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Abstract: We consider a discrete-time Markov controlled process endowed with the expected total dis-
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1 Introduction

In the theory of discrete-time Markov processes, the term “stability” is used in various meanings. First and
foremost, uncontrolled processes, this refers to some recurrent or ergodic properties of the processes (see,
e.g., [1]).

Quite a long time ago, this concept moved into the field of controlled processes, particularly, in the
context of adaptive control. (Among the huge number of references, we indicate only a couple of fairly
recent ones [2,3].)

The second widely used meaning of the word “stability” is close to “continuity.” Speaking of the
quantitative approach to such continuity under perturbations of certain parameters, the deviations of
some basic characteristics of the Markov processes (such as the limiting distribution) are estimated.

Using probability metrics, the methods of quantitative continuity of uncontrolled processes have been
developed, for instance, in the works [4-6].

The quantitative assessment of the stability (or “continuity”) of optimal control of a Markov process has
its own peculiarities. Here, the policy that is optimal for a certain “approximating process” is used to control
the original (“real”) process. The underlying probability distributions of the latter are unknown and are
often evaluated by statistical procedures. Such estimation leads to what we have designated as the “approx-
imating controlled process.”

The problem is posed as finding the upper bounds of the stability index, which is defined in (2.7) in
Section 2, and it expresses the decrease in the given performance index (compared to the application of the
optimal for the original process control). This problem was probably first considered in [7,8]. Since then, the
authors just mentioned and others have been solving this problem for various classes of discrete-time
Markov controlled processes and for different performance indexes (optimization criteria).
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In this article, we consider Markov control processes with general state and action spaces, choosing the
expected total discounted reward as an optimization criterion. Thus, the results given in Section 3 are
related to those obtained in the previous articles [9-11]. In contrast to the problem setting in these articles,
we focus our attention on the controlled processes with bounded one-step rewards. This allows us to obtain
new stability inequalities using both the total variation metric and the Dudley metric.

The total variation distance works well under the standard compactness-continuity conditions, but to
obtain the corresponding stability inequality in terms of the Dudley metric, we have to impose additional
Lipschitz continuity conditions.

The Dudley metric is convenient in an important situation where the nonparametric approach
is applied, i.e., when unknown probability distributions are approximated by empirical distributions
(see, e.g., [12]).

It should be noted that the problem of estimating the stability of optimal control considered in the
article is closely related to the problem of adaptive control of Markov processes. In the adaptive formula-
tion, the control is accompanied by some estimation procedure, and the current control policies should
approximate the optimal ones as the distribution (or parameters) is refined. For the development of adap-
tive algorithms, quantitative estimates of the “stability of optimal control” can be useful. Among the vast
literature, the works [13-17] used the expected total discounted reward as a criterion of optimization and
discuss the application of nonparametric estimation of “governing distributions.”

2 Setting of the problem

We consider a discrete-time Markov controlled process of the form:

X = F(Xt—l’ ai, ‘f[); t=12.., .1

where X; € X is a state of the process at time ¢, and &, &,,... is a sequence of independent and identically
distributed (i.i.d.) random vectors with values in a complete separable metric space (S, p). Let A be a given
action set. Then, if X;_; = z € X, then the control (action) a; is selected from a designated compact subset
A(z) c A. We assume that X and A are complete separable metric spaces (which are, particularly, Borel
spaces). The metric in X will be denoted by d. Finally, F : X x A x S — X is a measurable function.

A sequence 7 = (ay, ...,a;, ... ), where the control a; at time t is a measurable function of the current
state x;_; and can also depend on previous states and actions, is called control policy, or simply policy.
A policy m is called stationary and denoted by f if there is a measurable function f: X — A such that
ar = f(Xi-) €e AXe_), t=1,2....

We denote by:

— II the set of all policies;
- [F the set of all stationary policies.

A policy optimization criterion, in our setting, is the expected total discounted reward:

(0]

Vix,m) = Ef Y ar(Xp, a), mell, xeX, (2.2)

t=1
where E7 is the expectation with respect to the probability that corresponds to the application of a policy 7
with an initial state of the process x € X (see, e.g., [18] for the construction of the corresponding probability
space). r(z, a) is the one-step reward acquired when the process is in the state z and the action a is selected
and a € (0, 1) is a given discount factor.

Throughout the article, we will assume that r is a measurable bounded function, that is,

sup |r(x,a)l < b < co. 2.3)
(x,a)eK :
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In this inequality and further on, K f {x,a) e X x A:a e A(x) forall x € X}, which is supposed to be
a measurable subset of X x A.
The policy m, is called optimal, if for each x € X,

V(x, m.) = Y,(x) def supV(x, ), xeX. (2.4)
mell
In many applications, all components of the process, except for the distribution G of the random vector & in
(2.1), are known. For the distribution G, usually some approximation G is available (e.g., obtained from
statistical data).
Despite the fact that a controller is looking for the optimal policy 7., she/he is forced to work with the
following approximating controlled processes:

X =F&X 1, d, &), t=12... (2.5)

The only difference between this process and the “original” process in (2.1) is that the i.i.d. random vectors,
é,;l, 52, ..., have the common distribution G.

The expected total discounted reward V (x, m) for the process (2.5) is defined by formula (2.2), in which
X;_1, a; is replaced by X;_1, d;.

Let B denote the space of all measurable bounded functions u : X — R, with the uniform norm:

def
lull =" suplu(x)|.
xeX

Let & and f be generic vectors for &, &,... and 51, 52, ... , respectively.

Assumption 1. For each fixed x € X:
(a) the function r(x, -) is continuous on A(x);
(b) for every u € B, the maps

a — Eu[F(x,a, &)] and a — Eu[F(x, a, )]

are continuous on A(x).
The next assertion is well-known (see, e.g., [13, Ch. 2], and [19] for the proof).

Proposition 2.1. Under Assumption 1, there exist stationary policies . = f, and 7, = f., which are optimal for
the “real” process (2.1) and for the approximating process (2.5), respectively.
In other words, (2.4) holds with f,, and also

Ve, f) = oo & supV(x, ), xeX. 2.6)

mell

Remark 2.1. If we assume that for a compact A, A(x) = A, x € X and the one-step reward function r(x, a) is
continuous on X x A, then Proposition 2.1 holds true if we replace Assumption 1(b) with the following less
restrictive condition:

Assumption 1. (b*): For each x € X and for every continuous and bounded function u : X — R, the maps
a — Eu[F(x,a, §)] and a — Eu[F(x, a, )]

are continuous on A. (See [19] for the corresponding proof of Proposition 2.1.)

Assume that the controller can find the policy f., and she/he applies £, to control the “original” process
(2.1). In this way, f. is used as reasonable approximation to the not available policy f.. We will measure the
accuracy of such an approximation by evaluating the following stability index:

A) B VoG£ -V, f) >0, xex. 2.7)
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The problem under consideration is to prove stability inequalities of the type:

supA(x) < Cu(G, G),
xeX

where p is either the total variation metric or the Dudley metric.

3 The results

First, we recall the definitions of two metrics in the space of distributions of random vectors with values in
(S, Bs). Here, Bg is the Borel g-algebra of subsets of S.
The total variation metric V (see, e.g., [20]):

If £ and f are random vectors with distributions G and G, then

VG, G) & s%pllﬂp(f) - Ep&)l, 3.1)
peby

where

se

B, = {ga :S - R : ¢ ismeasurable and |¢| = sup|@(s)| < 1}.
s

The Dudley metric d (see [21]):

d(G, G) € sup [Ep() - Eg(@)], (3.2)

@eByL

where

sz p(s,s) (3.3)

where p is the metricin S.

s) - (s’
By = {(p €By: ol + supil(p( iRl 1},

It is well-known that the convergence in the metric d is equivalent to the weak convergence of distributions
(see, e.g., [21]).

Theorem 1. Under (2.3) and Assumption 1,

supA(x) < 2ab

Suf - a)ZW(G, G). (3.4)

Proof. In view of Proposition 2.1, we can write (2.4) and (2.6) as follows (x € X):

V(x, f) = Wx) = V(x, f),
(x, £) = V(x) ilif o f) (3.5)
Vi f) = Ux) = s}uﬂg V(x, f). (3.6)

Then, for arbitrary x € X by (2.7) and (3.5) and (3.6),

ACO) < IV(x, £) = V(x, £l + [V(x, £) - Vx, £

=[sup V(x, f) = sup V(x, )| + IV(x, ) - V(x, £
feF feF (3.7)

<2sup|V(x, f) - V(x, f)l.
feF
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Let us fix an arbitrary stationary policy f € F and define two operators:
Tr:B — B and T : B — B as follows (u € B):

Tu() = {r(x, f()) + aEu[F(x, f(), O}, x € X, (3.8)

TuG) € {r(x, F(O)) + aBu[F(x, f00), )} x € X. (3.9)

The following two facts are well-known (see, e.g., [13, Ch. 2]):

(a) The functions Vy(-) €y, f)and V() (., f) (where “” stands for x ¢ X) belong to B, and more-

over, they are fixed points of the operators T and T ¥, that is,
TeVp=V; and TV = V. (3.10)
(b) The operators T and Tf are contractive with modulus a, that is, (u, v € B):
ITru - Tvll < allw - vIl; 1 Tou - Tpvll < adlu - V. (3.11)
Therefore,
IVr = Vel = 1Ty = TeVrll < W3V — TeVll + 1TV — TeVoll < allVy — Vil + 1TV — TVl

Hence,

1V - VAl < ——IT;V; - TV (3.12)

1
1-a
Let us estimate the second factor on the right side of (3.12). By (3.8) and (3.9), we have

ITV; - TVl = suplE VHF(x, f(x0), )] - EVH[F(x, f(x), )] (3.13)

Using the definition of V; (i.e., (2.2) with X;, d), we see that

. & b
sup|Vr(x)| < Za“b = (3.14)
xeX t=1 1-a

Thus, for each x fixed, in (3.13), the function Vf[F (x, f(x), s)] of s € S is bounded by b(1 — a)~1. Applying the
definitions (3.1), (3.13), and (3.12), we find that

~ ab ~
sup|Vr(x) — Vr(x)| < Y(G, G).
xeX ! ! (1 - a)z
Combining the last inequality with (3.7), we obtain (3.4). O

In a fairly common situation, the unknown distribution G is estimated by the empirical distribution G,
obtained from the sample &, &,,..., . Excluding the cases of discrete G, V(G, Gn) fails to approach zero as
n — oo. Thus, in many situations, inequality (3.4) is useless. On the other hand, under mild conditions,
we have:

d(G, G,) — 0 almostsurely, and Ed(G,G,) — 0 as n— oo,

(see the end of this section.)
To obtain the stability inequality with the Dudley metric d on the right-hand side, we need additional
Lipschitz conditions.

Assumption 2.
(a) There exist a constant L, and a measurable function L; : § — [0, oo) such that:

1) |r(x,a) - r(y,a)| < Lod(x,y), forall (x,a),(y,a)eK; (3.15)
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2@ dlF(x,a,&),F(y,a, &) < Li&)d(x,y), forall (x,a),(y,a) €K, (3.16)
EL() =L, and al,<1.
(b) There is a constant L < oo such that for each (x, a) € K; s, s’ €S,
d[F(x, a,s), F(x, a,s")] < Lp(s, s'). (3.17)
(c) Ais compact and A(x) = A for all x € X.

Theorem 2. Under Assumptions 1 and 2,

sup A(X) < 20 b L()L
xex A-a)|1-a 1-al

where d is the Dudley metric defined in (3.2).

]d(G, G), (3.18)

Proof. We define the operators T : B — B and T :B — B as follows (ueB):

Tu(x) € sup{r(x, a) + aEulF(x, a, )}, x € X, (3.19)
acA

Tu() € sup{r(x, a) + aEulF(x, a, E)]}, x € X. (3.20)
acA

In [13, Ch. 2], it was proved that:

4] V.=TV, and V=TV, (3.21)

where V, and V, defined in (3.5) and (3.6) are value functions of the process (2.1) and of the process (2.5),
respectively.

(2) Both operators T and T are contractive (with respect to ||-||) with modulus a.

Let us define the number (generally belonging to [0, co]):

uE, & < Sup [EVIFG a, ) - EVIF(c a H]l. (3.22)

The first step in the proof is to establish the following inequality:

2a

SupA() < (s, 6. (3.23)

For (x, a) € K, let
Hx, @) < r(x, a) + aEV[F(x, a, £)], (3.24)
A, a) € r(x, @) + aEVIF(x, a, §)], (3.25)

and for each t > 1,
I} = {x, a; X, ay; ..., X¢-1, G}
be the part of a trajectory of the process (2.1) when applying the stationary policy f.
By Markov property of process (2.1) (when a stationary policy is applied) and (3.24), we have:
def

(t = [Ef*[aV*(Xt)ﬂ"t] = HXi-1, ap) — r(Xe-1, ap) = HX—q, ap) — r(Xe-1, ap) — sup H(X;_y, a) + sup H(X;_1, a).
acA acA

We can see from (3.24), (3.19), and (3.21) that
supH(X;_1, a) = Vi(X¢-1).

acA

Hence,



DE GRUYTER Stability estimation of some Markov controlled processes = 1515

§, = HXt-1, ar) = sSupHX;-1, @) = r(Xe-1, ar) + ViXe-1) = —A¢ = 71Xy, ar) + ViXe), (3.26)
acA

where

def

A = sup H(X;_1, a) - H(X;_1, a;). 3.27)
acA

Now, rewriting (3.26) as

Vi(X¢-1) — r(Xe1, ar) — (t = N
and taking expectation [Ef‘ (in both parts), we obtain:

ELV.(X-1) - Efr(Xe, ap) — aELV(X) = ELA,.

Multiplying the last equality by af~! and summing the inequalities with t = 1, 2 ..., n, we obtain:

~ Yl ~ Yl ~
V.00 - @' ELV(X) = Y at ELr(Xe g, ap) = Y at T ELA,. (3.28)

t=1 t=1

From (3.14), it follows that V, is a bounded function. So, taking in (3.28) limitn — oo, the second term on the
left-hand side tends to zero, while the third term approaches V(x, f.). Therefore,

AKX) = V0O - V(x, f) = Y at 'EfA,. (3.29)

t=1
Since ﬁ is the optimal policy for the process (2.5) applying (3.20), (3.21), and (3.25), we easily find that
sup I:I(Xt—l’ a) = H(Xt—l» ag).

acA

Hence, by (3.27),
A¢ = supH(X;_y, a) - SUPFI(Xt—l, a) + H(Xt—l, ap) - HX; 1, ap)

acA acA

and

Al < sup2|H(X;_1, @) - HX,1, @)| < 2asup|EV[F(X,_y, a, §)] - EVIF(X,y, a, )],
acA acA
where the expectation in the last term is taken with respect to the random vectors ¢ and f (with X;_; being
fixed). From the last inequality, we obtain:
|Adl < 2asup|EVi[F(X; 1, @, §)] - EVI[F(X; 1, a, E)]| + 2a sup[EVIF(X, 1, a, )] - EVIF(X: 1, a, O]l (3.30)
acA acA

The first term on the right-hand side of (3.30) is not greater than 2au(¢, f ) (see (3.22)), and the second term
is not greater than 2a||V, — V.

Using (3.21) and the contractive property of T, we have

IV, = Vil < TV, - TVl + ITV, - TVJ|| < a|Vi - Vil| + | TV, - TV,|

or (see (3.19), (3.20))

AR A supsup|EV[F(x, a, &)] - EV[F(x, a, £)]] < —=

— A xex acA 1-a

ué, &.

The last inequality and (3.30) provide that for each t > 1,

a
1-a

ind < 201+ 5 Yute. &,

Substituting this in (3.29), we obtain (3.23).
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The second step in the proof of the theorem is to show that under Assumption 2, in (3.23),

b, L

u(&é)s[ﬁ - aL]d(G’G)' (3.31)
- - 1

By (3.14), the function V, in (3.22) is bounded by b(1 — a)". Now, we will show that for all (x, a) € K;
s,s' €8S,

[VIF(x, a,s)] - VIF(x, a, s"]| < Lp(s, s"), (3.32)
. Lol
here L = ———. .
w Tl (3.33)

First, we check that the value function V, : X — R satisfies the Lipschitz conditions with the con-
stant Lo /(1 — aLy).

Let up = 0 and T be the operator defined in (3.19). Also, set u; = Tu,. Then, for any x,y € X,

[w(x) = w(y)| = [supr(x, a) — supr(y, a)| < sup|r(x, a) - r(y, a)| < Lod(x, y), (3.34)
acA acA acA

due to (3.15) in Assumption 2.

Let now w, = Tuy. Then, in view of (3.19),

lua(x) — wa(y)l < supfr(x, a) — r(y, a)| + alEw[F(x, a, §)] - Ew[F(y, a, ]I}

acA

< Lod(x,y) + aLosupEr(F(x, a, &), F(y, a, ¢))
acA

< Lo(1 + aLyd(x, y).

To obtain the last inequality, we have made use of (3.34) and Assumption 2(a), (2).
Letting u, = Tu,_1, n > 1, it is proved by induction that for any x, y,

[un(0) = un(Y)I < Lo[1 + aLy + ...,(aLy)" ']d(x, y). (3.35)

Since V. is a fixed point of the contractive operator T, we have ||V, — T"uo|| — 0 asn — co. We see from (3.35)

that for every n > 1, the function u, = T"u, is Lipschitz with the constant [ = a L;’(L). Consequently,
~ - 1

V. satisfies the Lipschitz condition with the constant L.
To verify (3.32), observe that by Assumption 2(b), the function ¢(s) = V[F(x, a, s)] is a composition of
two Lipschitz functions.

Note that [l¢] < b(1 — @)!, and ¢ is Lipschitz with the constant I in (3.33). Therefore, if we divide @ by

b(1 - a)! + L, we obtain a function from the class B 1,2 in (3.3). Finally, to obtain inequality (3.31), it suffices
to compare (3.22) with the definition of the Dudley metric given in (3.2) and (3.3). O

The natural question arises: How to evaluate d(G, G) in (3.18) if the distribution G is assumed to be
unknown? We can give the answer in one of the most important cases when G is the empirical distribution,
used to estimate G.

Now, we assume that the random vectors ¢, &, ... in (2.1) are observable and let &, ¢, ..., & bei.i.d.

observations of a random vector ¢ with distribution G. The empirical distribution G = G, is defined (on
(S, Bsg)) as follows:

n
G, = lz&k, where for k=1,2...,n,
n
=1

1, if § €B,
0, otherwise.

5fk(B )= {

(B e Bs).
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Assume that S = R¥ and || is the Euclidian norm. Also, suppose that there exist constants K < co and
h > 0 such that Ee"¥l < K.
Then, there is a calculable constant C = C(k, K, h) such that: for eachn =1, 2,...

Ed(G, G,) < C8(k, n), (3.36)

log(1 + n)

TP if k=1,
n

log%(1 + n)

where 6(k, n) = 72 ,

if k=2,

log(1 + n)

T if k> 3.
n

The inequality (3.36) was shown in Proposition 2.1 in [10], but it is actually a fairly direct consequence of
Proposition 3.4 in [12]. Taking expectation in both parts of (3.18) one can apply inequality (3.36).

Remark 3.1. There is a class of controlled Markov processes with observable “perturbations” £, &, .... (One
representative is discussed in Example 2.) Even more often, the mentioned random vectors are not observ-
able. In such cases, one should either use some indirect methods of bounding d(G, G,), or look for other
treatments. It is worth noting that our setting of the problem, generally speaking, does not require any
estimation procedure. The distribution G can be, for example, some “theoretical simplification” of the
known, but “too complex” real distribution G.

4 Examples

Example 1. In fact, this is a simple counterexample showing that Assumption 2 is essential for inequality
(3.18) to hold.
Let X = [0, 00), A = {0, 1}, S = R?, and for £, = ({7, &),

X =&+ Xoad?, t=1,2,...

For a = 0 and a = 1, the one-step reward function is the same and given by the following formula:

2, if x=0
r(x,a)={x, if x€(0,1] (4.1)
1, if x > 1.

For an arbitrary but fixed € > 0, we set G = §o,1), that is,
PP =0)=1 and PP =1)=1,
and also, G = 8,1), that is
P¢EP=¢g)=1 and PEP=1=1
Then, the “real” process is
X = Xpaqap, t2>1, (4.2)
and the approximating one is
X=e+X_a, ¢t>1. (4.3)

Let a € (0, 1) be any discount factor.
Let us fix the initial state X, = X, = 1. From (4.1) and (4.2), we see that the optimal stationary policy for
the process (4.2) is f, = {0, 0, ... } (i.e., always select the action f,(x) = 0). The corresponding reward is
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1 o
+

1l-a 1-a

VA, f)=1+Ya' 2= (4.4)
t=2
Since the process (4.3) can never reach the state x = 0 and r(x, a) is non-decreasing on (0, c0), the sta-
tionary optimal policy for the process (4.3) is f, = {1, 1, ... }. The application of f, to the process (4.2) gives
~ & 1
VA, )= Yatl.-1= )
(WAEDY .

t=1 -a

Comparing this with (4.4), we see that the stability index in (2.7) is

a

AQ1) = N > 0.

On the other hand, it is easy to show that d(G, G.) = € — 0 (as € — 0).
Note that Y(G, G,) = 2 for all € > 0.

Example 2. (See, e.g., [13, Ch. 1] or [22].) In this model, related to a dam operation, the stocks of water are
specified by the equations

X = min{thl —at+ ‘{[y M}’ t=12,.., (4.5)

where M < oo is the capacity of a water reservoir, X;_; is the stock of water at the beginning of tth period
(say, day). The control a; is the volume of water released during the tth period (e.g., for irrigation). Finally,
¢, is a non-negative random variable representing the water inflow in the tth period. We assume that
&, &, ... arei.i.d. random variables having density g.

As we see from (4.5), for this control process, X = [0, M], A(x) = [0, x], x € [0, M], and S = [0, o).

Choosing some bounded one-step reward function r(x, a) (which in the simplest case is (—1)x the cost of
a unit of water) and fixing a discount factor a € (0, 1), we are faced with the problem of optimal water
management, which is set as maximizing the expected long-term total discounted reward.

We assume that the density g (of the water inflow) is unknown, and it is approximated by some known
density & (obtained, for instance, from statistical estimations).

Also, we assume the following:
— For each x € [0, M], the one-step reward r(x, a) is a continuous function of a € [0, x].
— Both densities g and § are bounded and continuous on (0, o).

In the verification of Assumption 1, (b) is a matter of simple calculations. Then, according to Proposition 2.1,

there exist stationary optimal policies f, and f,, for the process (4.5) and, correspondingly, for the following
approximating water release process:

X[:min{)z[,l—d[‘i'gt,M}, tzl, 2,...,

where the i.i.d. random variables have density §. The application, for instance, of the policy f, signifies that
at tth period, the part f.(X;_;) of a current stock X;_; is released.
Noting that all conditions of Theorem 1 are satisfied, and for distributions having densities,

V(G, G) = j|g<y) ~ 3()ldy,
(0]
by (3.4) we have

2ab
sup A(x) <
xe[0,M] ( - a)z

j|g(y> ~ E()ldy,
0

where b = sup,q)ek [1(X, @), and A(x) is the stability index defined in (2.7).
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Example 3. (Controlled “environmental stochastic process”) The uncontrolled version of this discrete-time
stochastic processes is defined by following recurrent equations (see, e.g., [23, Ch. 9]):

Xl‘ = a(.f[)Xt,l + (p(({t), t = 1, 2, ceey (4.6)

where ¢, &, ... arei.i.d. random vectors with values in the Euclidian space R¥,and X; eR (t=0,1,2,... ).
Processes of type (4.6) are used in modeling some phenomena in environmental science.
We will consider a controlled variant of (4.6), that is, the process

Xt = a({t)Xt—l + (P(ah {[), t= 1, 2,~-~y (4-7)

where a; € A, and A is a given compact subset of the Euclidian space R™.

In this way, A(x) = A for all x € X = R. In this example, the space S is R¥,

Let r(x, a) be a certain, bounded by b, one-step reward function, which is continuous on R x A,
and, moreover, for some Ly < 0o,

Ir(x, @) - r(y, @) < Lolx - yl, (4.8)
forall x,y € R and a € A.
We assume that
Ea(é) <L; and al; <1, (4.9)
and, for some L < co,
lp(a, s) — ¢(a, s")| < L|s - §'|, (4.10)

foralls, s’ € R¥, anda € A, and also for each s € R¥, the map a — ¢(a, s) is continuous. Using (4.7)-(4.10),
it is easy to check the fulfillment of Assumption 2. Also, Assumption 1(a) and (b*) are fulfilled. Indeed,
if u: R - R is continuous and bounded, then the map a — Eu[a(é)x + ¢(a, £)] is continuous by the
dominated convergence theorem.

All of the above allow us to apply the stability inequality (3.18). Making use of the known relationship
between the Dudley and Wasserstein metric, for the particular case where k =1 (i.e., { is a random
variable), the mentioned inequality can be written as follows:

1/2

LoL T
F(y) - F:())dy |
T aLl] |F(y) — Fe(y)ldy

3/2,
supA(x) < 2 b
xeR (1 - a)z 1-a

where F; and F¢ are the distribution functions of § and &, respectively, and € is generic for i.i.d. random
vectors &, &,... involved in the approximating process

X =a&)X + 0@, &), t=1,2...
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