector field X on 3-dimensional manifold M or any dimensional
manifold M isC2-star, then does it satisfy Axiom A?” In the remainder of the article, we give a partial answer
to the aforementioned question.

Lemma 4.6. Every C2-robustly weak measure expansive vector field X on M is a C2-star vector field.

Proof. To derive a contradiction, we suppose that there is a nonhyperbolic orbit γ YPer( )∈ for some
Y X .�( )∈ Here, X�( ) is a C2-neighborhood of X. Let x γ∈ and let V: Σ� → be a Poincaré map of Y
associated with the orbit γ (and the section Σ). Then Dx

π x� ( ) has an eigenvalue λ with λ 1,‖ ‖ = or only one
pair of complex conjugated eigenvalues.

Case 1 : Let λ 11 = and λ 12 < (or λ 12 > ).
Then by Lemma 4.2, we can make aC2-vector fieldYθ and Poincaré map θ� such that eigenvalues θλ1 and

θλ2 of Dx θ
π x� ( ) are less than 1 (or bigger than 1). This means that Yθ has a sink point x, and this is

a contradiction by Remark 4.4.
Case 2 : We can prove the second case similarly and complete the proof. □

Definition 4.7. We say that C2-vector field X is a Q2-Anosov vector field if it is Axiom A, has no cycles,
and there is no 2-tangency.

Proof of Theorem 1.2. Suppose that X is not Q2-Anosov. Since X is Axiom A and has no cycle condition,
there exists a 2-tangency x M XΩ .( )∈ ⧹ According to Lemmas 4.1 and 4.3, we consider a normal section
Nx then there is a local chart ϕ V: x

2�→ and open setsU V, 2�⊂ such that ϕ V U V .x( ) ⊆ × Then it is clear
V ϕ U Vx

1( )⊆ ×
− and we let W ϕ U V V .x x

1[ ( )]= × ∩
− We can take a C2-local coordinate ψ ϕ W:W x

1
x∣= =

−

U V Nx x x′ × ′ → around x where U V,x x
2�′ ′ ⊂ are open sets.
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Let g g U V, :s u x x′ → ′ be C2 functions such that their graphs describe the local stable and local unstable
manifolds of x in coordinates and let θ 0.> As in the proof of Theorem 1.1, we find maps ξ φ ς, ,θ and can
define f N N:θ x X xt1( )→ (t 11 ≥ ) by

f y
f ψ φ ψ y y ψ B N

f y

˜ for 0, 0 ,
˜ otherwise,

θ
X θ θ x

X

1
( )

⎧

⎨
⎩

( ) ( ( ))

( )
=

∘ ∘ ∘ ∈ ∩
−

where f N N˜ :X x X xt1( )→ is a time-1 map with respect to X. Let A A A, , , k1 2� { }= … be a finite θ-partition on
N .x Then the same way of proof of Theorem 1.1, we can take an enough small constant θ θ˜ < and an arc
γ ψ x g x x θ N, : ˜

s x{ ( ( )) ∣ ∣ }= < ⊂ such that
– f γdiam 0θ

n( ( )) → as n → ±∞ and
– γ Aint i( )⊂ for some Ai �∈

and so fθ is not weak measure expansive, i.e., f̃X is not C2-robustly weak measure expansive. Then X is not
weak measure expansive by Lee and Oh [5]. This contradicts the assumption. □
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