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Abstract: The main purpose of this article is to develop a theory that extends the domain of any local
isometry to the whole space containing the domain, where a local isometry is an isometry between two
proper subsets. In fact, the main purpose of this article consists of the following three detailed objectives:
The first objective is to extend the bounded domain of any local isometry to the first-order generalized linear
span. The second one is to extend the bounded domain of any local isometry to the second-order general-
ized linear span. The third objective of this article is to extend the bounded domain of any local isometry to
the whole Hilbert space.
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1 Introduction

In the course of the development of mathematics in the last century, the problem of extending the domain
of a function while keeping/preserving the characteristic properties of a function defined in a local domain
has had a great influence on the development of functional analysis.

For example, in topology, the Tietze extension theorem states that all continuous functions defined on
a closed subset of a normal topological space can be extended to the entire space.

Theorem 1.1. (Tietze) Let X be a normal space, E be a nonempty closed subset of X, and let L L,[ ]− be a closed
real interval. If f E L L: ,[ ]→ − is a continuous function, then there exists a continuous extension of f to X , i.e.,
there exists a continuous function F X L L: ,[ ]→ − such that F x f x( ) ( )= for all x E∈ .

The Tietze extension theorem has a wide range of applications and is an interesting theorem, so there
are many variations in this theorem.

In 1972, Mankiewicz published his article [1] determining whether an isometry f E Y: → from a subset
E of a real normed space X into a real normed space Y admits an extension to an isometry from X onto Y .
Indeed, he proved that every isometry f E Y: → can be uniquely extended to an affine isometry between
the whole spaces when either E and f E( ) are both convex bodies or E is nonempty open connected and f E( )

is open, where a convex body is a convex set with a nonempty interior.

Theorem 1.2. (Mankiewicz) Let X and Y be real normed spaces, E be a nonempty subset of X , and let
f E f E: ( )→ be a surjective isometry, where f E( ) is a subset ofY . If either both E and f E( ) are convex bodies,
or E is open and connected and f E( ) is open, then f can be uniquely extended to an affine isometry F X Y: → .
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This conclusion particularly holds for the closed unit balls. Based on this fact, with the same research
direction, Tingley [2] intuitively paid attention to the unit spheres and posed the following problem, which
is now known as Tingley’s problem.

Problem 1.1. (Tingley) Is every surjective isometry between the unit spheres of two Banach spaces
a restriction to the unit sphere of a surjective real-linear isometry between the whole spaces?

Recently, many articles have been devoted to the study of the extension of isometries and Tingley’s
problem. Among them, a result of Ding [3, Theorem 2.2], which is related to Problem 1.1, will be introduced.

Theorem 1.3. (Ding) Let X andY be real Hilbert spaces and let f S X S Y: 1 1( ) ( )→ be a function between unit
spheres. If f S X f S X1 1( ( )) ( ( ))− ⊂ and f x f x x x1 2 1 2( ) ( )‖ − ‖ ≤ ‖ − ‖ for all x x S X,1 2 1( )∈ , then f can be extended to
a real-linear isometry from X into Y (see also [4–13]).

The research in this article is strongly motivated by Theorems 1.2 and 1.3, and [14, Theorem 2.5], among
others (refer to [15–17] also).

The main purpose of this article is to develop a theory that extends the (bounded) domain of any local
isometry to the real Hilbert space Ma containing the domain, where a local isometry is an isometry between
two proper subsets of the Hilbert space Ma, which is defined in Section 2 of this article. In Section 3, we
introduce some concepts such as first-order generalized linear span and index set, which are essential to
prove the final result of this article. Section 4 is devoted to the problem of extending the domain of a local
isometry to the first-order generalized linear span. Solving this problem is the first objective of this article.
We introduce the concept of a second-order generalized linear span in Section 5 and develop the theory of
extension of the domain of a local isometry to the second-order generalized linear span in Section 7, which
is the second objective of this article. Finally, we prove in Theorem 8.1 that the domain of a local isometry
can be extended to the real Hilbert space Ma including that domain, which is the third objective of this
article.

We observe that the domain of a local isometry is assumed to be bounded and contains at least two
elements, but it need not be a convex body nor an open set. This indicates that the main results of this
article are more general than those previously published.

2 Preliminaries

Throughout this article, the symbol ω� will denote the space of all real sequences. From now on, we denote
by ,ω� �( ) the product space i 1�∏

=

∞ , where ,� ��( ) is the usual topological space. Then, since ,� ��( ) is
a Hausdorff space, ,ω� �( ) is a Hausdorff space.

Let a ai{ }= be a sequence of positive real numbers satisfying the following condition:

a .
i

i
1

2
∑

< ∞

=

∞

(2.1)

With this sequence a ai{ }= , we define

M x x a x, , : .a
ω

i
i i1 2

1

2 2�
⎧

⎨
⎩

( )
⎫

⎬
⎭

∑

= … ∈ < ∞

=

∞

Then, Ma is a vector space over �, and we can define an inner product , a⟨⋅ ⋅⟩ on Ma by

x y a x y, a
i

i i i
1

2
∑

⟨ ⟩ =

=

∞
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for all x x x, ,1 2( )= … and y y y, ,1 2( )= … of Ma, with which M , ,a a( )⟨⋅ ⋅⟩ becomes a real inner product space.
This inner product induces the norm in the natural way

x x x,a a‖ ‖ = ⟨ ⟩

for all x Ma∈ , so that M ,a a( )‖⋅‖ becomes a real normed space.

Remark 2.1. Ma is the set of all elements x ω�∈ satisfying x a
2

‖ ‖ < ∞, i.e.,

M x x x, , : .a
ω

a1 2
2�{( ) }= … ∈ ‖ ‖ < ∞

We define the metric da on Ma by

d x y x y x y x y, ,a a a( ) = ‖ − ‖ = ⟨ − − ⟩

for all x y M, a∈ . Thus, M d,a a( ) is a real metric space. Let M ,a a�( ) be the topological space generated by the
metric da.

Similar to [18, Theorem 70.4], we can prove Remark 2.2 i( ).

Remark 2.2. We note that
(i) M , ,a a( )⟨⋅ ⋅⟩ is a Hilbert space over �;
(ii) M ,a a�( ) is a Hausdorff space as a subspace of the Hausdorff space ,ω� �( ).

Definition 2.1. Given c in Ma, the translation by c is the mapping T M M:c a a→ defined by T x x cc( ) = + for
all x Ma∈ .

3 First-order generalized linear span

In [14, Theorem 2.5], we were able to extend the domain of a da-isometry f to the entire space when the
domain of f is a nondegenerate basic cylinder (see Definition 6.1 for the exact definition of nondegenerate
basic cylinders). However, we shall see in Definition 4.1 and Theorem 4.2 that the domain of a da-isometry f
can be extended to its first-order generalized linear span whenever f is defined on a bounded set that
contains more than one element.

From now on, it is assumed that E, E1, and E2 are subsets of Ma, and each of them contains more than
one element, unless specifically stated for their cardinalities. If the set has only one element or no element,
this case will not be covered here because the results derived from this case are trivial and uninteresting.

Definition 3.1. Assume that E is a nonempty bounded subset of Ma and p is a fixed element of E. We define
the first-order generalized linear span of E with respect to p as

E p p α x p M m x E α i jGS , : ; and for all and .
i

m

j
ij ij a ij ij

1 1
� �( )

⎧

⎨
⎩

( )
⎫

⎬
⎭

∑∑

= + − ∈ ∈ ∈ ∈

= =

∞

We remark that if a bounded subset E of Ma contains more than one element, then E is a proper subset
of its first-order generalized linear span E pGS ,( ), because x p x p E pGS ,( ) ( )= + − ∈ for any x E∈ and
p α x p E pGS ,( ) ( )+ − ∈ for any α �∈ , which implies that E pGS ,( ) is unbounded. Moreover, we note that
αx βy Ma+ ∈ forallx y M, a∈ andα β, �∈ ,because αx βy α x β ya a a∣ ∣ ∣ ∣‖ + ‖ ≤ ‖ ‖ + ‖ ‖ < ∞.Therefore, E p pGS ,( ) −

is a real vector space, because the double sum in the definition of E pGS ,( ) guarantees αx βy E p pGS ,( )+ ∈ −

for all x y E p p, GS ,( )∈ − and α β, �∈ and because E p pGS ,( ) − is a subspace of a real vector space Ma (cf.
Lemma 5.3 i( )).
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For each i �∈ , we set e 0, ,0, 1, 0,i ( )= … … , where 1 is in the ith position. Then, ea i
1

i{ }

is a complete

orthonormal sequence in Ma.

Definition 3.2. Let E be a nonempty subset of Ma.
(i) We define the index set of E by

E i x E α x αe EΛ : there are an and an 0 satisfying .i� �( ) { { } }= ∈ ∈ ∈ ⧹ + ∈

Each i EΛ( )∈ is called an index of E. If EΛ �( ) ≠ , then the set E is called degenerate. Otherwise,
E is called nondegenerate.

(ii) Let β βi i �{ }=

∈

be another complete orthonormal sequence in Ma. We define the β-index set of E by

E i x E α x αβ EΛ : there are an and an 0 satisfying .β i� �( ) { { } }= ∈ ∈ ∈ ⧹ + ∈

Each i EΛβ( )∈ is called a β-index of E.

We will find that the concept of an index set in Hilbert space sometimes takes over the role that the
concept of dimension plays in vector space. According to the definition above, if i is a β-index of E, i.e.,
i EΛβ( )∈ , then there are x E∈ and x αβ Ei+ ∈ for some α 0≠ . Since x x αβi≠ + , we remark that if

EΛβ( ) ≠ ∅, then the set E contains at least two elements.
In the following lemma, we prove that if i is an index of E and p E∈ , then the first-order generalized

linear span E pGS ,( ) contains the line through p in the direction ei.

Lemma 3.1. Assume that E is a bounded subset of Ma, and E pGS ,( ) is the first-order generalized linear span
of E with respect to a fixed element p E∈ . If i EΛ( )∈ , then p αe E pGS ,i ( )+ ∈ for all α �∈ .

Proof. By Definition 3.2, if i EΛ( )∈ , then there exist an x E∈ and an α 00 ≠ , which satisfy x α e Ei0+ ∈ .
Since x E∈ and x α e Ei0+ ∈ , by Definition 3.1, we obtain

p α βe p β x α e p β x p E pGS ,i i0 0( ) ( ) ( )+ = + + − − − ∈

for all β �∈ . Setting α α β0= in the above relation, we obtain p αe E pGS ,i ( )+ ∈ for any α �∈ . □

We now introduce a lemma, which is a generalized version of [14, Lemma 2.3] and whose proof runs in
the same way. We prove that the function T f T E p E q:q p 1 2∘ ∘ − → −

−

preserves the inner product. This
property is important in proving the following theorems as a necessary condition for f to be a da-isometry.

Lemma 3.2. Assume that E1 and E2 are bounded subsets of Ma that are da-isometric to each other via
a surjective da-isometry f E E: 1 2→ . Assume that p is an element of E1 and q is an element of E2 with q f p( )= .
Then, the function T f T E p E q:q p 1 2∘ ∘ − → −

−

preserves the inner product, i.e.,

T f T x p T f T y p x p y p, ,q p q p a a( )( ) ( )( )⟨ ∘ ∘ − ∘ ∘ − ⟩ = ⟨ − − ⟩

− −

for all x y E, 1∈ .

Proof. Since T f T E p E q:q p 1 2∘ ∘ − → −

−

is a da-isometry, we have

T f T x p T f T y p x p y pq p q p a a( )( ) ( )( ) ( ) ( )‖ ∘ ∘ − − ∘ ∘ − ‖ = ‖ − − − ‖

− −

for any x y E, 1∈ . If we put y p= in the previous equality, then we obtain

T f T x p x pq p a a( )( )‖ ∘ ∘ − ‖ = ‖ − ‖

−

for each x E1∈ . Moreover, it follows from the previous equality that

T f T x p T f T y p T f T x p T f T y p
T f T x p T f T y p x p T f T x p T f T y p y p

,
2 ,

q p q p a q p q p

q p q p a a q p q p a a

2

2 2

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

‖ ∘ ∘ − − ∘ ∘ − ‖ = ⟨ ∘ ∘ − − ∘ ∘ −

∘ ∘ − − ∘ ∘ − ⟩ = ‖ − ‖ − ⟨ ∘ ∘ − ∘ ∘ − ⟩ + ‖ − ‖

− − − −

− − − −
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and

x p y p x p y p x p y p x p x p y p y p, 2 , .a a a a a
2 2 2( ) ( ) ( ) ( ) ( ) ( )‖ − − − ‖ = ⟨ − − − − − − ⟩ = ‖ − ‖ − ⟨ − − ⟩ + ‖ − ‖

Finally, comparing the last two equalities yields the validity of our assertion. □

4 First-order extension of isometries

In the previous section, we made all the necessary preparations to extend the domain E1 of the surjective
da-isometry f E E: 1 2→ to its first-order generalized linear span E pGS ,1( ).

Although E1 is a bounded set, E p pGS ,1( ) − is a real vector space. Now we will extend the da-isometry
T f Tq p∘ ∘

−

defined on the bounded set E p1 − to the da-isometry T F Tq p∘ ∘

−

defined on the vector
space E p pGS ,1( ) − .

Definition 4.1. Assume that E1 and E2 are nonempty bounded subsets of Ma that are da-isometric to each
other via a surjective da-isometry f E E: 1 2→ . Let p be a fixed element of E1 and let q be an element of E2 that
satisfies q f p( )= . We define a function F E p M: GS , a1( ) → as

T F T α x p α T f T x pq p
i

m

j
ij ij

i

m

j
ij q p ij

1 1 1 1
( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )( )
∑∑ ∑∑

∘ ∘ − = ∘ ∘ −

−

= =

∞

= =

∞

−

for any m �∈ , x Eij 1∈ , and for all αij �∈ satisfying α x p Mi
m

j ij ij a1 1 ( )∑ ∑ − ∈

= =

∞ .

We note that in the definition above, it is important for the argument of T F Tq p∘ ∘

−

to belong to Ma.
Now, we show that the function F E p M: GS , a1( ) → is well defined.

Lemma 4.1. Assume that E1 and E2 are bounded subsets of Ma that are da-isometric to each other via
a surjective da-isometry f E E: 1 2→ . Let p be an element of E1 and let q be an element of E2 that satisfy
q f p( )= . The function F E p M: GS , a1( ) → given in Definition 4.1 is well defined.

Proof. First, we will check that the range of F is a subset of Ma. For any m n n, ,1 2 �∈ with n n2 1> , x Eij 1∈ ,
and for all αij �∈ , it follows from Lemma 3.2 that

α T f T x p α T f T x p

α T f T x p α T f T x p

α α T f T x p T f T x p

α α x p x p

α x p α x p

α x p α x p α x p

,

,

,

,

.

i

m

j

n

ij q p ij
i

m

j

n

ij q p ij

a

i

m

j n

n

ij q p ij
k

m

n

n

k q p k

a

i

m

k

m

j n

n

ij
n

n

k q p ij q p k a

i

m

k

m

j n

n

ij
n

n

k ij k a

i

m

j n

n

ij ij
k

m

n

n

k k

a

i

m

j n

n

ij ij

a i

m

j

n

ij ij
i

m

j

n

ij ij

a

1 1 1 1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

2

1 1 1 1

2

2 1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2 2 1

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

( ) ( ) ( )

∑∑ ∑∑

∑ ∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑∑ ∑∑

∘ ∘ − − ∘ ∘ −

= ∘ ∘ − ∘ ∘ −

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

= ⟨ − − ⟩

= − −

= − = − − −

= =

−

= =

−

= = +

−

= ℓ= +

ℓ − ℓ

= = = + ℓ= +

ℓ − − ℓ

= = = + ℓ= +

ℓ ℓ

= = + = ℓ= +

ℓ ℓ

= = + = = = =

(4.1)

Indeed, equality (4.1) holds for all m n n, ,1 2 �∈ .
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We now assume that α x p Mi
m

j ij ij a1 1 ( )∑ ∑ − ∈

= =

∞ for some x Eij 1∈ and αij �∈ , where m is a fixed positive

integer. Then, since M ,a a�( ) is a Hausdorff space on account of Remark 2.2 ii( ) and the topology a� is

consistent with the metric da and with the norm a‖⋅‖ , the sequence α x pi
m

j
n

ij ij n1 1 ( )
{ }

∑ ∑ −

= =

converges to

α x pi
m

j ij ij1 1 ( )∑ ∑ −

= =

∞ (in Ma), and hence, the sequence α x pi
m

j
n

ij ij n1 1 ( )
{ }

∑ ∑ −

= =

is a Cauchy sequence in Ma.

We know by (4.1) and the definition of Cauchy sequences that for each ε 0> , there exists an integer
N 0ε > such that

α T f T x p α T f T x p α x p α x p ε
i

m

j

n

ij q p ij
i

m

j

n

ij q p ij

a i

m

j

n

ij ij
i

m

j

n

ij ij

a1 1 1 1 1 1 1 1

2 1 2 1

( )( ) ( )( ) ( ) ( )
∑∑ ∑∑ ∑∑ ∑∑

∘ ∘ − − ∘ ∘ − = − − − <

= =

−

= =

−

= = = =

for all integers n n N, ε1 2 > , which implies that α T f T x pi
m

j
n

ij q p ij n1 1 ( )( )
{ }

∑ ∑ ∘ ∘ −

= =

−

is also a Cauchy sequence

in Ma. By Remark 2.2 i( ), we observe that M , ,a a( )⟨⋅ ⋅⟩ is a real Hilbert space. Thus, Ma is not only complete,

but also a Hausdorff space, so the Cauchy sequence α T f T x pi
m

j
n

ij q p ij n1 1 ( )( )
{ }

∑ ∑ ∘ ∘ −

= =

−

converges in Ma, i.e.,
by Definition 4.1, we have

T F T α x p α T f T x p

α T f T x p Mlim ,

q p
i

m

j
ij ij

i

m

j
ij q p ij

n i

m

j

n

ij q p ij a

1 1 1 1

1 1

( )
⎛

⎝
⎜

( )
⎞

⎠
⎟

( )( )

( )( )

∑∑ ∑∑

∑∑

∘ ∘ − = ∘ ∘ −

= ∘ ∘ − ∈

−

= =

∞

= =

∞

−

→∞

= =

−

which implies

F p α x p M q M
i

m

j
ij ij a a

1 1

⎛

⎝
⎜

( )
⎞

⎠
⎟∑∑

+ − ∈ + =

= =

∞

for all x Eij 1∈ and αij �∈ with α x p Mi
m

j ij ij a1 1 ( )∑ ∑ − ∈

= =

∞ , i.e., the image of each element of E pGS ,1( ) under
F belongs to Ma.

We now assume that α x p β y p Mi
m

j ij ij i
m

j ij ij a1 1 1 1
1 2( ) ( )∑ ∑ − = ∑ ∑ − ∈

= =

∞

= =

∞ for some m m,1 2 �∈ , x y E,ij ij 1∈ ,

and α β,ij ij �∈ . It then follows from Definition 4.1 and Lemma 3.2 that

T F T α x p T F T β y p

α T f T x p β T f T y p

α T f T x p β T f T y p

α T f T x p β T f T y p

α x p β y p α x p β y p

α x p β y p

,

,

0,

q p
i

m

j
ij ij q p

i

m

j
ij ij

a

i

m

j
ij q p ij

i

m

j
ij q p ij

a

i

m

j
ij q p ij

i

m

j
ij q p ij

k

m

k q p k
k

m

k q p k
a

i

m

j
ij ij

i

m

j
ij ij

k

m

k k
k

m

k k
a

i

m

j
ij ij

i

m

j
ij ij

a

1 1 1 1

2

1 1 1 1

2

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

2

1 2

1 2

1 2

1 2

1 2 1 2

1 2

( )
⎛

⎝
⎜

( )
⎞

⎠
⎟

( )
⎛

⎝
⎜

( )
⎞

⎠
⎟

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑

∑ ∑ ∑ ∑

∑∑ ∑∑ ∑ ∑ ∑ ∑

∑∑ ∑∑

∘ ∘ − − ∘ ∘ −

= ∘ ∘ − − ∘ ∘ −

= ∘ ∘ − − ∘ ∘ −

∘ ∘ − − ∘ ∘ −

= ⋯= − − − − − −

= − − − =

−

= =

∞

−

= =

∞

= =

∞

−

= =

∞

−

= =

∞

−

= =

∞

−

= ℓ=

∞

ℓ − ℓ

= ℓ=

∞

ℓ

−

ℓ

= =

∞

= =

∞

= ℓ=

∞

ℓ ℓ

= ℓ=

∞

ℓ
ℓ

= =

∞

= =

∞

which implies that
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T F T α x p T F T β y pq p
i

m

j
ij ij q p

i

m

j
ij ij

1 1 1 1

1 2

( )
⎛

⎝
⎜

( )
⎞

⎠
⎟

( )
⎛

⎝
⎜

( )
⎞

⎠
⎟∑∑ ∑∑

∘ ∘ − = ∘ ∘ −

−

= =

∞

−

= =

∞

for all m m,1 2 �∈ , x y E,ij ij 1∈ , and α β,ij ij �∈ , satisfying α x p β y p Mi
m

j ij ij i
m

j ij ij a1 1 1 1
1 2( ) ( )∑ ∑ − = ∑ ∑ − ∈

= =

∞

= =

∞ . □

We prove in the following theorem that the domain of a da-isometry f E E: 1 2→ can be extended to the
first-order generalized linear span E pGS ,1( ) whenever E1 is a nonempty bounded subset of Ma. Therefore,
Theorem 4.2 is a generalization of [19, Theorem 2.2] for Ma.

Theorem 4.2. Assume that E1 and E2 are bounded subsets of Ma that are da-isometric to each other via a
surjective da-isometry f E E: 1 2→ . Assume that p is an element of E1 and q is an element of E2 with q f p( )= .
The function F E p M: GS , a1( ) → defined in Definition 4.1 is a da-isometry and the function T F T :q p∘ ∘

−

E p p MGS , a1( ) − → is a linear da-isometry. In particular, F is an extension of f.

Proof. (a) Let u and v be arbitrary elements of the first-order generalized linear span E pGS ,1( ) of E1 with
respect to p. Then,

u p α x p M v p β y p Mand
i

m

j
ij ij a

i

n

j
ij ij a

1 1 1 1
( ) ( )

∑∑ ∑∑

− = − ∈ − = − ∈

= =

∞

= =

∞

(4.2)

for some m n, �∈ , x y E,ij ij 1∈ , and α β,ij ij �∈ . Then, according to Definition 4.1, we have

T F T u p α T f T x p

T F T v p β T f T y p

,

.

q p
i

m

j
ij q p ij

q p
i

n

j
ij q p ij

1 1

1 1

( )( ) ( )( )

( )( ) ( )( )

∑∑

∑∑

∘ ∘ − = ∘ ∘ −

∘ ∘ − = ∘ ∘ −

−

= =

∞

−

−

= =

∞

−

(4.3)

(b) By Lemma 3.2, (4.2), and (4.3), we obtain

T F T u p T F T v p

α T f T x p β T f T y p

α β T f T x p T f T y p

α β x p y p

α x p β y p

u p v p

,

,

,

,

,

,

q p q p a

i

m

j
ij q p ij

k

n

k q p k
a

i

m

k

n

j
ij k q p ij q p k a

i

m

k

n

j
ij k ij k a

i

m

j
ij ij

k

n

k k
a

a

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

⟨ ∘ ∘ − ∘ ∘ − ⟩

= ∘ ∘ − ∘ ∘ −

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

= ⟨ − − ⟩

= − −

= ⟨ − − ⟩

− −

= =

∞

−

= ℓ=

∞

ℓ

−

ℓ

= = =

∞

ℓ=

∞

ℓ

− −

ℓ

= = =

∞

ℓ=

∞

ℓ
ℓ

= =

∞

= ℓ=

∞

ℓ
ℓ

(4.4)

for all u v E p, GS ,1( )∈ . That is, T F Tq p∘ ∘

−

preserves the inner product. Indeed, equality (4.4) is an
extended version of Lemma 3.2.

(c) By using equality (4.4), we further obtain

d F u F v F u F v
T F T u p T F T v p
T F T u p T F T v p

,

,

a a

q p q p a

q p q p

2 2

2
( ( ) ( )) ( ) ( )

∥( )( ) ( )( )∥

( )( ) ( )( )

= ‖ − ‖

= ∘ ∘ − − ∘ ∘ −

= ⟨ ∘ ∘ − − ∘ ∘ −

− −

− −
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T F T u p T F T v p u p u p u p v p v p u p
v p v p

u p v p u p v p
u p v p

u v
d u v

, , ,
,

,

,

q p q p a a a a

a

a

a

a

a

2

2

2

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

( )

∘ ∘ − − ∘ ∘ − ⟩ = ⟨ − − ⟩ − ⟨ − − ⟩ − ⟨ − − ⟩

+ ⟨ − − ⟩

= ⟨ − − − − − − ⟩

= ‖ − − − ‖

= ‖ − ‖

=

− −

for all u v E p, GS ,1( )∈ , i.e., F is a da-isometry.
(d) Now, let u and v be arbitrary elements of E pGS ,1( ). Then, it holds that u p E p pGS ,1( )− ∈ − ,

v p E p pGS ,1( )− ∈ − , and α u p β v p E p pGS ,1( ) ( ) ( )− + − ∈ − for any α β, �∈ , because E p pGS ,1( ) −

is a real vector space.
We obtain

T F T α u p β v p α T F T u p β T F T v p

T F T α u p β v p α T F T u p

β T F T v p T F T α u p β v p α T F T u p

β T F T v p

,

.

q p q p q p a

q p q p

q p q p q p

q p a

2∥( )( ( ) ( )) ( )( ) ( )( )∥

( )( ( ) ( )) ( )( )

( )( ) ( )( ( ) ( )) ( )( )

( )( )

∘ ∘ − + − − ∘ ∘ − − ∘ ∘ −

= ⟨ ∘ ∘ − + − − ∘ ∘ −

− ∘ ∘ − ∘ ∘ − + − − ∘ ∘ −

− ∘ ∘ − ⟩

− − −

− −

− − −

−

Since α u p β v p w p( ) ( )− + − = − for some w E pGS ,1( )∈ , we further use (4.4) to obtain

T F T α u p β v p α T F T u p β T F T v p

w p w p α w p u p β w p v p α u p w p α u p u p

αβ u p v p β v p w p αβ v p u p β v p v p

, , , , ,

, , , , 0,

q p q p q p a

a a a a a

a a a a

2

2

2

∥( )( ( ) ( )) ( )( ) ( )( )∥∘ ∘ − + − − ∘ ∘ − − ∘ ∘ −

= ⟨ − − ⟩ − ⟨ − − ⟩ − ⟨ − − ⟩ − ⟨ − − ⟩ + ⟨ − − ⟩

+ ⟨ − − ⟩ − ⟨ − − ⟩ + ⟨ − − ⟩ + ⟨ − − ⟩ =

− − −

which implies that the function T F T E p p M: GS ,q p a1( )∘ ∘ − →

−

is linear.
(e) Finally, we set α 111 = and α 0ij = for any i j, 1, 1( ) ( )≠ , and x x11 = in (4.2) and (4.3) to see

T F T x p T f T x pq p q p( )( ) ( )( )∘ ∘ − = ∘ ∘ −

− −

for every x E1∈ , which implies that F x f x( ) ( )= for every x E1∈ , i.e., F is an extension of f . □

5 Second-order generalized linear span

For any element x of Ma and r 0> , we denote by B xr( ) the open ball defined by B x y M :r a( ) {= ∈

y x ra }‖ − ‖ < .
Definitions 3.1 and 4.1 will be generalized to the cases of n 2≥ in the following definition. We introduce

the concept of nth-order generalized linear span E pGS ,n
1( ), which generalizes the concept of first-order

generalized linear span E pGS ,( ). Moreover, we define the da-isometry Fn, which extends the domain of
a da-isometry f to E pGS ,n

1( ).
It is surprising, however, that this process of generalization does not go far. Indeed, we will find in

Proposition 5.4 and Theorem 7.2 that E pGS ,2
1( ) and F2 are their limits.

Definition 5.1. Let E1 be a nonempty bounded subset of Ma that is da-isometric to a subset E2 of Ma via a
surjective da-isometry f E E: 1 2→ . Let p be an element of E1 and q an element of E2 with q f p( )= . Assume
that r is a positive real number satisfying E B pr1 ( )⊂ .
(i) We define E p EGS ,0

1 1( ) = and E p E pGS , GS ,1
1 1( ) ( )= . In general, we define the nth-order generalized

linear span of E1 with respect to p as E p E p B p pGS , GS GS , ,n n
r1

1
1( ) ( ( ) ( ) )= ∩

− for all n �∈ .
(ii) We define F f0 = and F F1 = , where F is defined in Definition 4.1. Moreover, for any n �∈ , we define the

function F E p M: GS ,n
n

a1( ) → by
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T F T α x p α T F T x pq n p
i

m

j
ij ij

i

m

j
ij q n p ij

1 1 1 1
1( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )( )
∑∑ ∑∑

∘ ∘ − = ∘ ∘ −

−

= =

∞

= =

∞

− −

for all m �∈ , x E p B pGS ,ij
n

r
1

1( ) ( )∈ ∩

− , and αij �∈ with α x p Mi
m

j ij ij a1 1 ( )∑ ∑ − ∈

= =

∞ .

Proposition 5.1. Let E be a nonempty bounded subset of Ma. If s and t are positive real numbers that satisfy
E B p B ps t( ) ( )⊂ ∩ , then

E p B p p E p B p pGS GS , , GS GS , , .s t( ( ) ( ) ) ( ( ) ( ) )∩ = ∩

Proof. Assume that s t0 < < . Then, there exists a real number c 1> with s t
c> , and it is obvious that

B p B pt c s( ) ( )⊂

∕

. Assume that x is an arbitrary element of E p B p pGS GS , ,t( ( ) ( ) )∩ . Then, there exist some

m �∈ , u E p B pGS ,ij t( ) ( )∈ ∩ , and αij �∈ such that x p α u p Mi
m

j ij ij a1 1 ( )= + ∑ ∑ − ∈

= =

∞ . We note that

E p p B p p u p M u E p B pGS , : GS , .t a t( ( ) ) ( ( ) ) { ( ) ( )}− ∩ − = − ∈ ∈ ∩

Since E p pGS ,( ) − is a real vector space, st
c < , and since u p E p p B p pGS ,ij t( ( ) ) ( ( ) )− ∈ − ∩ − for any

i and j, we have

c
u p E p p B p p1 GS , .ij s( ) ( ( ) ) ( ( ) )− ∈ − ∩ −

Hence, we can choose a v E p B pGS ,ij s( ) ( )∈ ∩ such that u p v pc ij ij
1
( )− = − . Thus, we obtain

x p α u p p cα v p E p B p pGS GS , , ,
i

m

j
ij ij

i

m

j
ij ij s

1 1 1 1
( ) ( ) ( ( ) ( ) )

∑∑ ∑∑

= + − = + − ∈ ∩

= =

∞

= =

∞

which implies that E p B p p E p B p pGS GS , , GS GS , ,t s( ( ) ( ) ) ( ( ) ( ) )∩ ⊂ ∩ .
The reverse inclusion is obvious, since B p B ps t( ) ( )⊂ . □

We generalize Lemma 3.2 and formula (4.4) in the following lemma. Indeed, we prove that the function
T F T E p p M: GS ,q n p

n
a1( )∘ ∘ − →

−

preserves the inner product. This property is important in proving the
following theorems as a necessary condition for Fn to be a da-isometry.

Lemma 5.2. Let E1 be a bounded subset of Ma that is da-isometric to a subset E2 of Ma via a surjective
da-isometry f E E: 1 2→ . Assume that p and q are elements of E1 and E2, which satisfy q f p( )= . If n �∈ , then

T F T u p T F T v p u p v p, ,q n p q n p a a( )( ) ( )( )⟨ ∘ ∘ − ∘ ∘ − ⟩ = ⟨ − − ⟩

− −

for all u v E p, GS ,n
1( )∈ .

Proof. Our assertion for n 1= was already proved in (4.4). Considering Proposition 5.1, assume that r is a
positive real number satisfying E B pr1 ( )⊂ . Now we assume that the assertion is true for some n �∈ . Let u v,
be arbitrary elements of E pGS ,n 1

1( )+ . Then, there exist some m m,1 2 �∈ , x y E p B p, GS ,ij k
n

r1( ) ( )∈ ∩

ℓ

, and
α β,ij k �∈

ℓ

such that

u p α x p M v p β y p Mand .
i

m

j
ij ij a

k

m

k k a
1 1 1 1

1 2

( ) ( )
∑∑ ∑ ∑

− = − ∈ − = − ∈

= =

∞

= ℓ=

∞

ℓ
ℓ

Using Definition 5.1 ii( ) and our assumption, we obtain

T F T u p T F T v p

α T F T x p β T F T y p

,

,

q n p q n p a

i

m

j
ij q n p ij

k

m

k q n p k
a

1 1

1 1 1 1

1 2

( )( ) ( )( )

( )( ) ( )( )
∑∑ ∑ ∑

⟨ ∘ ∘ − ∘ ∘ − ⟩

= ∘ ∘ − ∘ ∘ −

− + − +

= =

∞

−

= ℓ=

∞

ℓ

−

ℓ
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α β T F T x p T F T y p

α β x p y p

α x p β y p

u p v p

,

,

,

,

i

m

k

m

j
ij k q n p ij q n p k a

i

m

k

m

j
ij k ij k a

i

m

j
ij ij

k

m

k k
a

a

1 1 1 1

1 1 1 1

1 1 1 1

1 2

1 2

1 2

( )( ) ( )( )

( ) ( )

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

= ⟨ − − ⟩

= − −

= ⟨ − − ⟩

= = =

∞

ℓ=

∞

ℓ

− −

ℓ

= = =

∞

ℓ=

∞

ℓ
ℓ

= =

∞

= ℓ=

∞

ℓ
ℓ

for all u v E p, GS ,n 1
1( )∈

+ . By mathematical induction, we may then conclude that our assertion is true for all
n �∈ . □

When n 1= and p p= ′, the first assertion in i( ) of the following lemma is obvious, so we have used that
fact several times before, omitting the proof. The assertion iv( ) in the following lemma seems to be related in
some way to Proposition 5.1.

Lemma 5.3. Let E be a bounded subset of Ma and p p E, ′ ∈ . Assume that r is a positive real number
satisfying E B pr( )⊂ .
(i) E p pGS ,n( ) − ′ is a vector space over � for each n �∈ .
(ii) E p E pGS , GS ,n n 1( ) ( )⊂

+ for each n �∈ .

(iii) E p E pGS , GS ,2( ) ( )= , where E pGS ,( ) is the closure of E pGS ,( ) in Ma.
(iv) E p E p B pΛ GS , Λ GS ,n n

r( ( )) ( ( ) ( ))= ∩ for all n �∈ .

Proof. i( ) By using Definitions 3.1 and 5.1, we prove that E p pGS ,( ) − ′ is a real vector space. (We can prove
similarly for the case of n 1> .) Given x y E p p, GS ,( )∈ − ′, we may choose some m m,1 2 �∈ , u v E,ij ij ∈ , and

α β,ij ij �∈ such that x p p α u p Mi
m

j ij ij a1 1
1( ) ( )= − ′ + ∑ ∑ − ∈

= =

∞ and y p p β v p Mi
m

j ij ij a1 1
2( ) ( )= − ′ + ∑ ∑ − ∈

= =

∞ .

Since Ma is a real vector space, α α u p β β v p Mi
m

j ij ij i
m

j ij ij a1 1 1 1
1 2( ) ( )∑ ∑ − + ∑ ∑ − ∈

= =

∞

= =

∞ for all α β, �∈ .

Moreover, we see that

αx βy p α β p p αα u p ββ v p p E p p1 GS ,
i

m

j
ij ij

i

m

j
ij ij

1 1 1 1

1 2⎛

⎝
⎜

( )( ) ( ) ( )
⎞

⎠
⎟

( )
∑∑ ∑∑

+ = + − − ′ − + − + − − ′ ∈ − ′

= =

∞

= =

∞

for all α β, �∈ . Hence, E p pGS ,( ) − ′ is a real vector space as a subspace of real vector space Ma.
(ii) Let r be a positive real number with E B pr( )⊂ . If x E pGS ,n( )∈ for some n �∈ , then x p− ∈

E p pGS ,n( ) − . Since E p pGS ,n( ) − is a real vector space by i( ) and B p p B 0r r( ) ( )− = , we can choose a
(positive or negative but sufficiently small) real number μ 0≠ such that μ x p E p pGS ,n( ) ( ( ) )− ∈ − ∩

B p pr( ( ) )− . We note that

E p p B p p v p M v E p B pGS , : GS , .n
r a

n
r( ( ) ) ( ( ) ) { ( ) ( )}− ∩ − = − ∈ ∈ ∩ (5.1)

Thus, we see that μ x p v p( )− = − for some v E p B pGS ,n
r( ) ( )∈ ∩ . Since x p v pμ

1
( )= + − , it holds that

x E pGS ,n 1( )∈

+ . Therefore, we conclude that E p E pGS , GS ,n n 1( ) ( )⊂

+ for every n �∈ .
(iii) Let x be an arbitrary element of E pGS ,( ). Then, there exists some sequence xn{ } in E pGS ,( ) that

converges to x, where x xn ≠ for all n �∈ . We now set y x1 1= and y x xi i i 1= −

−

for each integer i 2≥ . Then,
we have

x y ,n
i

n

i
1

∑

=

=

where y x p x p E p pGS ,i i i 1( ) ( ) ( )= − − − ∈ −

−

for i 2≥ . Since E p pGS ,( ) − is a real vector space and
B p p B 0r r( ) ( )− = , we can select a real number μ 0i ≠ such that

μ y E p p μ y B p pGS , andi i i i r( ) ( )∈ − ∈ −

1362  Soon-Mo Jung



for every integer i 2≥ . Thus, it follows from (5.1) that

x y y
μ

μ y x
μ

v p1 1 ,n
i

n

i
i

n

i
i i

i

n

i
i

1
1

2
1

2
( ) ( )

∑ ∑ ∑

= = + = + −

= = =

where v E p B pGS ,i r( ) ( )∈ ∩ for i 2≥ . Since the sequence xn{ } is assumed to converge to x, the sequence

x v pi
n

μ i
n

1 2
1

i
( )

{ }

+ ∑ −

=

converges to x. Hence, we have

x
μ

v p x x M1 lim .
i i

i
n

n a1
2

( )
∑

+ − = = ∈

=

∞

→∞

(5.2)

(Since Ma is a Hausdorff space, x is the unique limit point of the sequence xn{ }.)
Furthermore, there exists a real number μ 01 ≠ that satisfies μ x p E p pGS ,1 1( ) ( )− ∈ − and μ x p1 1( )− ∈

B p pr( ) − , i.e., μ x p E p p B p pGS , r1 1( ) ( ( ) ) ( ( ) )− ∈ − ∩ − . Thus, there exists a v E p B pGS , r1 ( ) ( )∈ ∩ such

that μ x p v p1 1 1( )− = − or x p v pμ1
1

1
1
( )− = − . Therefore,

x p x p
μ

v p p
μ

v p1 1 ,
i i

i
i i

i1
2 1

( ) ( ) ( )
∑ ∑

= + − + − = + −

=

∞

=

∞

(5.3)

where v E p B pGS ,i r( ) ( )∈ ∩ for each i �∈ . It follows from (5.2) that v p Mi μ i a1
1

i
( )∑ − ∈

=

∞ . Thus, by (5.3),
we see that x E pGS ,2( )∈ , which implies that E p E pGS , GS ,2( ) ( )⊂ .

On the other hand, let y E pGS ,2( )∈ . Then, there are some m �∈ , v E p B pGS ,ij r( ) ( )∈ ∩ , and αij �∈

such that y p α v p Mi
m

j ij ij a1 1 ( )= + ∑ ∑ − ∈

= =

∞ . Let us define y p α v pn i
m

j
n

ij ij1 1 ( )= + ∑ ∑ −

= =

for every n �∈ . Since

v p E p pGS ,ij ( )− ∈ − for all i and j and E p pGS ,( ) − is a real vector space, we know that y pn − =

α v p E p pGS ,i
m

j
n

ij ij1 1 ( ) ( )∑ ∑ − ∈ −

= =

, and hence, y E pGS ,n ( )∈ for all n �∈ . Since E pGS ,( ) is a Hausdorff space,

y is the unique limit point of the sequence yn{ }. Thus, we see that

y p α v p y E plim GS , ,
i

m

j
ij ij

n n
1 1

( ) ( )
∑∑

= + − = ∈

= =

∞

→∞

which implies that E p E pGS , GS ,2( ) ( )⊂ .
iv( ) Let i E pΛ GS ,n( ( ))∈ . In view of Definition 3.2, there exist x E pGS ,n( )∈ and α 0≠ with x αei+ ∈

E pGS ,n( ). Furthermore, x p α u pi
m

j ij ij1 1 ( )= + ∑ ∑ −

= =

∞ for some m �∈ , u E p B pGS ,ij
n

r
1( ) ( )∈ ∩

− , and αij �∈ .

Since α u p αe x p αe E p pGS ,i
m

j ij ij i i
n

1 1 ( ) ( )∑ ∑ − + = − + ∈ −

= =

∞ , it holds that μ α u p αei
m

j ij ij i1 1( ( ) )∑ ∑ − + ∈

= =

∞

E p p B p pGS ,n
r( ( ) ) ( ( ) )− ∩ − for any sufficiently small μ 0≠ , or equivalently, it follows from (5.1) that

p μα u p μαe E p B pGS , .
i

m

j
ij ij i

n
r

1 1

⎛

⎝
⎜

( )
⎞

⎠
⎟

( ) ( )
∑∑

+ − + ∈ ∩

= =

∞

(5.4)

On the other hand, since α u p x p E p pGS ,i
m

j ij ij
n

1 1 ( ) ( )∑ ∑ − = − ∈ −

= =

∞ , it holds that μα u pi
m

j ij ij1 1 ( )∑ ∑ − ∈

= =

∞

E p p B p pGS ,n
r( ( ) ) ( ( ) )− ∩ − for any sufficiently small μ 0≠ . Hence, it follows from (5.1) that p +

μα u p E p B pGS ,i
m

j ij ij
n

r1 1 ( ) ( ) ( )∑ ∑ − ∈ ∩

= =

∞ for any sufficiently small μ 0≠ . Thus, by Definition 3.2 and (5.4),
it holds that i E p B pΛ GS ,n

r( ( ) ( ))∈ ∩ , which implies that E p E p B pΛ GS , Λ GS ,n n
r( ( )) ( ( ) ( ))⊂ ∩ . Obviously,

the inverse inclusion is true. □

As wementioned earlier, we will see that the second-order generalized linear span is the last step in this
kind of domain extension.

Proposition 5.4. If E is a bounded subset of Ma and p E∈ , then

E E p E p E p E pGS , GS , GS , GS ,n2( ) ( ) ( ) ( )⊂ ⊂ = =

for any integer n 3≥ . Indeed, E p pGS ,n( ) − is a real Hilbert space for n 2≥ .
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Proof. (a) Considering Proposition 5.1, we can choose a real number r 0> that satisfies E B pr( )⊂ . Assume
that x E pGS ,3( )∈ . Then, there exist some m0 �∈ , u E p B pGS ,ij r

2( ) ( )∈ ∩ , and αij �∈ such that x p= +

α u p Mi
m

j ij ij a1 1
0 ( )∑ ∑ − ∈

= =

∞ .

We define x p α u pm i
m

j
m

ij ij1 1
0 ( )= + ∑ ∑ −

= =

for each m �∈ . Since u E pGS ,ij
2( )∈ , there exist some mij �∈ ,

v E p B pGS ,ijk r( ) ( )∈ ∩

ℓ

, and βijk �∈

ℓ

such that u p β v p Mij k
m

ijk ijk a1 1
ij ( )= + ∑ ∑ − ∈

=
ℓ=

∞

ℓ

ℓ

. Hence, it holds that

x p α β v p M ,m
i

m

j

m

k

m

ij ijk ijk a
1 1 1 1

ij0

( )
∑∑ ∑ ∑

= + − ∈

= = = ℓ=

∞

ℓ

ℓ

which implies that x E pGS ,m
2( )∈ for all m �∈ . Thus, xm{ } is a sequence in E pGS ,2( ) that converges to x.

Therefore, x E pGS ,2( )∈ because E pGS ,2( ) is closed. Thus, E p E pGS , GS ,3 2( ) ( )⊂ . The inverse inclusion is of
course true due to Lemma 5.3 ii( ). We have proved that E p E pGS , GS ,2 3( ) ( )= .

(b) Assume that E p E p E pGS , GS , GS ,n n2 1( ) ( ) ( )= ⋯= =

+ for some integer n 2≥ .
(c) If we replace E pGS ,( ), E pGS ,2( ), and E pGS ,3( ) in the previous part (a) with E pGS ,n( ), E pGS ,n 1( )+ ,

and E pGS ,n 2( )+ , respectively, and if we consider the fact that E p E pGS , GS ,n 1 2( ) ( )=

+ is closed in Ma by
Lemma 5.3 iii( ) and our assumption (b), then we arrive at the conclusion that E p E pGS , GS ,n n1 2( ) ( )=

+ + .
(d)With the conclusion of mathematical induction we prove that E p E pGS , GS ,n 2( ) ( )= for every integer

n 3≥ . Moreover, when n 2≥ , E pGS ,n( ) is complete as a closed subset of a real Hilbert space Ma (ref. Remark
2.2). Therefore, E p pGS ,n( ) − is a real Hilbert space for n 2≥ . □

The following lemma is an extension of Lemma 3.1 for the second-order generalized linear span
E pGS ,2( ). Indeed, we prove that if i E pΛ GS ,2( ( ))∈ , then the second-order generalized linear span of E

contains all the lines through E pGS ,( ) in the direction ei.

Lemma 5.5. Assume that a bounded subset E of Ma contains at least two elements and p E∈ .
If i E pΛ GS ,2( ( ))∈ and p E pGS ,( )′ ∈ , then p α e E pGS ,i i

2( )′ + ∈ for any αi �∈ .

Proof. Let r be a positive real number with E B pr( )⊂ . Assume that i E pΛ GS ,2( ( ))∈ . Considering Lemma
5.3 iv( ) and Proposition 5.4, if we substitute E p B pGS , r

2( ) ( )∩ for E in Lemma 3.1, then p α ei i+ ∈

E p E pGS , GS ,3 2( ) ( )= for all αi �∈ . Thus, there are some m �∈ , w E p B pGS ,ij r( ) ( )∈ ∩ , and βij �∈ with

β w p Mi
m

j ij ij a1 1 ( )∑ ∑ − ∈

= =

∞ such that p α e p β w pi i i
m

j ij ij1 1 ( )+ = + ∑ ∑ −

= =

∞ , and hence, we have

p α e p α e p p p β w p p p .i i i i
i

m

j
ij ij

1 1
( ) ( ) ( )

∑∑

′ + = + + ′ − = + − + ′ −

= =

∞

(5.5)

Because p p′ − belongs to E p pGS ,( ) − , which is a real vector space by Lemma 5.3 i( ), and B p p B 0r r( ) ( )− = ,
we can choose some sufficiently small real number μ 0≠ such that

μ p p E p p μ p p B p pGS , and .r( ) ( ) ( ) ( )′ − ∈ − ′ − ∈ − (5.6)

Considering (5.1), (5.5), and (5.6), if we put μ p p w p( )′ − = − with a w E p B pGS , r( ) ( )∈ ∩ , then we
have

p α e p β w p
μ

w p E p1 GS ,i i
i

m

j
ij ij

1 1

2( ) ( ) ( )
∑∑

′ + = + − + − ∈

= =

∞

for all αi �∈ . □

6 Basic cylinders and basic intervals

First, we will define the infinite dimensional intervals, which were simply defined in [14], more precisely
divided into nondegenerate basic cylinders, degenerate basic cylinders, and basic intervals.
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Definition 6.1. For any positive integer n, we define the infinite dimensional interval by

J J J

p i
p p i
p i
p i

, where

0, for Λ ,
, for Λ ,
, 1 for Λ ,

for Λ ,
0, 1 otherwise

i
i i

i

i i

i

i1

2 1

1 2 2

1 3

1 4

⎧

⎨

⎪
⎪

⎩

⎪
⎪

[ ] ( )

[ ] ( )

[ ] ( )

{ } ( )

[ ] ( )

∏
= =

∈

∈

∈

∈

=

∞

for some disjoint finite subsets Λ1, Λ2, and Λ3 of n1, 2, ,{ }… and p p0 1i i1 2< < < for i Λ Λ Λ1 2 3∈ ∪ ∪ and
p0 1i1≤ ≤ for i Λ4∈ . If Λ4 = ∅, then J is called a nondegenerate basic cylinder. When Λ4 is a nonempty

finite set, J is called a degenerate basic cylinder. If Λ4 is an infinite set, then J will be called a basic interval.

Remark 6.1.
(i) In order for an infinite dimensional interval J to become a basic cylinder, Λ4 must be a finite set.
(ii) We remark that JΛ Λ4 � ( )= ⧹ and JΛ Λ4�( ) = ⧹ . That is, � is the disjoint union of JΛ( ) and Λ4.
(iii) If p p p p, , , ,i1 2( )= … … is an element of J , then J pi i{ }= for each i JΛ( )∉ .

We note that the basic cylinder or the basic interval J defined in Definition 6.1 can be expressed as

J α
a

e α a J i1 : for all ,
i

i
i

i i i i
1

�⎜ ⎟

⎧

⎨
⎩

⎛

⎝

⎞

⎠

⎫

⎬
⎭

∑

= ∈ ∈

=

∞

where Ji is the interval defined in Definition 6.1.

Definition 6.2. Let β βi i �{ }=

∈

be a complete orthonormal sequence in Ma, Ji the interval given in Definition
6.1, and let n be a positive integer. We define

J α β α a J i: for allβ
i

i i i i i
1

�
⎧

⎨
⎩

⎫

⎬
⎭

∑

= ∈ ∈

=

∞

for some disjoint finite subsets Λ1, Λ2, and Λ3 of n1, 2, ,{ }… ; p p0 1i i1 2< < < for i Λ Λ Λ1 2 3∈ ∪ ∪ ; and
p0 1i1≤ ≤ for i Λ4∈ . If Λ4 = ∅, then Jβ is called a nondegenerate β-basic cylinder. When Λ4 is a nonempty

finite set, Jβ is called a degenerate β-basic cylinder. If Λ4 is an infinite set, then Jβ will be called a β-basic
interval.

Using Definitions 6.1 and 6.2, Remark 6.1 ii( ) is generalized as follows:

Remark 6.2. Let β βi i �{ }=

∈

be a complete orthonormal sequence in Ma and let Jβ be a β-basic cylinder or
a β-basic interval. It holds that JΛ Λβ β 4�( ) = ⧹ , where Λ4 is given in Definitions 6.1 and 6.2.

Proof. In general, if i Λ4∈ , then it follows from Definition 6.2 that

x β α β β α a J a p, ,i a
j

j j i
a

i i i i i
1

1{ }
∑

⟨ ⟩ = = ∈ =

=

∞

for all x Jβ∈ . That is, x β α a p, i a i i i1⟨ ⟩ = = for all x Jβ∈ and i Λ4∈ . If i Λ4∈ , then x αβ β x β, ,i i a i a⟨ + ⟩ = ⟨ ⟩ +

α a p α a pi i i i1 1= + ≠ for all x Jβ∈ and α 0≠ , which implies that x αβ Ji β+ ∉ . That is, in view of Definition
3.2 ii( ), we conclude that i JΛβ β( )∉ .

We now assume that i JΛβ β( )∉ . Then, by Definition 3.2 ii( ), it holds that

x αβ Ji β+ ∉ (6.1)

for any x Jβ∈ and α 0≠ . Using Definition 6.2 again, we have
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x αβ α β a p β αβi
j

j j
j

j j j i
Λ Λ

1
4 4

∑ ∑

+ = + +

∉ ∈

(6.2)

for all x Jβ∈ and α 0≠ . We assume on the contrary that i Λ4∉ . In view of (6.2) and by the structure of Ji
(a Ji i is indeed a nondegenerate interval for i Λ4∉ ), it holds that

x αβ α β α α β a p β Ji
j i

j j i i
j

j j j β
Λ Λ

1
4 4

( )
{ }

∑ ∑

+ = + + + ∈

∉ ∪ ∈

for some x Jβ∈ and α 0≠ , which is contrary to (6.1). (We note that, for each i Λ4∉ , α a Ji i i∈ and there exists
an α 0≠ satisfying α α a Ji i i+ ∈ .) Therefore, we conclude that if i JΛβ β( )∉ , then i Λ4∈ . □

Theorem 6.1. Let β βi i �{ }=

∈

be a complete orthonormal sequence in Ma and let Jβ be either a translation of
a β-basic cylinder or a translation of a β-basic interval and p Jβ∈ . Then,

J p p α β M α for all i JGS , : Λ .β
i J

i i a i β β
Λβ β

�( )
⎧

⎨
⎩

( )
⎫

⎬
⎭( )

∑

= + ∈ ∈ ∈

∈

Proof. Assume that x is an arbitrary element of J pGS ,β( ). By Definition 3.1, we have

x p ε x p M
i

m

j
ij ij a

1 1
( )

∑∑

− = − ∈

= =

∞

for some m �∈ , εij �∈ , and x Jij β∈ . Furthermore, since x p J,ij β∈ , by Definition 6.2, we obtain

x γ β γ β a p βij
k

k k
k

k k
k

k k k
1 Λ Λ

1
4 4�

∑ ∑ ∑

= = +

=

∞

∈ ⧹ ∈

and

p δ β δ β a p β
k

k k
k

k k
k

k k k
1 Λ Λ

1
4 4�

∑ ∑ ∑

= = +

=

∞

∈ ⧹ ∈

for some γ δ a J,k k k k∈ .

Since βi i �{ }
∈

is a complete orthonormal sequence in Ma, it follows from Definition 6.2 and Remark 6.2
that

x p ε x p ε γ δ β ω β ω β
i

m

j
ij ij

i

m

j
ij

k
k k k

k
k k

i J
i i

1 1 1 1 Λ Λ Λβ β4 4� �

( ) ( )
( )

∑∑ ∑∑ ∑ ∑ ∑

− = − = − = =

= =

∞

= =

∞

∈ ⧹ ∈ ⧹ ∈

for some real numbers ωi. Since x J p MGS ,β a( )∈ ⊂ , it holds that

x p ω β M p α β M α i J: for all Λ ,
i J

i i a
i J

i i a i β β
Λ Λβ β β β

�( )
⎧

⎨
⎩

( )
⎫

⎬
⎭( ) ( )

∑ ∑

= + ∈ ∈ + ∈ ∈ ∈

∈ ∈

which implies that

J p p α β M α i JGS , : for all Λ .β
i J

i i a i β β
Λβ β

�( )
⎧

⎨
⎩

( )
⎫

⎬
⎭( )

∑

⊂ + ∈ ∈ ∈

∈

It remains to prove the reverse inclusion. According to the structure of Jβ given in Definition 6.2, for
each i JΛβ β( )∈ , there exists a real number γ 0i ≠ such that p γβ Ji i β+ ∈ . In other words, for each i JΛβ β( )∈ ,
there exists a u Ji β∈ such that γβ u pi i i= − . Thus, if we assume that

p α β M
i J

i i a
Λβ β( )

∑

+ ∈

∈
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for some αi �∈ , then

p α β p α
γ

γβ p α
γ

u p J pGS , ,
i J

i i
i J

i

i
i i

i J

i

i
i β

Λ Λ Λβ β β β β β

( ) ( ) ( )
( ) ( ) ( )

∑ ∑ ∑

+ = + = + − ∈

∈ ∈ ∈

since u Ji β∈ for all i JΛβ β( )∈ , which implies that

J p p α β M α i JGS , : for all Λ .β
i J

i i a i β β
Λβ β

�( )
⎧

⎨
⎩

( )
⎫

⎬
⎭( )

∑

⊃ + ∈ ∈ ∈

∈

We end the proof in this way. □

Since in some ways, index sets have some properties of dimensions in vector space, the following
theorem may seem to be obvious.

Theorem 6.2. Assume that a bounded subset E of Ma contains at least two elements and p E∈ . Then,
E pΛ GS ,2 �( ( )) = if and only if E p MGS , a

2( ) = .

Proof. Let x be an arbitrary element of Ma. There exist some real numbers αi such that

x α e M .
i

i i a
1

∑

= ∈

=

∞

(6.3)

If E pΛ GS ,2 �( ( )) = , then it follows from Lemma 5.5 that

p α e E pGS ,i i
2( )+ ∈

for all i �∈ . In other words,

α e E p pGS ,i i
2( )∈ −

for all i �∈ .
By Lemma 5.3 i( ), we obtain

x α e E p pGS ,n
i

n

i i
1

2( )
∑

≔ ∈ −

=

for any n �∈ . Due to Lemma 5.3 iii( ) and (6.3), we further obtain

x α e x E p plim GS , ,
i

i i
n

n
1

2( )
∑

= = ∈ −

=

∞

→∞

which implies that M E p pGS ,a
2( )⊂ − , or equivalently, M E pGS ,a

2( )⊂ .
The reverse inclusion is trivial. □

7 Second-order extension of isometries

It was proved in Theorem 4.2 that the domain of a da-isometry f E E: 1 2→ can be extended to the first-order
generalized linear span E pGS ,1( ) whenever E1 is a nonempty bounded subset of Ma, whether degenerate or
nondegenerate.

Now we generalize Theorem 4.2 into the following theorem. More precisely, we prove that the domain of
f can be extended to its second-order generalized linear span E pGS ,2

1( ). It follows from Lemma 5.3 iii( ) that
E p E pGS , GS ,2

1 1( ) ( )= . Therefore, the following theorem is a further generalization of [19, Theorem 2.2].
Although the closure Espan 1 of the linear span of E1 is a real Hilbert space, it seems difficult to extend

the domain E1 of a local isometry to the Hilbert space Espan 1. However, we can extend the domain E1 of a
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local isometry to the second-order generalized linear span, as we see in the following theorem. For this
reason, we use the second-order generalized linear span instead of the closure of linear span of E1.

In the proof, we use the fact that E p pGS ,n
1( ) − is a real vector space.

Theorem 7.1. Let E1 be a bounded subset of Ma that is da-isometric to a subset E2 of Ma via a surjective
da-isometry f E E: 1 2→ . Assume that p and q are elements of E1 and E2, which satisfy q f p( )= . The function
F E p M: GS , a2

2
1( ) → is a da-isometry and the function T F T E p p M: GS ,q p a2

2
1( )∘ ∘ − →

−

is linear. In par-
ticular, F2 is an extension of F.

Proof.
(a) Suppose r is a positive real number satisfying E B pr1 ( )⊂ . Referring to the changes presented in the

table below and following the first part of proof of Theorem 4.2, we can easily prove that F2 is a da-isometry.

Theorem 4.2: E1 E pGS ,1( ) f F Definition 4.1 Lemma 3.2

Here: E p B pGS , r1( ) ( )∩ E pGS ,2
1( ) F F2 Definition 5.1 Lemma 5.2

(b) We prove the linearity of T F T E p p M: GS ,q n p
n

a1( )∘ ∘ − →

−

in a more general setting for n 2≥ .
Referring to the changes presented in the table below and following (d) of the proof of Theorem 4.2, we can
easily prove that T F Tq n p∘ ∘

−

is linear.

Theorem 4.2: E pGS ,1( ) F (4.4)

Here: E pGS ,n
1( ) Fn Lemma 5.2

(c) According to Definition 5.1 i( ), for any m �∈ , x E p B pGS ,ij r1( ) ( )∈ ∩ , and any αij �∈ with i
m

1∑

=

α x p Mj ij ij a1 ( )∑ − ∈

=

∞ , there exists a u E pGS ,2
1( )∈ satisfying

u p α x p M .
i

m

j
ij ij a

1 1
( )

∑∑

− = − ∈

= =

∞

(7.1)

Due to Definition 5.1 ii( ), we further have

T F T u p α T F T x p .q p
i

m

j
ij q p ij2

1 1
( )( ) ( )( )

∑∑

∘ ∘ − = ∘ ∘ −

−

= =

∞

−
(7.2)

If we set α 111 = , α 0ij = for each i j, 1, 1( ) ( )≠ , and x x11 = in (7.1) and (7.2), we see that

T F T x p T F T x pq p q p2( )( ) ( )( )∘ ∘ − = ∘ ∘ −

− −

(7.3)

for all x E p B pGS , r1( ) ( )∈ ∩ .
Let w be an arbitrary element of E pGS ,1( ). Then, w p E p pGS ,1( )− ∈ − . Since E p pGS ,1( ) − is a real

vector space and B p p B 0r r( ) ( )− = , there exists a (sufficiently small) real number μ 0≠ such that

μ w p E p p B p pGS , .r1( ) ( ( ) ) ( ( ) )− ∈ − ∩ −

Hence, by (5.1), we can choose a v E p B pGS , r1( ) ( )∈ ∩ such that μ w p v p( )− = − . Since both T F Tq p2∘ ∘

−

and T F Tq p∘ ∘

−

are linear and E p E pGS , GS ,1
2

1( ) ( )⊂ , it follows from (7.3) that

μ T F T w p T F T μ w p
T F T v p
T F T v p
T F T μ w p

μ T F T w p .

q p q p

q p

q p

q p

q p

2 2

2

( )( ) ( )( ( ))

( )( )

( )( )

( )( ( ))

( )( )

∘ ∘ − = ∘ ∘ −

= ∘ ∘ −

= ∘ ∘ −

= ∘ ∘ −

= ∘ ∘ −

− −

−

−

−

−
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Therefore, it follows that T F T w p T F T w pq p q p2( )( ) ( )( )∘ ∘ − = ∘ ∘ −

− −

for all w E pGS ,1( )∈ , i.e., F w2( ) =

F w( ) for all w E pGS ,1( )∈ . In other words, F2 is an extension of F . Also, because of Theorem 4.2, we see
that F2 is obviously an extension of f . □

On account of Proposition 5.4, it holds that

E p E p E pGS , GS , GS ,n n2
1

1
1 1( ) ( ) ( )= ⋯= =

−

for every integer n 3≥ .

Theorem 7.2. Let E1 be a bounded subset of Ma that is da-isometric to a subset E2 of Ma via a surjective
da-isometry f E E: 1 2→ . Assume that p and q are elements of E1 and E2, which satisfy q f p( )= . Then, Fn is
identically the same as F2 for any integer n 3≥ , where F2 and Fn are defined in Definition 5.1.

Proof. Let r be a fixed positive real number satisfying E B pr1 ( )⊂ . We assume that F F Fn2 3 1≡ ≡⋯≡

−

on
E pGS ,2

1( ). Let x be an arbitrary element of E pGS ,n
1( ). Then, in view of (5.1), there exist a real number μ 0≠

and an element u of E p B pGS ,n
r1( ) ( )∩ such that

u p μ x p E p p B p pGS , .n
r1( ) ( ( ) ) ( ( ) )− = − ∈ − ∩ −

If we put α 111 = , α 0ij = for all i j, 1, 1( ) ( )≠ , and x v11 = in Definition 5.1 ii( ), then we obtain

T F T v p T F T v pq n p q n p1( )( ) ( )( )∘ ∘ − = ∘ ∘ −

− − −

(7.4)

for all v E p B p E p B pGS , GS ,n
r

n
r

1
1 1( ) ( ) ( ) ( )∈ ∩ = ∩

− by Proposition 5.4.
Since T F Tq n p∘ ∘

−

is linear by (b) in the proof of Theorem 7.1, it follows from (7.4) and our assumption
that

μ T F T x p T F T u p
T F T u p
T F T u p

μ T F T x p ,

q n p q n p

q n p

q p

q p

1

2

2

( )( ) ( )( )

( )( )

( )( )

( )( )

∘ ∘ − = ∘ ∘ −

= ∘ ∘ −

= ∘ ∘ −

= ∘ ∘ −

− −

− −

−

−

i.e., F x F xn 2( ) ( )= for every x E p E pGS , GS ,n
1

2
1( ) ( )∈ = . By mathematical induction, we conclude that Fn

is identically the same as F2 for every integer n 3≥ . □

Assume that J is either a translation of a basic cylinder or a translation of a basic interval, and p is an
element of J . Due to Definition 6.1, Remark 6.1, and Theorem 6.1, J pGS ,( ) is a closed subset of Ma.

Remark 7.1. J pGS ,( ) is a closed subset of Ma.

Proof. Assume that p p p p, , , ,i1 2( )= … … is a fixed element of J , where J is a translation of a basic cylinder
or a translation of a basic interval. In view of Definition 3.1 and Remark 6.1 iii( ), we note that x pi i= for each
x x x x J p, , , , GS ,i1 2( ) ( )= … … ∈ and each i JΛ( )∉ .

Assume that zn n �{ }
∈

is a sequence of elements in J pGS ,( ), which converges to an element z =

z z z, , , ,i1 2( )… … of Ma. Let us denote by zni the ith component of zn for any i n, �∈ . Since z J pGS ,n ( )∈

for every n �∈ , the previous argument implies that z pni i= for each i JΛ( )∉ . Thus, we conclude that z pi i=

for each i JΛ( )∉ . This fact and Theorem 6.1 with β ea i
i

1
i �

{ }

=

∈

imply that z J pGS ,( )∈ . Therefore, we con-
clude that J pGS ,( ) is a closed subset of Ma. □

We note that ea i
i

1
i �

{ }

∈

is a complete orthonormal sequence in Ma. On account of Theorem 6.1 with

β ea i
i

1
i �

{ }

=

∈

, we note that J J pΛ Λ GS ,( ) ( ( ))= .
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Remark 7.2. J p J pGS , GS ,2( ) ( )= .

Proof. Referring to the changes presented in the table below

Proposition 5.4: E p B pGS , r( ) ( )∩ E pGS ,2( ) E pGS ,3( ) x xm

Here: J J pGS ,( ) J pGS ,2( ) u um

and following the part (a) in the proof of Proposition 5.4, we can easily show that J pGS ,2( ) =

J pGS ,( ). □

Hence, by Theorem 6.1 with β ea i
i

1
i �

{ }

=

∈

and Remark 7.2, we have

u p u p
a

e
a

e

a u p
a

e

a u p
a

e

u p
a

e
a

e

, 1 1

1

1

, 1 1

i i
i

a i
i

i
i i i

i
i

i J
i i i

i
i

i J i
i

a i
i

1

1

Λ

Λ

( )

( )
( )

( )

∑

∑

∑

∑

− = −

= −

= −

= −

=

∞

=

∞

∈

∈

(7.5)

for all u J p J pGS , GS ,n2( ) ( )∈ = , where n �∈ .
Using a similar approach to the proof of [14, Theorem 2.4], we can apply Lemma 5.2 to prove the

following theorem.

Theorem 7.3. Assume that J is either a translation of a basic cylinder or a translation of a basic interval, K is a
subset of Ma, and that there exists a surjective da-isometry f J K: → . Suppose p is an element of J and q is an
element of K with q f p( )= . For any n �∈ , the da-isometry F J p M: GS ,n

n
a( ) → given in Definition 5.1 satisfies

T F T u p u p
a

e
a

T F T e, 1 1
q n p

i J i
i

a i
q n p i

Λ
( )( ) ( )( )

( )

∑

∘ ∘ − = − ∘ ∘

−

∈

−

for all u J pGS ,n( )∈ .

Proof. First, we have

T F T u p u p
a

e
a

T F T e T F T u p

u p
a

e
a

T F T e

T F T u p T F T u p

u p
a

e
a

T F T u p T F T e

u p
a

e
a

T F T e T F T u p

u p
a

e u p
a

e
a a

T F T e T F T e

, 1 1 ,

, 1 1

,

, 1 1 ,

, 1 1 ,

, 1 , 1 1 ,

q n p
i J i

i
a i

q n p i q n p

j J j
j

a j
q n p j

a

q n p q n p a

j J j
j

a j
q n p q n p j a

i J i
i

a i
q n p i q n p a

i J j J i
i

a j
j

a i j
q n p i q n p j a

Λ

Λ

Λ

Λ

Λ Λ

( )( ) ( )( ) ( )( )

( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )

( )

( )

( )

( ) ( )

∑

∑

∑

∑

∑ ∑

∘ ∘ − − − ∘ ∘ ∘ ∘ −

− − ∘ ∘

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

− − ⟨ ∘ ∘ − ∘ ∘ ⟩

− − ⟨ ∘ ∘ ∘ ∘ − ⟩

+ − − ⟨ ∘ ∘ ∘ ∘ ⟩

−

∈

− −

∈

−

− −

∈

− −

∈

− −

∈ ∈

− −

for all u J pGS ,n( )∈ .
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Since p e J pGS ,i
n( )+ ∈ for each i JΛ( )∈ , it follows from Lemma 5.2 that

T F T u p u p
a

e
a

T F T e T F T u p

u p
a

e
a

T F T e

u p u p u p
a

e u p
a

e u p
a

e
a

e u p

u p
a

e u p
a

e
a

e
a

e

u p u p u p
a

e u p
a

e

, 1 1 ,

, 1 1

, , 1 , 1 , 1 1 ,

, 1 , 1 1 , 1

, , 1 , 1

q n p
i J i

i
a i

q n p i q n p

j J j
j

a j
q n p j

a

a
j J j

j
a j

j
a i J i

i
a i

i
a

i J j J i
i

a j
j

a i
i

j
j

a

a
j J j

j
a j

j
a

Λ

Λ

Λ Λ

Λ Λ

Λ

( )( ) ( )( ) ( )( )

( )( )

( )

( )

( ) ( )

( ) ( )

( )

∑

∑

∑ ∑

∑ ∑

∑

∘ ∘ − − − ∘ ∘ ∘ ∘ −

− − ∘ ∘

= ⟨ − − ⟩ − − − − − −

+ − −

= ⟨ − − ⟩ − − −

−

∈

− −

∈

−

∈ ∈

∈ ∈

∈

(7.6)

for all u J pGS ,n( )∈ , since ea i
1

i{ }

is an orthonormal sequence in Ma.

Furthermore, we note that each u J pGS ,n( )∈ has the expression given in (7.5). Hence, if we replace
u p− in (7.6) with the expression (7.5), then we have

T F T u p u p
a

e
a

T F T e, 1 1 0q n p
i J i

i
a i

q n p i

aΛ

2

( )( ) ( )( )
( )

∑

∘ ∘ − − − ∘ ∘ =

−

∈

−

for all u J pGS ,n( )∈ , which implies the validity of our assertion. □

According to the following theorem, the image of the first-order generalized linear span of E1 with
respect to p under the da-isometry F is just the first-order generalized linear span of F E1( ) with respect to
F p( ). This assertion holds also for the second-order generalized linear span and F2.

Theorem 7.4. Assume that E1 and E2 are bounded subsets of Ma that are da-isometric to each other via
a surjective da-isometry f E E: 1 2→ . Suppose p is an element of E1 and q is an element of E2 with q f p( )= .
If F E p M: GS ,n

n
a1( ) → is the extension of f defined in Definition 5.1, then E q F E pGS , GS ,n

n
n

2 1( ) ( ( ))= for
every n �∈ .

Proof.
(a) First, we prove that our assertion is true for n 1= , i.e., we prove that E q F E pGS , GS ,2 1( ) ( ( ))= .

Let r be a fixed positive real number satisfying E B pr1 ( )⊂ .
(b) Due to Definition 3.1, for any y F E pGS ,1( ( ))∈ , there exists an element x E pGS ,1( )∈ with

y F x F p α u p
i

m

j
ij ij

1 1
( )

⎛

⎝
⎜

( )
⎞

⎠
⎟∑∑

= = + −

= =

∞

for some m �∈ , u E B pij r1 ( )∈ ∩ , and αij �∈ with x p α u p Mi
m

j ij ij a1 1 ( )= + ∑ ∑ − ∈

= =

∞ .
On the other hand, by Definition 4.1, we have

T F T α u p α T f T u p ,q p
i

m

j
ij ij

i

m

j
ij q p ij

1 1 1 1
( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )( )
∑∑ ∑∑

∘ ∘ − = ∘ ∘ −

−

= =

∞

= =

∞

−

which is equivalent to

F x q F p α u p q α f u q .
i

m

j
ij ij

i

m

j
ij ij

1 1 1 1
( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( ( ) )
∑∑ ∑∑

− = + − − = −

= =

∞

= =

∞
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Since u E E B pij r1 1 ( )∈ = ∩ for all i and j, it holds that f u f E Eij 1 2( ) ( )∈ = for each i and j. Moreover, since
u E B pij r1 ( )∈ ∩ for all i and j, it follows from Lemma 3.2 that

f u q T f T u p
T f T u p T f T u p

u p u p
u p

r

,
,

ij a q p ij a

q p ij q p ij a

ij ij a

ij a

2 2

2

2

( ) ( )( )

( )( ) ( )( )

‖ − ‖ = ‖ ∘ ∘ − ‖

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

= ⟨ − − ⟩

= ‖ − ‖

<

−

− −

for all i and j. Hence, f u E B qij r2( ) ( )∈ ∩ for all i and j.
Furthermore, it follows from Lemma 3.2 that

α f u q α T f T u p

α T f T u p α T f T u p

α α T f T u p T f T u p

α α u p u p

α u p α u p

α u p

,

,

,

,

,

i

m

j
ij ij

a i

m

j
ij q p ij

a

i

m

j
ij q p ij

k

m

k q p k

a

i

m

k

m

j
ij k q p ij q p k a

i

m

k

m

j
ij k ij k a

i

m

j
ij ij

k

m

k k

a

i

m

j
ij ij

a

1 1

2

1 1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

2

( ( ) ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

( )

∑∑ ∑∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑

− = ∘ ∘ −

= ∘ ∘ − ∘ ∘ −

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

= ⟨ − − ⟩

= − −

= − < ∞

= =

∞

= =

∞

−

= =

∞

−

= ℓ=

∞

ℓ − ℓ

= = =

∞

ℓ=

∞

ℓ − − ℓ

= = =

∞

ℓ=

∞

ℓ ℓ

= =

∞

= ℓ=

∞

ℓ ℓ

= =

∞

since α u p x p Mi
m

j ij ij a1 1 ( )∑ ∑ − = − ∈

= =

∞ .
Thus, on account of Remark 2.1, we see that α f u q Mi

m
j ij ij a1 1 ( ( ) )∑ ∑ − ∈

= =

∞ .

Therefore, in view of Definition 3.1, we obtain

y F x q α f u q E qGS ,
i

m

j
ij ij

1 1
2( ) ( ( ) ) ( )

∑∑

= = + − ∈

= =

∞

and we conclude that F E p E qGS , GS ,1 2( ( )) ( )⊂ .
(c) Now we assume that y E qGS ,2( )∈ . By Definition 3.1, there exist some m �∈ , v E B qij r2 ( )∈ ∩ , and

αij �∈ such that y q α v q Mi
m

j ij ij a1 1 ( )− = ∑ ∑ − ∈

= =

∞ . Since f E E: 1 2→ is surjective, there exists a u Eij 1∈

satisfying v f uij ij( )= for any i and j. Moreover, by Lemma 3.2, we have

u p u p u p
T f T u p T f T u p

f u q f u q
v q v q
v q r

,
,

,
,

ij a ij ij a

q p ij q p ij a

ij ij a

ij ij a

ij a

2

2 2

( )( ) ( )( )

( ) ( )

‖ − ‖ = ⟨ − − ⟩

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

= ⟨ − − ⟩

= ⟨ − − ⟩

= ‖ − ‖ <

− −

for any i and j. So we conclude that u E B pij r1 ( )∈ ∩ and v f uij ij( )= for all i and j.
On the other hand, using Lemma 3.2, we have
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α u p α u p α u p

α α u p u p

α α T f T u p T f T u p

α T f T u p α T f T u p

α T f T u p

α f u q

α v q

,

,

,

,

i

m

j
ij ij

a i

m

j
ij ij

k

m

k k

a

i

m

k

m

j
ij k ij k a

i

m

k

m

j
ij k q p ij q p k a

i

m

j
ij q p ij

k

m

k q p k

a

i

m

j
ij q p ij

a

i

m

j
ij ij

a

i

m

j
ij ij

a

1 1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

2

1 1

2

1 1

2

( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( )

( ( ) )

( )

∑∑ ∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑

∑∑

∑∑

− = − −

= ⟨ − − ⟩

= ⟨ ∘ ∘ − ∘ ∘ − ⟩

= ∘ ∘ − ∘ ∘ −

= ∘ ∘ −

= −

= − < ∞

= =

∞

= =

∞

= ℓ=

∞

ℓ ℓ

= = =

∞

ℓ=

∞

ℓ ℓ

= = =

∞

ℓ=

∞

ℓ − − ℓ

= =

∞

−

= ℓ=

∞

ℓ − ℓ

= =

∞

−

= =

∞

= =

∞

since α v q y q Mi
m

j ij ij a1 1 ( )∑ ∑ − = − ∈

= =

∞ . Thus, Remark 2.1 implies that α u p Mi
m

j ij ij a1 1 ( )∑ ∑ − ∈

= =

∞ .

Hence, it follows from Definition 4.1 that

y q α f u q

q α T f T u p

q T F T α u p

F p α u p

F E pGS , .

i

m

j
ij ij

i

m

j
ij q p ij

q p
i

m

j
ij ij

i

m

j
ij ij

1 1

1 1

1 1

1 1

1

( ( ) )

( )( )

( )
⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

( ( ))

∑∑

∑∑

∑∑

∑∑

= + −

= + ∘ ∘ −

= + ∘ ∘ −

= + −

∈

= =

∞

= =

∞

−

−

= =

∞

= =

∞

Thus, we conclude that E q F E pGS , GS ,2 1( ) ( ( ))⊂ .
(d) Similarly, referring to the changes presented in the tables below and following the previous parts (b)

and (c) in this proof, we can prove that E q F E pGS , GS ,2
2 2

2
1( ) ( ( ))= .

The case n 1= : E1 E2 E pGS ,1( ) E qGS ,2( ) f F
The case n 2= : E pGS ,1( ) E qGS ,2( ) E pGS ,2

1( ) E qGS ,2
2( ) F F2

The case n 1= : Definition 3.1 Definition 4.1 Lemma 3.2
The case n 2= : Definition 5.1 i( ) Definition 5.1 ii( ) (4.4)

(e) Finally, according to Proposition 5.4, Theorem 7.2, and (d), we further have

E q E q F E p F E pGS , GS , GS , GS ,n
n

n
2

2
2 2

2
1 1( ) ( ) ( ( )) ( ( ))= = =

for any integer n 3≥ . □
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8 Extension of isometries to the entire space

Let I Iω
i 1= ∏

=

∞ be the Hilbert cube, where I 0, 1[ ]= is the unit closed interval. From now on, we assume that
E1 and E2 are nonempty subsets of Iω. They are bounded, of course.

In our main theorem (Theorem 8.1), we will prove that the domain of a local da-isometry f E E: 1 2→ can
be extended to any real Hilbert space including the domain E1.

Definition 8.1. Let E1 be a nonempty subset of Iω that is da-isometric to a subset E2 of Iω via a surjective
da-isometry f E E: 1 2→ . Let p be an element of E1 and q be an element of E2 with q f p( )= . Assume that

ea i
i

1

Λi α
{ }

∈

is a complete orthonormal sequence in the Hilbert space E p pGS ,2
1( ) − , where Λα is a nonempty

proper subset of �. Moreover, assume that βi i �{ }
∈

is a complete orthonormal sequence in the Hilbert space

Ma such that β T F T ei a q p i
1

2
i
( )( )= ∘ ∘

−

for each i Λα∈ , where F E p M: GS , a2
2

1( ) → is defined in Definition 5.1.

Let pi be the ith component of p, i.e., p p ei i i1= ∑

=

∞ . For any set Λ satisfying Λ Λα �⊂ ⊂ , we define a basic

cylinder or a basic interval J̃ by

J J J
i

p i
˜ ˜ , where ˜ 0, 1 for Λ ,

for Λ .i
i i

i1

⎧

⎨
⎩

[ ] ( )

{ } ( )
∏

= =

∈

∉

=

∞

Moreover, referring to Theorem 7.3, we define the function G J p M: GS ˜, a2
2( ) → by

T G T u p u p
a

e β, 1
q p

i J i
i

a
i2

Λ ˜
( )( )

( )

∑

∘ ∘ − = −

−

∈

(8.1)

for all u J pGS ˜,2( )∈ .

The following theorem states that the domain of a local da-isometry can be extended to any real Hilbert
space including the domain of the local da-isometry.

Theorem 8.1. Let E1 be a bounded subset of Iω that contains at least two elements. Suppose E1 is da-isometric
to a subset E2 of Iω via a surjective da-isometry f E E: 1 2→ . Let p and q be elements of E1 and E2 satisfying

q f p( )= . Assume that ea i
i

1

Λi α
{ }

∈

is a complete orthonormal sequence in the Hilbert space E p pGS ,2
1( ) − ,where

Λα is a nonempty proper subset of �.Moreover, assume that βi i �{ }
∈

is a complete orthonormal sequence in the

Hilbert space Ma such that β T F T ei a q p i
1

2
i
( )( )= ∘ ∘

−

for each i Λα∈ . Let Λ be a set satisfying Λ Λα �⊂ ⊂ and

let J̃ be defined as in Definition 8.1. Then, the function G J p M: GS ˜, a2
2( ) → is a da-isometry and the function

T G T J p p M: GS ˜,q p a2
2( )∘ ∘ − →

−

is linear. In particular, G2 is an extension of F2.

Proof.
(a) First, we assert that the function T G T J p p M: GS ˜,q p a2

2( )∘ ∘ − →

−

preserves the inner product.

Assume that u and v are arbitrary elements of J pGS ˜,2( ). Since JΛ Λ ˜( )= , it follows from (7.5), (8.1), and the

orthonormality of ea i
i

1
i �

{ }

∈

and βi i �{ }
∈

that

T G T u p T G T v p u p
a

e β v p
a

e β

u p
a

e v p
a

e β β

u p
a

e v p
a

e
a

e
a

e

, , 1 , , 1

, 1 , 1 ,

, 1 , 1 1 , 1

q p q p a
i i

i
a

i
j j

j
a

j
a

i i
i

a j j
j

a
i j a

i i
i

a j j
j

a i
i

j
j

a

2 2
Λ Λ

Λ Λ

Λ Λ

( )( ) ( )( )
∑ ∑

∑ ∑

∑ ∑

⟨ ∘ ∘ − ∘ ∘ − ⟩ = − −

= − − ⟨ ⟩

= − −

− −

∈ ∈

∈ ∈

∈ ∈
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u p
a

e
a

e v p
a

e
a

e

u p v p

, 1 1 , , 1 1

,
i i

i
a i

i
j j

j
a j

j

a

a

Λ Λ
∑ ∑

= − −

= ⟨ − − ⟩

∈ ∈

for all u v J p, GS ˜,2( )∈ , i.e., T G Tq p2∘ ∘

−

preserves the inner product.

(b) We assert that G2 is a da-isometry. Let u and v be arbitrary elements of J pGS ˜,2( ). SinceT G Tq p2∘ ∘

−

preserves the inner product by (a), we have

d G u G v T G T u p T G T v p
T G T u p T G T v p

,
,

a q p q p a

q p q p

2 2
2

2 2
2

2 2

( ( ) ( )) ∥( )( ) ( )( )∥

( )( ) ( )( )

= ∘ ∘ − − ∘ ∘ −

= ⟨ ∘ ∘ − − ∘ ∘ −

− −

− −

T G T u p T G T v p
u p u p u p v p v p u p v p v p
u p v p u p v p
u p v p

u v
d u v

, , , ,
,

,

q p q p a

a a a a

a

a

a

a

2 2

2

2

2

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

( )

∘ ∘ − − ∘ ∘ − ⟩

= ⟨ − − ⟩ − ⟨ − − ⟩ − ⟨ − − ⟩ + ⟨ − − ⟩

= ⟨ − − − − − − ⟩

= ‖ − − − ‖

= ‖ − ‖

=

− −

for all u v J p, GS ˜,2( )∈ , i.e., G J p M: GS ˜, a2
2( ) → is a da-isometry.

(c) Now, we assert that the function T G T J p p M: GS ˜,q p a2
2( )∘ ∘ − →

−

is linear. Assume that u and v
are arbitrary elements of J pGS ˜,2( ) and α and β are real numbers. Since J p pGS ˜,2( ) − is a real vector space,

it holds that α u p β v p J p pGS ˜,2( ) ( ) ( )− + − ∈ − . Thus, α u p β v p w p( ) ( )− + − = − for some w J pGS ˜,2( )∈ .
Hence, referring to the changes presented in the table below and following (d) of the proof of Theorem 4.2,
we can easily prove that T G Tq p2∘ ∘

−

is linear.

Theorem 4.2: E pGS ,1( ) F (4.4)
Here: J pGS ˜,2( ) G2 (a)

(d) Finally, we assert that G2 is an extension of F2. Let Ĵ be either a basic cylinder or a basic interval
defined by

J J J
i

p i
ˆ ˆ , where ˆ 0, 1 for Λ ,

for Λ .i
i i

α

i α1

⎧
⎨⎩

[ ] ( )

{ } ( )
∏

= =

∈

∉

=

∞

We see that p p p J E, , ˆ1 2 1( )= … ∈ ∩ and J E pΛ ˆ Λ Λ GS ,α
2

1( ) ( ( ))= = .
According to Lemma 5.5, if i E pΛ GS ,2

1( ( ))∈ , then α e E p pGS ,i i
2

1( )∈ − for all αi �∈ . Since E p pGS ,2
1( ) −

is a real vector space, if we set i E p i nΛ Λ GS , :n
2

1{ ( ( )) }= ∈ < , then we have

α e E p pGS ,
i

i i
Λ

2
1

n

( )
∑

∈ −

∈

for all n �∈ and all αi �∈ . For now, with all αi fixed, we define x p α en i i iΛn
= + ∑

∈

for any n �∈ . Then, xn{ }

is a sequence in E pGS ,2
1( ). When xn{ } converges in Ma, it holds that

p α e x E plim GS , ,
i E p

i i
n

n
Λ GS ,

2
1

2 1

( )
( ( ))

∑

+ = ∈

∈

→∞

because E pGS ,2
1( ) is closed by Lemma 5.3 iii( ). That is,

p α e M α i E p E p: for all Λ GS , GS , .
i E p

i i a i
Λ GS ,

2
1

2
1

2 1

�
⎧

⎨
⎩

( ( ))
⎫

⎬
⎭

( )
( ( ))

∑

+ ∈ ∈ ∈ ⊂

∈

Hence, by the previous inclusion and Theorem 6.1 with β ea i
i

1
i �

{ }

=

∈

and J Ĵβ = , we obtain
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J p p α e M α i J

α e M α i E p

E p p

GS ˆ, : for all Λ ˆ

: for all Λ GS ,

GS , .

i J
i i a i

i E p
i i a i

Λ ˆ

Λ GS ,

2
1

2
1

2 1

�

�

( )
⎧

⎨
⎩

( )
⎫

⎬
⎭

⎧

⎨
⎩

( ( ))
⎫

⎬
⎭

( )

( )

( ( ))

∑

∑

− = ∈ ∈ ∈

= ∈ ∈ ∈

⊂ −

∈

∈

So, we have

J B p J p B p E p B pˆ GS ˆ, GS ,r r r
2

1( ) ( ) ( ) ( ) ( )∩ ⊂ ∩ ⊂ ∩

for some real number r 0> , and hence, we further have

J p J p E p E pGS ˆ, GS ˆ, GS , GS , .2 3
1

2
1( ) ( ) ( ) ( )⊂ ⊂ =

Moreover, by Remark 7.2, we know that J p J pGS ˆ, GS ˆ,2( ) ( )= . Hence, we have

J p J p E pGS ˆ, GS ˆ, GS , .2 2
1( ) ( ) ( )= ⊂

On the other hand, since ea i
i

1

Λi α
{ }

∈

is a complete orthonormal sequence in E p pGS ,2
1( ) − , it follows from

Theorem 6.1 with β ea i
i

1
i �

{ }

=

∈

that

x x
a

e
a

e J p p J p p, 1 1 GS ˆ, GS ˆ,
i i

i
a i

i
Λ

2

α

( ) ( )
∑

= ∈ − = −

∈

for all x E p pGS ,2
1( )∈ − , which implies that E p J p J pGS , GS ˆ, GS ˆ,2

1
2( ) ( ) ( )= = .

Let u be an arbitrary element of E pGS ,2
1( ). Then, by (7.5) with Ĵ instead of J , we have

u p u p
a

e
a

e, 1 1 ,
i J i

i
a i

i
Λ ˆ( )

∑

− = −

∈

(8.2)

and since T F Tq p2∘ ∘

−

is linear and continuous, we use (8.1), (8.2), and the facts
E p J p J pGS , GS ˆ, GS ˆ,2

1
2( ) ( ) ( )= = , and J E pΛ ˆ Λ Λ GS ,α

2
1( ) ( ( ))= = to have

T G T u p u p
a

e β

u p
a

e β

u p
a

e
a

T F T e

u p
a

e
a

T F T e

T F T u p
a

e
a

e

T F T u p
a

e
a

e

T F T u p

, 1

, 1

, 1 1

lim , 1 1

lim , 1 1

, 1 1

,

q p
i J i

i
a

i

i J i
i

a
i

i J i
i

a i
q p i

n i J i
i

a i
q p i

n
q p

i J i
i

a i
i

q p
i J i

i
a i

i

q p

2
Λ ˜

Λ ˆ

Λ ˆ
2

Λ ˆ
2

2
Λ ˆ

2
Λ ˆ

2

n

n

( )( )

( )( )

( )( )

( )
⎛

⎝
⎜

⎞

⎠
⎟

( )
⎛

⎝
⎜

⎞

⎠
⎟

( )( )

( )

( )

( )

( )

( )

( )

∑

∑

∑

∑

∑

∑

∘ ∘ − = −

= −

= − ∘ ∘

= − ∘ ∘

= ∘ ∘ −

= ∘ ∘ −

= ∘ ∘ −

−

∈

∈

∈

−

→∞

∈

−

→∞

−

∈

−

∈

−

where we set J i J i nΛ ˆ Λ ˆ :n( ) { ( ) }= ∈ < for every n �∈ .
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Therefore, it follows that T G T u p T F T u pq p q p2 2( )( ) ( )( )∘ ∘ − = ∘ ∘ −

− −

for allu E pGS ,2
1( )∈ , i.e.,G u2( ) =

F u2( ) for all u E pGS ,2
1( )∈ . In other words, G2 is an extension of F2. □

9 Applications

Given an integer n 0> , let a ai i �{ }=

∈

be a sequence of positive real numbers that satisfies

a a a1 and .n
i n

i1
1

2
∑

= ⋯= = < ∞

= +

∞

We know that the n dimensional real vector space n� can be identified with a subspace of Ma.
More precisely, it holds that x x x i n, , , 0, 0, : for 1n

n i1� �{( ) }≃ … … ∈ ≤ ≤ .
We can define an inner product , a⟨⋅ ⋅⟩ for n� by

x y a x y x y, a
i

i i i
i

n

i i
1

2

1
∑ ∑

⟨ ⟩ = =

=

∞

=

for all x y, n�∈ , with which , ,n
a�( )⟨⋅ ⋅⟩ becomes a real Hilbert space. This inner product induces the

Euclidean norm in the natural way as follows:

x x x x,a a
i

n

i
1

2
∑

‖ ‖ = ⟨ ⟩ =

=

for all x n�∈ , and ,n
a�( )‖⋅‖ becomes a real Banach space.

If we replace Ma, �, and Iω with n� , n1, 2, ,{ }… , and 0, 1 n[ ] , respectively, in the definitions and
theorems in the previous sections, it is not difficult to see that they also hold for the n dimensional
Euclidean space n� .

The following theorem is the finite dimensional real Hilbert space version of Theorem 8.1, the main
theorem of this article. More specifically, Theorem 8.1, which applies to infinite dimensional real Hilbert
spaces, is also applicable to finite dimensional real Hilbert spaces.

Theorem 9.1. Let E1 be a bounded subset of 0, 1 n[ ] that contains at least two elements. Suppose E1 is
da-isometric to a subset E2 of 0, 1 n[ ] via a surjective da-isometry f E E: 1 2→ . Let p and q be elements of E1

and E2 satisfying q f p( )= . Assume that ea i
i

1

Λi α
{ }

∈

is a complete orthonormal sequence in the Hilbert space

E p pGS ,2
1( ) − , where Λα is a nonempty proper subset of n1, 2, ,{ }… . Moreover, assume that βi i n1,2, ,{ } { }∈ …

is a

complete orthonormal sequence in the Hilbert space n� such that β T F T ei a q p i
1

2
i
( )( )= ∘ ∘

−

for each i Λα∈ . Let

Λ be a set satisfying nΛ Λ 1, 2, ,α { }⊂ ⊂ … and let J̃ be defined as in Definition 8.1. Then, the function

G J p: GS ˜, n
2

2 �( ) → is a da-isometry and the function T G T J p p: GS ˜,q p
n

2
2 �( )∘ ∘ − →

−

is linear. In par-
ticular, G2 is an extension of F2.

10 Discussion

The pair X Y,( ) of Hilbert spaces is said to have the isometric extension property if for every isometry f from
an arbitrary subset S of X into Y , there exists an isometry F of X into Y such that the restriction of F to S
coincides with f .

The following theorem is a well-known result due to [20, Theorem 11.4].
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Theorem 10.1. (Wells and Williams) If H is a Hilbert space, then H H,( ) has the isometric extension property
if and only if H is finite dimensional. In general, if S H⊂ and f S H: → is an isometry, then f can be extended
as an isometry to the closed linear span of S.

We note that Theorem 10.1 does not imply Theorem 8.1. For example, let E1 and E2 be subsets of the

Hilbert cube Iω. Then, J p pGS ˜,2( ) − is a proper subspace of the real Hilbert space Ma, and E p pGS ,2
1( ) − is a

proper subspace of J p pGS ˜,2( ) − . Nevertheless, it follows from Theorem 8.1 that every surjective isometry

f E E: 1 2→ can be extended to an isometry G J p M: GS ˜, a2
2( ) → . On the other hand, we cannot expect to

obtain this result using Theorem 10.1, since the closed linear span of E1 is a proper subset of J p pGS ˜,2( ) − ,
which implies that Theorem 8.1 is not only different from Theorem 10.1 but also has a number of
advantages.

Moreover, for any bounded subset S of Iω, it is clear that S S pspan GS ,2( )⊂ . But, it is not yet clear
whether S S pspan GS ,2( )= , where Sspan denotes the closed linear span of S. If S S pspan GS ,2( )≠ is
correct, Theorem 8.1 has more advantages than Theorem 10.1.

According to Theorem 8.1, the domain of a local da-isometry can be extended to any real Hilbert space
containing that domain.

11 Conclusion

In view of Theorem 8.1, the domain of a local da-isometry can be extended to any real Hilbert space
containing that domain. The domain of a local da-isometry does not need to be a convex body or an
open set required by [1], it just needs to be bounded and contain at least two elements. Therefore, the
coverage of our result is wider than that of previous results. This is the biggest advantage of this article
compared to the previous results.
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