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1 Introduction and main results

Let T be a linear operator. Given a function b, the commutator [T, b] is defined by
[T, bI(f) = T(bf) - bT(f).

It is very interesting that T is a pseudo-differential operator because its theory plays an important role in
many aspects of harmonic analysis and it has had quite a success in a linear setting. As one of the most
meaningful branches, the study of bilinear pseudo-differential operators was motivated not only as general-
izations of the theory of linear ones but also its natural appearance in Harmonic. This topic is continuous to
attract many researchers.

Let b be a Lipschitz function and 1 < p < co. The estimates of the form

ILT, bI(Hler < 1bligtlifllee,  forall fe LP(R™) (1.1)

have been studied extensively. In particular, Calder6n proved that (1.1) holds when T is a pseudo-differ-
ential operator whose kernel is homogeneous of degree of —n — 1 in [1]. Coifman and Meyer showed (1.1)
when T = T, and 0 is a symbol in the Hérmander class S, in [2,3], and this result was later extended by
Auscher and Taylor in [4] to o € BS],, where the class 8S; ;, which contains S , modulo symbols associated
with smoothing operators, consists of symbols whose Fourier transforms in the first n-dimensional variable
are appropriately compactly supported. The method in the proofs of [2,3] mainly showed that, for each
Lipschitz continuous function b on R", [T, b] is a Calder6n-Zygmund singular integral whose kernel con-
stants are controlled by | b|| ;. For another thing, Auscher and Taylor proved (1.1) in two different ways: one
method is based on the paraproducts while another is based on the Calderén-Zygmund singular integral
operator approach that relies on the T(1) theorem. For a more systematic study of these (and even more
general) spaces, we refer the readers to [5,6].
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Given a bilinear operator T and a function b, the following two kinds of commutators are, respectively,
defined by

[T’ b]l(f: g) = T(bf’ g) - bT(f’ g)
and
[T, bl:(f, 8) = T(f, bg) - bT(f, 8).

In 2014, Bényi and Oh proved that (1.1) is also valid for this bilinear setting in [7]. More precisely, given a
bilinear pseudo-differential operator T, with o in the bilinear Hormander class BS] ; and a Lipschitz function
b on R", it was proved in [7, Theorem 1] that [T, b]; and [T, b], are bilinear Calder6n-Zygmund operators.
The main aim of this article is to study (1.1) of [T;, b];(j = 1, 2) on the products of Hardy spaces and Herz-
type spaces with o € 8BS],. Before stating our main results, we need to recall some definitions and
notations.

We say that a function b defined on R" is Lipschitz continuous if

bl = sup PPN,
x,y€R" Ix -yl

Let 6 >0, p >0 and m € R. An infinitely differentiable function ¢ : R® x R" x R®" — C belongs to the
bilinear Hérmander class BSy 5 if for all multi-indices a, B, y € Nj there exists a positive constant Cy,,
such that

102050%0(x, £, )| < C(1 + [&] + |nlymrélel-pUBleiyD,

Given a o(x, &, n) € BSp 5, the bilinear pseudo-differential operator associated with o is defined by

T )0 = [ [ ot & mF©gee @ mdgdn,  forall x €R™ £, € SR.
R" R"
In 1980, Meyer (8] first introduced the linear BS{";, and corresponding boundedness of [T;, al;(j = 1, 2)

is obtained by Bényi and Oh in [7], that is given m € R and r > 0, an infinitely differentiable function
0 : R"x R" x R" — C belongs to 8,BST} if

0 € BS{, supp(6")  {(7, &, m) € R 7] < r(|§] + |nD},

where 6! denotes the Fourier transform of o with respect to its first variable in R", that is, 6!(t, &, ) =
o(-,&, n)(1). for all 7, &, n € R™. The class 8BS} is defined as

BBSY, = | B,BS].
re(O,%)

Recently, many authors are interested in bilinear operators, which is a natural generalization of linear
case. With further research, Bényi and Naibo proved the boundedness for the commutators of bilinear
pseudo-differential operators and Lipschitz functions with ¢ € 8BS}, on the Lebesgue spaces in [9]. In
2018, Tao and Li proved that the boundedness of the commutators of bilinear pseudo-differential operators
was also true on the classical and generalized Morrey spaces in [10]. Motivated by the results mentioned
above, a natural and interesting problem is to consider whether or not (1.1) is true on the products of Hardy
spaces and Herz-type spaces with ¢ € 8BS},. The purpose of this article is to give a surely an answer.
Our proofs are based on the pointwise estimates of the sharp maximal function proved in the next section.

Suppose that o € BBS{I. Let K and K; denote the kernel of T; and [T;, b]; (j = 1, 2), respectively.
We have

K(t,y,2) = j Jeg.(x,y)e,.,,“,z)o(x, £, dédn,

K(x,y, z) = (b(y) - b(X)K(x, y, 2),
K(x, y, 2) = (b(z) - bOO)K(X, y, 2).
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Then the following consequences are true.

Theorem A. [7, Lemma 3] If x # y or x + z, then we have
(1) 055K (x, y, 2)| < Capy(Ix — yI + |x — z])2n-1-lal=1Bl-Iy],
) IKi(x, y, 2)| < bl (Ix =yl + Ix = 2| + |y — z])".

Letm > 1be a positive integer and K(x, y,,...,¥,,) be alocally integrable function defined away from the
diagonal x =y, =---=y, in (R")™*! and C be a positive constant. We say that K is a multilinear Calderon-

Zygmund kernel if it satisfies the size condition that for all (x, y;,...,¥,,) € (R™™*! with x # y, for some
1<s<m,

KOG Y1 Yl < CUX =yl + - +x =y )7
and satisfies the regularity condition that
|K(X9 yp ~--9ym) - K(XI’ y1’~~-’Ym)| < ClX - X,|(|X - )’1| + '”+|X - le)_mn_l

whenever max<x<mlx — y;| > 2|x — x'|, and also that for each fixed k with 1 < k < m,

|I((Xs yl, syk—l’ yk’ yk+1a ’ym) - K(Xa )’1, ~~"yk—1s yli’ yk+1’ ’ym)l

1.2)
< Clx = X|(Jx = y| + -+ +[x = y, )1

whenever maxcs<mlX — ¥l = 2|y, - y,il.
The statements of our main theorems are presented as follows.

Theorem 1.1. Let 0 € 2‘3BS%,1 and b be a Lipschitz function on R". Suppose that for all bounded functions a;
supported on some cubes in R" with '[[R"ai(x)dx =0fori=1,2,

j [T,, bl;(as, a)()x%dx = 0
[Rm

for every multi-index a with |a| < n, where a = (ay,...,a,) € (N U {O)" and |a| = Z?zlai. Then|T;, b]; (j=1,2)
extends boundedly from HP(R"™) x HP2(R") into HP(R") for p1, p, e n/(n + 1), 1and p with1/p = 1/p1 + 1/p>
and [n(1/p — 1) = m], where |s] for any s € R denotes the integer not greater than s.

Theorem 1.2. Let 0 € Z%BS{1 and b be a Lipschitz function on R". Suppose 0 < p;,p> <1, 1< qy, g» < 00,
1/p =1/p1 + 1/p2,1/q = 1/q1 + 1/ q2. If[T;, b]; (j = 1, 2) is bounded from L% x L% into L% with controlled by

lallsy, then [Ty, bl; (j = 1, 2) is bounded from K, /PRy x K2 4PP(Rn) into WKL 9P (R,
Throughout this article, for 1 < p < co, p’ is the conjugate index of p, that is, 1/p + 1/p’ = 1. B(x, R)

denotes the ball centered at x with radius R > 0 and f3 = f(y)dy. The boundedness of com-

1
[B(x, R)| JB(x,R)
mutators on product of Hardy spaces is presented in Section 2. The boundedness of commutators on
product of Herz-type spaces is given in Section 3.

2 Boundedness on product of Hardy spaces

Definition 2.1. [11] Let p € (0, 1]. The Hardy space H?(R") is defined by
HPR™ = {f € SR") : ¢*(f) = sup|y, * f| € LAR"},

t>0
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where ¢ € S(R™) with fw(p(x)dx =1,andforanyy € R"and ¢ € (0, 00), ¢,(y) = t "p(y /t). Moreover, define
Iflerwny = o™ (HOllrwny.

It is known that the definition of Hardy space HP(R") does not depend on the choice of ¢ (see [11]).

Definition 2.2. [12] Let p € (0, 1] and q € [1, co] with p # q. For s € Z satisfying s > |[n(1/p - 1)}, a real-
valued function a(x) is called a (p, g, s)-atom centered at x; if

(i) a € L4(R™) and is supported in a cube Q centered at xg;

(i) llallowr < 1Q [F4-1P;

(iii) IRna(x)x“dx = 0 for every multi-index a with |a| < s.

Let HE:75(R") be the set of all finite linear combinations of (p, g, s)-atoms. For any f € Hf:**(R"), define

i=1

Kk 1/p K
Iflzes@n = {[ZIAiIP] :f = YAai, keN, {a}f, are (p,q, S)-atomS}-
i=1

Denote by C(R") the set of all continuous. Meda et al. proved the following result in [13], which ensures that
a bounded linear operator on HE;*(R") with g < co or HE;**(R") n C(R") can be extended to be a bounded
operator on HP(R™).

Lemma 2.1. [13] Let p € (0, 1], g € [1, co] with p # q and s € Z satisfying s > |n(1/p — 1)]. The quasi-norms

I-lgpaswn and ||-|lmpw are equivalent on HE;**(R™) where q < co and on HE;**(R™) n C(R") when q = oo.

To prove Theorem 1.2, we need the boundedness of [T, a];(j = 1, 2) on products of Lebesgue spaces.

Lemma 2.2. [9] If o € 8BST, and b is a Lipschitz function on R", then the commutators [T;, b]; (j = 1, 2) are

bilinear Calderén-Zygmund operators. In particular, [Ty, blj, j =1, 2 are bounded from LP1 x L2 into LP for
% = ﬁ + i and 1 < p1, p» < oo and verify appropriate end-point boundedness properties. Moreover, the

corresponding norms of the operators are controlled by ||b|;y.

Lemma 2.3. Let 0 ¢ ZZBBS%’1 and b be a Lipschitz function on R". Suppose that a, is a (p,, 0o, 0)-atom
supported on Q; and a, be a (p,, co, 0)-atom supported on Q,, with p,, p» € (n/n + 1, 1]. Then
() foranyy € (2Q))",

S (s

[T, blj(ar, a)(V)| < bl Qo 72—,
g ] 1p |y _ XQlln+1

while for any y € (2Q,)5,

1 Qe

[Ty, blj(a1, a)(¥)| < bl Qi 72 —2———;
o j Lip |y — X02|n+1

(if) foranyy € 2Q)° ny € (2Qy)°,
1+4-3 -} 1+i-t 1]
|[T0, b]j(a1, az)(y)| < ||b||Lip1 min |Ql| P1|QZ| P2 —, |QZ| P2|Ql| p1 — :
(ly - XQ1| + Iy - XQzl) (|y - XQ1| + |y - XQz')

(iii) for any cube R € R"

fco*[Ta, Blj(@, &)()dX < Bl [RIE min{IQul~#11Qal 72, [Qul #21Qaf 1 }.
R
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Proof of Lemma 2.3. To obtain the conclusion of Lemma 2.3, we only prove (ii) and (iii). Together with (1.2),
Theorem A and the vanishing moment of a,, it follows that for any y € (2Q))¢ ny € (2Q,)¢,

[[T5, blj(a1, a)(y)] < I IKi(y, z1, ) — K;(¥, xq, Zz)||al(21)||az(zz)|d21d22
®"’
IZl - XQ]l

=zl 1y - z)" law(z1)l|ax(22)|dz1dz
®™?

< "b"Lip1

Q) 2
||ak||L1 R"
(v - xgl + Iy - X1 ﬂ ®

|Qu[** 751 |Q, 7
(Iy = xal + ly = xg,1)**

< 1Dl

< [Bllyipt

Similarly, applying the vanishing moment of a,, we obtain

Qa1 72| Q'

bl
- Xo| + ly — xq,)*™+

[To, blj(@, @)(Y)| < Bl (I

and conclusion (ii) follows directly.
To prove conclusion (iii), we first observe that for any g € L} .(R™ and x € R",

@*(8)(x) < M(g)(x),

where M is the Hardy-Littlewood maximal operator. By Holder’s inequality, the fact ¢* is bounded on
I?*(R"), Lemma 2.1 and the size condition of @¢; and a,, we have

j<p+[Ta, blj(a, a)(x)dx < |R[2¢*[ Ty, blj(@, a)lpzwn
R
< bl [RI2 Nl 2 Nl gy
< bl RIZ1Qu2~71Qaf 72,

and similarly,

[ o1, @, a)eod < by REIQUIA1Qu1 .
R

This leads conclusion (iii) and completes the proof of Lemma 2.3. O

Lemma 2.4. [14] Let p € (0, 1]. Then there exists a positive constant C, such that for all finite collections of
cubes {Qi}X_, in R" and all nonnegative integrable functions 8, with supp(g,) € Qk,

K
Z 8k

k=1

K
1

<G| X mjgk(x)dx Xo; ;
LP(R™ k=1 k Q

LP(R™)

where Qi denotes the cube with the same center as Qy and 2/n its side-length.

Proof of Theorem 1.1. By Lemma 2.1 and a density argument, it suffices to prove that [T;, b]; (j = 1, 2)
is bounded from (HZ>*°(R"™) n C(R™M) x (HZ>*°(R™) n C(R™M) into HP(RM), i = 1, 2, we decompose f; as

fin fin

fi0O = Y ik (),
k;

where a; , are (p;, 0o, 0)-atoms in Definition 2.2. This means that a; ;, are functions supported in cubes Q; i,

and satisfy the properties ||a; i llz>(R"™) < |Qix, [/ and IQ a; ;,dx = 0. Without loss of generality, we may
i ki
assume that for fixed Qi i, and Qy k,, I(Q1,k,) < 1(Qzk,). It is easy to see that there exists a cube Ry, x, such that
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* * * * % * %k
(Qix N Q) € Rigky € Rit, < (Q1 N Q31,)

and |Ry, i,| = Ci|Q1,1, where C; € (0, 1) is a constant independent of Ry, i, and Q; s, with i = 1, 2. Our purpose
is to show

33 sl @ ([ T Bl (1,00 a2 )]

kI

2 1/pi
< ||b”Lip1H(Z|Ai,ki|pi) . (2.1)
k;

LP(R™) i=1

For this goal, we write

Y3 iAo [ Tos b1 (@145 @2k,)]

kg I

LP(R™)

> 2 Mkl 11T, bl (@i a2k) Wor, n0;,,

kK PR
+ 1 2 2 el Ao [T b1 (@i a2) Wear, )0 (050, )
k] kz Lp([Rn)
+ (12 Ml i T b]j(al,kp az,kz)])(( Q) N0y
kl kz LP(IRH)
+ || XY Ml o [ Tos b1 (a5 az,kz)])(gfklm(Q;k2 )
k] kz Lp(Rn)
4
= YE.
i=1
It follows from Lemma 2.4, (iii) of Lemma 2.3 and Holder’s inequality that
ZZMl el j 11T, b (@10 @2 100D,
2 k1 ko Lp([Rn)
1
< Wbl || X2 Mool ol 77 1Quie 7211 Qo [ 2Ky,
K K | kl,kzl ’ PR
2
<Ibhip [ T|| 21l Qu 7Pxgz
i=1|| &

2 1/pi
< ”b”LipIH(ZMi,ki |pi] .
i-1\ K

We now turn to estimate E,. Since[T;, b]j(a,x, a2,i,) has vanishing moment up to order n, we can subtract

the Taylor polynomial P" of the function p(x - y) at the point (x — xq,,,) withx € (Q7})° N (Q3,)andy € R™.
Set

At, x,y) = @x, y) - P['(X - Xol,h)’

and for all x € (Q/,)° N (Qz,)°, write

(er[[TU! b]} (al,kp aZ,kz)](X) < sup I A(t’ X, )/)[Tm b]j(al,kp az,kz)()/)dy

t>0
2Q1,k,N2Q2,k,
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+ sup [ aex it bl (s, a) o)y
t>0
(2010 )¢ 0 (202, )°
esup | [ AT Bl (0 @) )y
0 (2000 ) 1202
esup | [ A X I B (@ @) )y
0 201,k10 ( ZQZ,kz )C

4
= Z@i(al,kly aZ,kz)(X)'
i=1
Thus,

= Ey.

E<)

i=1

2 il Ao, |Di (a1, az,kz)X( Q) 0 (@, )
k&

LP(R™)

Our assumption p;, p, € (n/(n + 1),1] and 1/p = 1/p; + 1/p, with [n(1/p — 1)| = n guarantee that we can
choose 8 € (0, 1) such that p; > n(n + 6) and p, > n(n + 1 — 6). On the other hand, we can verify that for all
x € (Qk) N (Q5x,) and y € 2Qq, N 2Quk, Ix — Xquil ~ X =yl ~ Ix = xq,,,|, and then for all ¢ € (0, co),

1 1,6 1,10
ly = Xqu,"" |Quigl2™™  |Quigf*r

~ _ b
|X - XQl,k1|2n+1 |X - XQl,k1|n+6 |X - XQl,klerl o

IAt, X, y)I <

since we assume that 1(Qy,5,) < I(Q2,1,). This, together with Lemma 2.2 and Holder’s inequality, tells us that

1 0
|Quilz + —

11
n [Qail2 + n o

|X _ XQl,k1|n+0 |X _ XQz,k2|n+1

6
&s_[Zmewm ¥

R" I ko

=

14

X j [T, b]j(al,kp az,kz)()/)|dy X(Ql*.kl)fn(oz*’kz)C(X) dx

2Q41,k1N2Q2,k,

DY Al Ao

LS

11
Qi + - -

|X _ Xlek1|n+9 |X _ on’kzlml—

1 6
|Q1,k1|2 + -

9
n n
0

N

R"

1
* IPliptla, il 10 ol 2wmX( gy, ) o (agy, ) COIPAX?

1/p;
6_1
|Qu [P
< llaggllzwry D 1ALk P - o)
Iy (Qin) X = xq,|
1/p2
1_6_1
Qa4
. D> 22
x Iblipllas g § Y 1Akl X - xg, [0
c 2,k

& (Qi,)

1/pi
DlilP| .
k;

i

2
ﬂwﬁﬂ[

i=1
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The estimate for E», is cumbersome but straightforward. Fori,s = 0, 1,..., let
I = (ZiHQI*,kl\zin*,k]) n (ZSHQZ*,kZ\ZSQZ*,kZ)-

For simplicity, we may assume that 2Q; 4, ¢ %Ql* K and 2Qy, C %Qz*,kz- Otherwise, for anyi,s =0, 1,...,

replace 2-1Q;';, and 21-1Q3 ;, by max{2:-1Q};, 2Qy i} and max{2-1Q;,, 2Q, i}, respectively, in the remaining
part of the proof. For all x € I;; withi,s = 0, 1,..., write

qDZ(al,kp aZ,kz)(X) < sup J_ A(ty X, y)[TU) b]] (al,kp az,kz)()’)dy
t>0 (zi_loikl )c n ( Zs'le*,kz )c
+ sup | IACE, %, Y[ Ty, b (@11 @21) (V)Y
-0 (Zi’lekl\ZQl,kl ) n (ZS’lQikz )C
+ sup | 20A(t, %, V)T, BY; (a1 @,10) (V)
t>0 .
(27Q01 ) 0 (257054,\202k,)
+ sup | 2A(t, % YTy, bl; (w1 @) (V)]
t>0

(271071, \ 211y ) N (2571Q54,\2Q20, )

4
= Z@zk(al,kp az,kz)(x)'
k=1

Consequently,
4 00 00 1p 4
Er< Y13 3 [ ullnl®a(an, ) on,0pdr b = Y ES.
k=1

k=1|i=0s=0 R"

To estimate E};, we further decompose that for all x € I, withi,s = 0,1,...,

O (@ a,) 00 < SUP | 0 = YTy, Blj(a1,10 @2,10) )y
>0
7 | (i ) (as )
+ sup | 1P (x = 3,0, Tos b1 (a1 @2.1) Y)Y
t>0

(Zi—lol*‘kl )c n ( 25—102*'1(2 )c

< @* [T, bl (@ @i )X (2105, ) 0 (2105, )y ] O

1
* x0T [T, blj( @k aox,) (¥)dy
~ Xq A
1,k1 (21—1Qik1 )cﬂ(zslez*ykz )c

= M@y @2,) ) + Do @45 @2,) (),
and also
2 0 00 p 1/p 2
Eh< Y ZZJ > M@ az,kz)<x)x,is(x)l dxt =Y F
k=1{i=0s=0 2| ki ko k=1
Note that there exists some cube R;; such that
(2i+101*,k1) n (25+1Q2*,k2) CRs CRLC [(ziHQl*,kl)* n (28+1Q2*,k2)*],

and |Ri| > Ci|217'Q; 1,- Thus, by Holder’s inequality, the fact that ¢* is bounded on L*([R™), (ii) of Lemma 2.3,
and the assumption 1(Qy,5) < I(Q2,,), then we have that
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j o* [[Tg, b]j(al,kl, az,kz))(( 27100, ) 0 (2705, ) ] (x)dx
Ris
1/2
< |Ri|'/2 I[To» b; (@i @21, ) ()Pdx
(Zi—lal*kl)cm(zs—loz*k )c
|Qui "7 m|02k| e
L o L
|21Qu 1, [+ 7[25Q 1, 147
which, along with Lemma 2.4, implies that
p 1/p
oo o0
ZOZO Mol el |R | jgo [[T5, b1 (@1 @2) COX (201, (201, 10O P
i=0s=
LP(R™)
p 1/p
g il ] Qy, k2|l+ﬁ-pz
< blyip ZZ L R e 1
i=05=0 12Qy, " 7125Qp o 147 g

1

2 pi
< Bl [ T D 1Ak |px] .

i=1\ k

On the other hand, a trivial computation states that
1 1
_ [y = Xl + 1y = Xq
(2034 ) 1 (27103, ( v i
Thus, by (ii) of Lemma 2.3 and the assumption I(Q;,x,) < I(Qzx,), We obtain that for all x € I with i

dy < .
2n+1 ~ i o 1_6
> [2'Qu,, [712°Qq k[

s=0,1,...,
Qi [ 771 Qup, [P
(27041 ) n (2705, ) (7 = Xyl + 1 = Xauid

)2n+1 Y

XQl.klln

Az(auq, az,kz)(X) < [BlLip! .

6_1
< Il |Qy, 1" 7P| Qo
< ip n

|2lQl k1|1+ |ZSQz k2|1 non

Therefore,
0_1 1.6_1 1P 1/p
iill Al Bl (Gl Qe
. 1,k1172,k, Lip’ ZiQ 1+g 250 1+3[_g is
i=0s=0 | 1,k1| | 2,kz|
1/p
. 1561 \P pip 1401 \P 2/p>
|Qq i 7] A 1Quil™ ] |
S Iblhipt 2| P == | 120Q1 Z MaolP2| ——F——= | 2Q5l
i=0 [2'Qu, [ i-0 [2'Qq, k|7

1
2 7
<Ibli [ | D Misel?
i=1\ k
ombining the statements for F; and F, yields that
1

E} < IBlLy H(ZIAI . |p,]
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To estimate methods for E3 and E5, are similar. We only deal with E%. Observe that for all x € I with i,
§=0,1,...,and y € (271Qy,\2Q1,1) N (2671Q2,15\28Q;,) With g =s - 1,s,...,

21(Qu) < =yl < 251(Qa1,)-

(ii) of Lemma 2.3 and the assumption 1(Qy,) < I(Q2,,) then tell us that for all x € I withi,s =0, 1,...,

1 1
Doy( ay, i, ar, )(X) < + [[T5, blj( ai,i» a2k, )(¥)Idy
( 1 2) Ix -y Ix — XQ1.k1|n o ]( 1 2)

(21Q1,1\2Q10 ) N (272Qa kg )°
< bl dy

1_1 _1
N T Y 4
=1 12014 V- X
s g=s5-1 Zg”Qz*,kz\ngztkz 2,k
|Quil* 77| Qo 157

- 0 T
12'Q1, "7 12°Qa

S ”b“Lip1

EIES

which in turn leads to that

' g T o
—0s-0| & & 12/Qy, 1, "7 125Qq i

1/p
00 00 1491 141_0_1 p
O ] (N
E5< Z z [ 2 ZI/\l,klllAZ,kzlnanipl - : |Lis|

2 l}i
s "b"Lipll—[[Z|Ai,ki|pi] .
=1\ Kk

Similarly, we have

i=1\ k

1
2 i
E, < ||b||up11'[(ZMi,k,.|va :
We now turn to estimate Ezl*2 For this purpose, we first note that for all x € ;; withi,s = 0, 1,

ly - XQL;QVPrl dy
_ yl|2n+1 _ _ 2n+1
(Zi’IQl,kl*)\(ZQLkl)ﬂ(ZS’IQZ,k;)\(ZQz,kz) Ix -yl (Iy XQ1,1<1| +ly XQz,kzl)
1 1
s i 1+219s 1+1-¢
12°Q1, i "1 2°Qq i, [

. ly — Xou4"
(21Q545\20Q1,11 ) H
i
S : [’} 1_0°
12'Qu " 7 125Qu i, [

which, along with (ii) of Lemma 2.3 and the assumption I(Qy,x) < I(Q2,), gives us that for all x € I;; with
i,s=0,1,...,

ly — Xq,,,["

Doy (a1, a1,)(X) < =

1
|X _ ylzn |[To‘, b]j(al’kl, az’kz)(y)ldy
(27911 )V (2Q1,1 ) 0 (271Q005 )\ (2Q212 )

1_1 _1
< bl y = Xqu /" Qui 7 71| Qa g, [ 72 y
~ Lip | on n+1
_ X = YP'(ly = Xauql + 1y = Xau.))
(27101 )\ (20180 ) 1 (2571005 )\ (202, e e
[} 1 1_6 1
[ (P o

: 0 1.6 °
12'Q1, " 712°Q o |7

< 11Dl
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Thus,

3

1/p
) i |Qu |7 71| Qo 2 ’
sz D il Ao il Bl — 5

iz05=0 7n | ki ko 12iQy, [ 7 [25Q g, 177

pr/m

0 ooy o
<] S| Tl | (M) o

i 1+
i-o | & oA L2
1 1 ZHIQl,kl\ZIQl,kl 1
p/p2\ /P

) 141_6_1 by
Qual*H5 5 |
X § § Mz,kzlpz (lzj’(;l 141_86 l
n n
s=0| & 203\, 125Q2,k,| |

1

i=1

< 1Bl H(ZMI Kl ]

Combining with the estimates for Ezkz with k = 1, 2, 3, 4 yields that

1

2 i
En < "b"LipIH[ZlAi,kilpi] .

i=1\ k
Some computations similar to those used in the estimates for E» give us that
2 Bi
Ep + Ex < bl [ [ DIl | -

i=1\ k;

Our desired estimate for E; now follows directly.

— 1347

It remains to consider the terms E5 and E,. Since the estimates for these two terms are similar, we only
deal with F;. Using the vanishing moment of [T, blj(ayk, a2,6,)(j = 1,2), we have that for all x €

(Qlk) N Qs

¢ [T, bl (@115 @2,) ] 0O < sup I [2x = v) = ¢(x = xq,1,) | [Tos BT (@105 @1,) (¥)dly
t>

2Ql,k1

+ sup I [0 = ) = @,(x = xq,,,) | [Ts bl (an> a2, ) (y)dly

t>0
g (le,k1 )C

= \I"l(al,klr az,kz)(X) + \Pz(al,kl) az,kz)(X)-

Then,

P Wy i (s aZ,kz)X( Q)Y G, || R™ = Es + Es.

o

Bed

P
A trivial computation gives us that for all x € (Q; kl)c N Qzk,»

|Qu, !

"I'll(al,kp az,kz)(x) S m

j [Ty By (11 @210) (V)1dy,

Q1,1

which, via Holder’s inequality and Lemma 2.2, leads to that
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. 1p
|Qlk|
Es < _[ ZZMMJMMZ —— [Ty, bl (@115 G2k, 2| Q2 X( iy, ) 03, )X

|n+1
Iq Ik 1k1

)21 1/p>
1 1
|Qy, [ 7P
< bl ZVh,kJ‘D1 j de Z|/\2 kP21 Qo ™! IXQM (x)dx
b (e @,

1

2
< ”b”Lile(ZMi,kilpi] .
i=1\ k;

Let us estimate E3,. Observe that for all x € 2*1Q}"; \2!Qy;, withi=0,1,...,

(@i, @, )(X) < sup j @ = YTy, blj(@115 @24,)(¥)dy
t>0 (ziilol*,kl )c
esup [ 10(x - x0T b (as @) (VDY

t>0 (Zi’lQ{kl )c

esup [ o0r- 1) - @(x - x.0) T Bl (@ i) (Idy
0 g1\ 200,

[ T5. bl; (v a2, )(¥)Idy
(2i710f»k1 )C

< (p+[[To-, b]] (al’kl, az’kZ)X(ZHQf,kl )E] (X) + m
Lki

|y—XQl I
I W”Tg’ b]j(al,kv aZ,kz)(Y)ldy-

21‘—101*! k1

We then decompose

1/p
E3 < Z '[ ZZM1,k1|M2,kz|§D+[[Tm b]j(al,kl’ az,kz)X(zilel’jk1 )C](X)X(ZMQﬁkl\ziQf.kl)“Qz",kz(x)ldx

i=0pn| ki ko
D 1/p
o0
A1, k122, 1|
+ _Zj Dy 2|" | T by @)1 | X5,y s, GO
()
r D 1/p
- |y - Xq k1|
+ 9 ZI ZZ I W”Tm b]j(al,kp az,kz)()’)|d)’ X(z*'”Qlfkl\z"Q;jkl)nQZkZ(X)dX
i=0 |Rn | kl kz ziilQikl\ZQI,kl
3
k
= ZEaz
k=1

The estimate for E312 is similar to that for F;. For 2"“01*, , Withi = 0, 1,..., and Qy,, there exists a cube R; such
that

Q*1Q1) N (@) < Ri < R < [(277Q5%) 0 (@) ]

and |R;| > G|2*1Q; il- A familiar argument involving Ho6lder’s inequality, the fact that ¢* is bounded on
LY(R™) and (i) of Lemma 2.3 leads to that
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[0 [T By (@t s v, y 0O

R;

1/2
< IR 1] [ (20U 1T b (e e )OPAR}

|Q ol 72
< [bhig! Qi 77— |Ry.
|2101 1
This now states that
N7
o0
EL<1) ZZW ol Ao ol — |R| I‘P [T5, bl (v, @2 kz))((zX 197, - COAX X,
i-0 || K k
LP(R™)

N

SIS el o |28

-0 &k 12Qq, i, ["*7

2 171'
< ||b||up11‘[[2|/ti,k,.|m] :
i=1\ Kk

The estimate for E322 is straightforward. In fact, by (i) of Lemma 2.3 and the fact p; > n/(n + 1), we obtain
that

1/p
IszZI sz(z‘“Q )0 (i) e )}

_ 14 1/p
0 el 1 1
2 |Qq, i/ Qo, 722 dy A ‘
E3 < [blipty Z ZZMLIQHAZ,IQ X~ xg. I X 7”/ E— X(Z”loﬁkl\Zle.kl)ﬂQZkz(X)dX
i=0pn| kK Quiq (2"’101 u )C Q1,ky
1
P\p
r p2
<Ilb < |Ql k1| n 2i+1 \21 " A 1 |P2 1 dx
<blipy Y. ZI ﬁ | Qi \2Qr il | %[ Dok P21Qu il Xoz,, ()
20 n Ll 3
- O,
1
2 i
<Ibl [ T) X isl? | -
i=1\ k;
Another application of (i) of Lemma 2.3 gives us that
1 1 1
1Qy, i 7P| Qo 1| 72
E3 < bl Zj 3 Mol e
i=0 ;| ks Ko |21k
D 1/p
dy
. J. ly — xq |”X(2i+1fok1\2infk1)”Qz*.kz(x) dx
271Q1,1,\2Q1, 1 L
1/p
[ 1 1 4
|Ql ol 21| Qy 2
< "b"Lipl‘ Z J. |:;|Al k1|| 2, kz |2[ " |1+,1, X( 2i+IQ£k1\2iQik1)ﬂQZkz(X) dX
i= 0 q » K
1
pa P \p
P1 P2
00 1_1\P
. o
< Iblipty Y 17| DA l? _[ (% dx ZI/\szIPZIQl ol f
= . . 1,k n
b 24107,,\2107 ' (X

2 5
< ||b||up1H[Z|Ai,k,.|Pf] :
i=1\ Kk
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This estimate for EX with k = 1, 2, 3 gives us that

1

2 »
Ep < ”b”Lile(ZMi,kilpi] s

i=1\ k;

which, together with the estimates for E3;, proves that

1
2 pi
< ||b||up1H[Z|Ai,k,.|Pf] :
i=1\ k

The estimates for E; withi = 1, 2, 3, 4 show that inequality (2.1) holds. This completes the proof of Theorem
1.1. a

3 Boundedness on product of Herz-type spaces

For k € Z and measurable function f(x) on R", let mi(o, f) = |{x € E; : |[f(x) > al}|. Fork € Z, letmy(o, f) =
my(o, f) and (0, f) = |{x € B(0, 1) : [f(x) > o]}|. In this section, we shall prove Theorem 1.2. In order to do
this, let us recall some definitions.

Definition 3.1. [15] Leta € R,0 < g < co and 0 < p < co.
A measurable function f(x) on R" is said to belong to the homogeneous weak Herz space WH; P if

(o]

1/p
W llwe 2Py = sup/l{ Y 2kem(A, f)p/q} < 0o,
A>0

k=-00

where the usual modification is made when p = co.

Proof of Theorem 1.2. Let f;, f, be functions, respectively, in K -1/ aPy Ry and K, (-1/@PRmy Since
fix) = Zii’foof,-(x)x,i(x), i=1,2, and [T, b];, j=1,2 are b111near Calderén-Zygmund operators, together
with Theorem A, we can deduce the weaker condition (see [16]), namely, for any integrable function fi, f,
with suppf; € B(0, ), ;> 0,i=1,2 and x ¢ nZ,B(0, 2r), there is

2
[T, BYi(fir £)COI < Wbl IXI™ | TNy - 3.1
i=1
We have
"[T(Ty b]i(flffZ)”WI'(q"(Z’I/q)*p(R")

p/g\V/P
< supAy Y 2P |Ix e B [T, bl Y fixy, Y. foxy, [00] > A
A>0 k=-co =2, h=R24 4
- - p/g\ VP
+supA{ Y 2K | Ix € By : z Y T bli(fixy» fz)(;z)(X)|>—
A>0 k=—00 l1—*0012 k-2
o k-3 k-3 pia )P
+ sAup/\ Y 2km@-1/ap {x €E: Yy Y T, bli(fixy,, foxy, )Xl > —}
>0 k=-00 i1=—001=_¢o
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00 oo k-3 pla 1p
A
+ S}tuM Y oknG-1/ap {x €E: Y YL, b]j(flx,l,ﬁx,z)(x)bz}
>0 | k=-c0 i1=k-2b=_c

= Il+12+13+14.

Using the fact that [T, b]; (j =1,2) is bounded from L% x L% into L% with controlled by [alyy
and 1< q, q; < 00, 1/p = 1/p; + 1/p,, by Holder’s inequality, we see that

i1=*OO 1'2=*OO

I < Z 2kn(2-1/q)p Z leil Z sziz
k=—00 i1=k*2 qu i2=k*2 qu
o o p1 \1/m o p, \1/p2
< 1Dl Z 2kn(2-1/qu)py Z fix, Z 2kn(2-1/q2)p2 Z fix,
k=-0c0 l'1=k*2 qu k=-00 l'2=k*2 qu
[e'e] i1+2 1/p1 (o) i2+2 l/pz
S"b"Lipl‘ Z "leiluf‘}l Z 2kn(1-1/g1)py Z ||f2)(i2||€§z Z 2kn(1-1/g2)p>
i1=—co k=-00 ih=—00 k=-c0
. Uni( o 1/p2
="b"Lip“ Z len(ll/ql)m“ﬁxl_l”f}h} { Z len(ll/qz)P2|IfZXiz||]{’52}

= bllip Il P gy I~ 1007y gy

For b, noting that x € E, suppfiy, € {x e R": |x| < 2}, i=1,2,and I < k - 3, by (3.1) we have

k-3 oo k-3 [}
Y YT, b]j(leII’fZXIZ)(XNS||b||Lip‘|X|_2n[ > “lell”Ll][ > ”fZXlz"Ll]
h=—cob=k-2 h=-c0 b=k-2 (3.2)
< 1Bl Z_an|[f1X{|x|52k*3} llz: Z_anufz)({\xgzk%} Il

< IBlluip 2 WAl Wfa -

It is easy to see from the definition of Herz space that Kq':(l_l/ DPiRN) ¢ [(RM). Given any fixed A > 0, if

k-3 oo
A
XxeE: Y Y T bli(fixy, fx,) 0O > =1 #0,
11=*0012=k*2 4
then by (3.2),
A < bl 272N fill o na-1rapmr, o o Il o -1/ o
4 = "Plip Kp GOLEL o ®R")
That is,

k<2nt log2(4||b||Lip12*2k”||ﬁ ||an1(171/41),n1(Rn) |lﬁ||K‘;;1’1/q2),P2(Rn)) = Nj.

From this, we can obtain

L) Up
L < sup ,\( z zkn(2—1/q)p2knp/q)
A>0  \ k=—co
= sup A22nNl

A>0

< Sup(/\ . 4"b"Lip1272kn”f-1"an(l-l/ql)vl’l([Rn)”f‘z”I‘(q"(I-I/QZ)sPZ(IRn))
A>0 1 2

= "b"Lip1 "fl ||I’(qn1(171/q1)’p1([R") "fZ ”K'Z"Z(I’I/'IZ)vPZ(Rn) .

From the similar way of b, the proof of I; and I, can be deduced. Combining all estimates on I, I, 5 and I,
the desired result can be established. This completes the proof of Theorem 1.2. O
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