Research Article

Dohoon Choi and Youngmin Lee*

Modular forms of half-integral weight on $\Gamma_0(4)$ with few nonvanishing coefficients modulo ℓ

https://doi.org/10.1515/math-2022-0512 received June 15, 2022; accepted September 21, 2022

Abstract: Let k be a nonnegative integer. Let K be a number field and O_K be the ring of integers of K. Let $\ell \geq 5$ be a prime and ν be a prime ideal of O_K over ℓ . Let f be a modular form of weight $k + \frac{1}{2}$ on $\Gamma_0(4)$ such that its Fourier coefficients are in O_K . In this article, we study sufficient conditions that if f has the form

$$f(z) \equiv \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2} \pmod{\nu}$$

with square-free integers s_i , then f is congruent to a linear combination of iterated derivatives of a single theta function modulo v.

Keywords: Fourier coefficients of modular forms, Galois representations, modular forms of half-integral weight, theta functions

MSC 2020: 11F33, 11F80

1 Introduction

The Fourier coefficients of modular forms of half-integral weight are related to various objects in number theory and combinatorics such as the algebraic parts of the central critical values of modular L-functions, orders of Tate-Shafarevich groups of elliptic curves, the number of partitions of a positive integer, and so on. With a lot of application to these objects, Bruinier [1], Bruinier and Ono [2], Ono and Skinner [3], Ahlgren and Boylan [4,5], and the others studied congruence properties modulo a power of a prime for Fourier coefficients of modular forms of half-integral weight. Many of them considered modular forms of half-integral weight whose the Fourier coefficients are supported on only finitely many square classes modulo a prime ℓ .

Let f be a modular form of half-integral weight on $\Gamma_1(4N)$. Vignéras [6] proved that if the q-expansion of f has the form

$$f(z) = a_f(0) + \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2}, \quad q := e^{2\pi i z}$$

^{*} Corresponding author: Youngmin Lee, School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea, e-mail: youngminlee@kias.re.kr

Dohoon Choi: Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea, e-mail: dohoonchoi@korea.ac.kr

³ Open Access. © 2022 Dohoon Choi and Youngmin Lee, published by De Gruyter. © This work is licensed under the Creative Commons Attribution 4.0 International License.

with a positive integer t and square-free integers s_i , then f is a linear combination of single variable theta functions (a different proof of this result was given by Bruinier [1]). Many of the aforementioned results can be considered as positive characteristic extensions of Vignéras' result on classification of modular forms of half-integral weight such that their nonvanishing Fourier coefficients lie in only finitely many square classes. Especially, Ahlgren et al. [7] obtained an explicit mod ℓ analog of the result of Vignéras for modular forms of half-integral weight on $\Gamma_0(4)$ satisfying the Kohnen-plus condition.

Let K be a number field and O_K be the ring of integers of K. Let $M_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ (resp. $S_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$) be the space of modular forms (resp. cusp forms) of weight $k + \frac{1}{2}$ on $\Gamma_0(4)$ such that their Fourier coefficients are in O_K and $S_{k+\frac{1}{2}}^+(\Gamma_0(4);\ O_K)$ be the subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4);\ O_K)$ consisting of $f\in S_{k+\frac{1}{2}}(\Gamma_0(4);\ O_K)$ satisfying the Kohnen-plus condition.

Let $\ell \geq 5$ be a prime and ν be a prime ideal of O_K over ℓ . For $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4); O_K)$, Ahlgren et al. [7] proved that if

$$k + \frac{1}{2} < \ell \left(\ell + \frac{3}{2}\right) \tag{1.1}$$

and

$$f(z) = \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2} \pmod{\nu}$$
 (1.2)

with square-free integers s_i , then k is even and

$$f(z) \equiv a_f(1) \sum_{n=1}^{\infty} n^k q^{n^2} \pmod{\nu}.$$

In this article, we study sufficient conditions that if f has the form (1.2), then f is congruent to a linear combination of iterated derivatives of a single theta function modulo ν .

For a positive number ε , let P_{ε} be the set of primes ℓ such that for every $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4); O_K)$ with $k + \frac{1}{2} < \ell^2 (\log \ell)^{2-\varepsilon}$, if

$$f(z) \equiv \sum_{i=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2} \pmod{\nu}$$

with square-free integers s_i , then

$$f(z) \equiv a_f(1) \left(\sum_{n=1}^{\infty} n^k q^{n^2} \right) + a_f(\ell) \left(\sum_{n=1}^{\infty} n^{k + \frac{\ell-1}{2}} q^{\ell n^2} \right) \pmod{\nu}.$$

The following theorem proves that the portion of P_{ε} in the set of primes is one.

Theorem 1.1. For a positive integer X, there is an absolute constant C such that

$$\#\{\ell: \ell \notin P_{\varepsilon} \text{ and } \ell \leq X\} \leq C_0 \frac{X}{(\log X)^{1+\frac{\varepsilon}{2}}} \left(1 + C \frac{\log \log X}{\log X}\right),$$

where $C_0 := \frac{2\sqrt{2}\pi^2}{3} \prod_{p>2} \frac{p^2}{n^2-1}$.

For a nonnegative real number r, we define an operator Θ^r on $\mathbb{C}[[q]]$ by

$$\Theta^r \left(\sum_{n=0}^{\infty} a(n) q^n \right) := \begin{cases} \sum_{n=0}^{\infty} n^r a(n) q^n & \text{if } r \in \mathbb{Z}_{>0}, \\ 0 & \text{elsewhere.} \end{cases}$$

For convenience, we let $\Theta = \Theta^1$. As in Theorem 1.1, the previous results on modular forms of half-integral weight having the form (1.2) such as [1,2,4,5,7] and so on imply that in many cases, if f has the form (1.2), then $\Theta(f)$ is congruent to a linear combination of iterated derivatives of a single theta function modulo v. These lead us to the following conjecture on modular forms f of half-integral weight having the form (1.2).

Conjecture 1.2. Let K be a number field and O_K be the ring of integers of K. Let $\ell \geq 5$ be a prime and ℓ be a prime ideal of O_K over ℓ . Assume that $f \in S_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form

$$\Theta(f)(z) \equiv \sum_{n=1}^{\infty} sn^2 a_f(sn^2) q^{sn^2} \pmod{\nu}$$

with a square-free integer s, then

$$\Theta(f)(z) \equiv \frac{1}{2} a_f(1) \left(\sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} n^{k+2} q^{n^2} \right) \pmod{\nu}.$$

Assume that ℓ is a prime and m is a nonnegative integer. Let $r_{\ell}(m)$ be the least positive integer such that

$$r_{\ell}(m) \equiv m \pmod{\ell-1}$$
.

Let $\alpha(\ell, m)$ be the smallest nonnegative integer i such that

$$m+\frac{1}{2}<\ell^{2i}\left(r_{\ell}(m)\frac{\ell+1}{2}+\frac{1}{2}\right),$$

and $\beta(\ell, m)$ be the smallest nonnegative integer i such that

$$m+\frac{1}{2}<\ell^{2i+1}\left(r_{\ell}\left(m+\frac{\ell-1}{2}\right)\frac{\ell+1}{2}+\frac{1}{2}\right).$$

Let

$$T(z) \coloneqq 1 + 2\sum_{n=1}^{\infty} q^{n^2}.$$

For convenience, let

$$\sum_{n=a}^{b} a_n := \begin{cases} \sum_{n=a}^{b} a_n & \text{if } a \leq b, \\ 0 & \text{if } a > b. \end{cases}$$

By using Conjecture 1.2, we have an explicit formula for modular forms of half-integral weight having the form (1.2).

Theorem 1.3. Let K, O_K , ℓ , and v be as in Conjecture 1.2. Assume that $f \in M_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$. Conjecture 1.2 implies that if f has the form

$$f(z) \equiv a_f(0) + \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2} \pmod{\nu}$$
 (1.3)

with square-free integers s_i , then the following statements are true.

(1) If $r_{\ell}(k) \neq \ell - 1$ and $r_{\ell}(k) \neq \frac{\ell - 1}{2}$, then

$$f(z) \equiv \frac{1}{2} \sum_{i=0}^{\alpha(\ell,k)-1'} a_f(\ell^{2i}) \Theta^{k/2}(T)(\ell^{2i}z) + \frac{1}{2} \sum_{i=0}^{\beta(\ell,k)-1'} a_f(\ell^{2i+1}) \Theta^{(2k+\ell-1)/4}(T)(\ell^{2i+1}z) \pmod{\nu}.$$

(2) If $r_{\ell}(k) = \ell - 1$, then

$$f(z) \equiv a_f(0)T(z) + \frac{1}{2} \sum_{i=0}^{a(\ell,k)-1'} (a_f(\ell^{2i}) - 2a_f(0))\Theta^{k/2}(T)(\ell^{2i}z) + \frac{1}{2} \sum_{i=0}^{\beta(\ell,k)-1'} a_f(\ell^{2i+1})\Theta^{(2k+\ell-1)/4}(T)(\ell^{2i+1}z) \pmod{\nu}.$$

(3) If
$$r_{\ell}(k) = \frac{\ell - 1}{2}$$
, then

$$f(z) \equiv a_f(0)T(\ell z) + \frac{1}{2}\sum_{i=0}^{\alpha(\ell,k)-1'} a_f(\ell^{2i})\Theta^{k/2}(T)(\ell^{2i}z) + \frac{1}{2}\sum_{i=0}^{\beta(\ell,k)-1'} (a_f(\ell^{2i+1}) - 2a_f(0))\Theta^{(2k+\ell-1)/4}(T)(\ell^{2i+1}z) \pmod{\nu}.$$

To give numerical evidence for Conjecture 1.2, we consider a basis of the space of modular forms of weight $k + \frac{1}{2}$ on $\Gamma_0(4)$. Let $F_2(z) = \sum_{n=0}^{\infty} \sigma(2n+1)q^{2n+1}$ be the modular form of weight 2 on $\Gamma_0(4)$, where $\sigma(n)$ is the sum of positive divisors of n. Then

$$\{F_2^j T^{2k+1-4j}\}_{0 \le j \le \left|\frac{k}{2}\right|}$$

is a \mathbb{C} -basis of the space of modular forms of weight $k+\frac{1}{2}$ on $\Gamma_0(4)$. Let $A_{k,m}$ be an $m\times\left(\left|\frac{k}{2}\right|+1\right)$ matrix such that the (i, j)-entry of $A_{k,m}$ is the (i - 1)th Fourier coefficient of $F_2^{j-1}T^{2k+5-4j}$ modulo ℓ . Let $B_{k,m}$ be a submatrix of $A_{k,m}$ obtained by removing $n^2 + 1$ th rows for all nonnegative integers n with $(\ell, n) = 1$. Let $Null(B_{k,m})$ be the null space of $B_{k,m}$. With this notation, we give the following conjecture.

Conjecture 1.4. Let $\ell \geq 5$ be a prime. Let \mathbb{I}_{+} be the characteristic function of the set of positive real numbers. Then, for a positive even integer k, we have

$$\lim_{m\to\infty}\dim \operatorname{Null}(B_{k,m})=\mathbb{1}_{+}(\alpha(\ell,k)).$$

By comparing the intersection of the null spaces of $B_{k,m}$ and the space of mod ν modular forms of weight $k + \frac{1}{2}$ on $\Gamma_0(4)$ having the form

$$f(z) \equiv \sum_{\ell \perp n} a(n^2) q^{n^2} \pmod{\nu},$$

we have the following theorem.

Theorem 1.5. Conjecture 1.2 is equivalent to Conjecture 1.4.

Let us note that $Null(B_{k,m})$ is stable for sufficiently large m. In the proof of Theorem 1.5, we prove that $\dim \text{Null}(B_{k,m})$ is larger than or equal to $\mathbb{1}_+(\alpha(\ell,k))$ for all positive integers m. Hence, if there is a positive integer m such that $\dim \text{Null}(B_{k,m}) = \mathbb{I}_+(\alpha(\ell,k))$, then Conjecture 1.2 is true. To compute $\dim \text{Null}(B_{k,m})$, we consider the row echelon form of $B_{k,m}$. We use C++ in this process. Then we have the following theorem.

Theorem 1.6. Assume that $k \le 1,000$, or that $\ell \in \{5, 7, 11, 13, 17, 19\}$ and $k \le 10,000$. Then, Conjecture 1.2 is true.

The remainder of this article is organized as follows. In Section 2, we review some properties of f having the form (1.3) and the filtration for modular forms. In Section 3, we prove Theorems 1.1, 1.3, 1.5, and 1.6.

2 Preliminaries

In this section, we review some notions and properties of the filtration for modular forms, and then we introduce some properties about modular forms of half-integral weight on $\Gamma_0(4)$ such that their Fourier coefficients are supported on finitely many square classes modulo a prime ℓ . For further details, see [8].

Throughout the rest of this article, we fix the following notation. For a congruence subgroup Γ and $w \in \frac{1}{2}\mathbb{Z}$, let $M_w(\Gamma)$ (resp. $S_w(\Gamma)$) be the space of modular forms (resp. cusp forms) of weight w on Γ . For a Dirichlet character χ modulo N, let $M_w(\Gamma_0(N), \chi)$ (resp. $S_w(\Gamma_0(N), \chi)$) be the space of modular forms (resp. cusp forms) of weight w on $\Gamma_0(N)$ with character χ .

Let k be a nonnegative integer and $\ell \ge 5$ be a prime. Let K be a number field and O_K be the ring of integers of K. Let ν be a prime ideal of O_K over ℓ . Let $M_{k+\frac{1}{2}}(\Gamma_0(4N); O_K)$ (resp. $S_{k+\frac{1}{2}}(\Gamma_0(4N); O_K)$) be the space of modular forms (resp. cusp forms) of weight $k+\frac{1}{2}$ on $\Gamma_0(4N)$ such that their Fourier coefficients are in O_K and $S_{k+\frac{1}{2}}^+(\Gamma_0(4); O_K)$ be the subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ consisting of $f \in S_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ satisfying the Kohnen-plus condition.

Now, we review the basic notions and properties about the Shimura correspondence. Assume that f is a cusp form of weight $k + \frac{1}{2}$ on $\Gamma_0(4)$. For a square-free integer t, we define $A_t(n)$ by

$$\sum_{n=1}^{\infty} \frac{A_t(n)}{n^s} := \sum_{n=1}^{\infty} \left(\frac{(-1)^k t}{n} \right) \frac{1}{n^{s-k+1}} \sum_{n=1}^{\infty} \frac{a_{tn^2}(f)}{n^s}.$$

Then, the Shimura lift $Sh_t(f)$ of f is defined by

$$\operatorname{Sh}_t(f)(z)\coloneqq\sum_{n=1}^\infty A_t(n)q^n.$$

Note that $Sh_t(f) \in S_{2k}(\Gamma_0(2))$. In particular, if $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4))$, then $Sh_t(f) \in S_{2k}(\Gamma_0(1))$. For each odd prime p with $p \nmid t$, we have

$$\operatorname{Sh}_{t}(f|T_{p^{2},k+\frac{1}{2}}) = \operatorname{Sh}_{t}(f)|T_{p,2k},$$

where $T_{n,w}$ denotes the nth Hecke operator on the space of modular forms of weight w. For each prime ℓ , operators U_{ℓ} and V_{ℓ} on formal power series are defined by

$$\left(\sum_{n=0}^{\infty} a(n)q^n\right) | U_{\ell} := \sum_{n=0}^{\infty} a(\ell n)q^n$$

and

$$\left(\sum_{n=0}^{\infty}a(n)q^n\right)|V_{\ell}:=\sum_{n=0}^{\infty}a(n)q^{\ell n}.$$

2.1 Filtration for modular forms of half integral weight modulo a prime ℓ

The theory of filtration for modular forms of integral weight was developed by Serre [9], Swinnerton-Dyer [10], Katz [11], and Gross [12]. From this, the theory of filtration for modular forms of half-integral weight on $\Gamma_0(4)$ was studied. In this section, we review some properties of filtration for modular forms of half-integral weight on $\Gamma_0(4)$. For the details, we refer to [13, Section 2].

We say that $\sum_{n=0}^{\infty} a(n)q^n$ is congruent to $\sum_{n=0}^{\infty} b(n)q^n$ modulo v, i.e.,

$$\sum_{n=0}^{\infty} a(n)q^n \equiv \sum_{n=0}^{\infty} b(n)q^n \pmod{\nu},$$

if $a(n) \equiv b(n) \pmod{v}$ for all nonnegative integers n. For $f \in M_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$, we define a filtration $\omega(f)$ of f modulo v by

$$\omega(f) \coloneqq \inf \left\{ k' + \frac{1}{2} : \text{ there is } f' \in M_{k' + \frac{1}{2}}(\Gamma_0(4); O_K) \text{ such that } f' \equiv f \pmod{\nu} \right\}.$$

For convenience, if $f \equiv 0 \pmod{v}$, then let $\omega(f) = -\infty$. We summarize the properties of $\omega(f)$ in the following lemma.

Lemma 2.1. Let $f \in M_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$. Then, the following statements are true.

- (1) $k \equiv \omega(f) \frac{1}{2} \pmod{\ell 1}$.
- (2) $\omega(f^{\ell}) = \ell \cdot \omega(f)$.
- (3) There is a nonnegative integer k' such that

$$k' \equiv k + \frac{\ell - 1}{2} \pmod{\ell - 1},$$

and there is $g \in M_{k'+\frac{1}{2}}(\Gamma_0(4); O_K)$ such that $g \equiv f|U_\ell \pmod{\nu}$. Moreover, if $f(z) \equiv \sum_{n=0}^{\infty} a_f(\ell n) q^{\ell n} \pmod{\nu}$, then there is a nonnegative integer k' such that

$$k' \equiv k + \frac{\ell - 1}{2} \pmod{\ell - 1}$$
 and $k' + \frac{1}{2} \le \frac{1}{\ell} \left(k + \frac{1}{2} \right)$,

and there is $g \in M_{k'+\frac{1}{2}}(\Gamma_0(4); O_K)$ such that $g \equiv f|U_\ell \pmod{\nu}$.

(4) There is $h \in S_{k+\ell+\frac{3}{2}}(\Gamma_0(4))$ such that $h \equiv \Theta(f) \pmod{\nu}$. In particular, if $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4))$, then $h \in S_{k+\frac{1}{2}}(\Gamma_0(4))$ $S_{k+\ell+\frac{3}{2}}^+(\Gamma_0(4)).$

Proof. The proofs of (1) and (2) are in [13, Proposition 2.2]. The proof of (3) is obtained by combining [7, Lemma 4.2] and [13, Proposition 2.2]. To prove (4), let

$$h \coloneqq \left(k + \frac{1}{2}\right) \Theta(E_{\ell-1}) f - (\ell-1) E_{\ell-1} \Theta(f),$$

where $E_{\ell-1}$ denotes the Eisenstein series of weight $\ell-1$. Since $E_{\ell-1}\equiv 1\pmod{\nu}$, we have $h\equiv \Theta(f)\pmod{\nu}$. By [14, Corollary 7.2], we obtain $h \in S_{k+\ell+\frac{3}{2}}(\Gamma_0(4))$. When f satisfies the Kohnen-plus condition, the proof of (4) is in [7, Lemma 4.1].

2.2 Modular forms of half-integral weight such that their Fourier coefficients are supported on finitely many square classes modulo ℓ

In this section, we introduce some properties of modular forms of half-integral weight on $\Gamma_0(4)$ such that their Fourier coefficients are supported on finitely many square classes modulo v.

Ahlgren and Boylan [4] obtained the necessary conditions for the weight of $f \in M_{k+\frac{1}{4}}(\Gamma_0(4))$ such that their Fourier coefficients are supported on finitely many square classes modulo ν by using the theory of Galois representations. This was reproved in [15] by using only the theory of filtration for modular forms of integral weight. The Choi and Kilbourn [16] improved the necessary conditions for the weight by using only the theory of filtration for modular forms of integral weight. We review the results [4,16] in the following theorem.

Theorem 2.2. Let N be a positive integer and $\ell \geq 5$ be a prime with $(\ell, N) = 1$. Assume that $f(z) \in I$ $M_{k+\frac{1}{2}}(\Gamma_1(4N)) \cap O_K[[q]]$ has the form

$$f(z) \equiv a_f(0) + \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2} \pmod{v}$$

with square-free integers s_i . Let \overline{k} and i_k be nonnegative integers, which satisfy $k = (\ell - 1)i_k + \overline{k}$ and $\overline{k} < \ell - 1$. Then, the following statements are true.

(1) If $\ell \nmid n_i$ for some i, then

$$\overline{k} \leq 2i_k + 1.$$

(2) If $\ell | n_i$ for all i and $\overline{k} \leq \frac{\ell-3}{2}$, then

$$\overline{k} \leq i_k - \frac{\ell+1}{2}$$
.

(3) If $\ell | n_i$ for all i and $\overline{k} > \frac{\ell-3}{2}$, then

$$\overline{k} \leq i_k + \frac{\ell-1}{2}$$
.

Bruinier and Ono [2, Theorem 3.1] proved the following theorem by using an argument in [1].

Theorem 2.3. Let N be a positive integer and $\ell \geq 5$ be a prime with $(\ell, N) = 1$. Let χ be a real Dirichlet character modulo 4N and $f(z) \in S_{k+\frac{1}{2}}(\Gamma_0(4N), \chi) \cap O_K[[q]]$. For each prime p with $(p, 4N\ell) = 1$, if there exists $\varepsilon_p \in \{\pm 1\}$ such that

$$f(z) \equiv \sum_{\left(\frac{n}{p}\right) \in \{0, \varepsilon_p\}} a_f(n)q^n \pmod{\nu},$$

then

$$(p-1)f|T_{p^2,k+\frac{1}{2}} \equiv \varepsilon_p \left(\frac{(-1)^k}{p}\right) \chi(p)(p^k+p^{k-1})(p-1)f \pmod{\nu}.$$

Ahlgren et al. [7] proved that if $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4); O_K)$ and the Fourier coefficients of f are supported on finitely many square classes modulo v, then f has the form

$$f(z) \equiv \sum_{n=1}^{\infty} a_f(n^2) q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell n^2) q^{\ell n^2} \pmod{\nu}.$$

By using the theory of Galois representations, we extend the result [7] to cusp forms of half-integral weight on $\Gamma_0(4)$ without the Kohnen-plus condition.

Proposition 2.4. Assume that $f \in S_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form

$$f(z) = \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2} \pmod{\nu}$$
 (2.1)

with square-free integers s_i . Then, the following statements are true.

(1) If 2|k and $\ell \equiv 1 \pmod{4}$, then

$$f(z) \equiv \sum_{n=1}^{\infty} a_f(n^2) q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell n^2) q^{\ell n^2} \pmod{\nu}.$$

(2) If $2|k \text{ and } \ell \equiv 3 \pmod{4}$, then

$$f(z) \equiv \sum_{n=1}^{\infty} a_f(n^2) q^{n^2} \pmod{\nu}.$$

(3) If $2 \nmid k$ and $\ell \equiv 3 \pmod{4}$, then

$$f(z) \equiv \sum_{n=1}^{\infty} a_f(\ell n^2) q^{\ell n^2} \pmod{\nu}.$$

(4) If $2 \nmid k$ and $\ell \equiv 1 \pmod{4}$, then

$$f(z) \equiv 0 \pmod{\nu}$$
.

Proof. Assume that for each $i \in \{1, ..., t\}$, there is a positive integer n_i such that $a_i(s_i n_i^2) \neq 0 \pmod{\nu}$. Following the proof of Lemma 4.1 in [4], there exist distinct odd primes $p_{i,1}, \ldots, p_{i,r_i}$, each relatively to $n_i s_i \ell$, and a modular form $f_i \in S_{k+\frac{1}{2}}(\Gamma_0(4\prod_{i=1}^n p_{i,j}^2); O_K)$ such that

$$f_i(z) \equiv \sum_{n=1}^{\infty} a_{f_i}(s_i n^2) q^{s_i n^2} \not\equiv 0 \pmod{\nu}.$$

$$\gcd(n, \prod_{j=1}^{r_i} p_{i,j}) = 1$$

By Theorem 2.3, for each prime p with $p \nmid 2s_i \ell \prod_{i=1}^{r_i} p_{i,j}$ and $p \not\equiv 1 \pmod{\ell}$, we have

$$f_i|T_{p^2,k+\frac{1}{2}} \equiv \left(\frac{(-1)^k s_i}{p}\right)(p^k + p^{k-1})f_i \pmod{\nu}.$$

Since $S_{\frac{1}{3}}(\Gamma_0(4)) = S_{\frac{3}{3}}(\Gamma_0(4)) = \{0\}$, we may assume that $k \ge 2$. Let $F_i := \operatorname{Sh}_{s_i}(f_i) \in S_{2k}(\Gamma_0(2 \prod_{i=1}^{r_i} p_{i,i}^2))$ be the Shimura lift of f_i . Since the Shimura correspondence commutes with the Hecke operators, for each prime p with $p \nmid 2s_i \ell \prod_{i=1}^{r_i} p_{i,j}$ and $p \not\equiv 1 \pmod{\ell}$, we obtain

$$F_i|T_{p,2k} \equiv \left(\frac{(-1)^k s_i}{p}\right)(p^k + p^{k-1})F_i \pmod{\nu}.$$

Then, there is an integer N_i such that $N_i|2\prod_{j=1}^{r_i}p_{i,j}^2$, and there is a newform $G_i \in S_{2k}(\Gamma_0(N_i))$ such that for each prime p with $p \nmid 2s_i \ell \prod_{i=1}^{r_i} p_{i,j}$ and $p \not\equiv 1 \pmod{\ell}$,

$$\lambda_i(p) \equiv \left(\frac{(-1)^k s_i}{p}\right) (p^k + p^{k-1}) \pmod{\nu}.$$

Here, $\lambda_i(p)$ denotes the pth Hecke eigenvalue of G_i . Let $\mathbb{F}_v := O_{\mathbb{K}} v$. Note that there is a semi-simple Galois representation

$$\rho_i: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_{\nu}),$$

such that for each prime p with $p \nmid N_i \ell$

$$\operatorname{tr}(\rho_i(\operatorname{Frob}_p)) \equiv \lambda_i(p) \pmod{\nu}$$
 and $\operatorname{det}(\rho_i(\operatorname{Frob}_p)) \equiv p^{2k-1} \pmod{\nu}$,

where Frob_p denotes any Frobenius element at p. Let $\chi_{\ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}_{\ell}^*$ be the mod- ℓ cyclotomic character. Following the argument of the proof of [5, Proposition 4.3], we have

$$\rho_{i} \cong \begin{cases}
\left(\left(\frac{(-1)^{k}s_{i}}{\cdot}\right)\chi_{\ell}^{k} & 0 \\
0 & \left(\frac{(-1)^{k}s_{i}}{\cdot}\right)\chi_{\ell}^{k-1}\right) & \text{if } \ell \nmid s_{i}, \\
\left(\left(\frac{(-1)^{k+\frac{\ell-1}{2}}s_{i}'}{\cdot}\right)\chi_{\ell}^{k+\frac{\ell-1}{2}} & 0 \\
0 & \left(\frac{(-1)^{k+\frac{\ell-1}{2}}s_{i}'}{\cdot}\right)\chi_{\ell}^{k+\frac{\ell-3}{2}}\right) & \text{if } \ell \mid s_{i},
\end{cases}$$
(2.2)

where $\ell s_i' = s_i$.

By the result of Carayol [17], the conductor of ρ_i divides N_i . By (2.2), we obtain that if $\ell \nmid s_i$, then s_i^2 divides the conductor of ρ_i , and if $\ell | s_i$, then $(s_i')^2$ divides the conductor of ρ_i . Since $N_i | 2 \prod_{j=1}^{r_i} p_{i,j}^2$ and $\gcd(s_i, \prod_{j=1}^{r_i} p_{i,j}) = 1$, we have $s_i \in \{1, \ell\}$. Moreover, the conductor of ρ_i is not divided by 4. Therefore, we conclude that if k is odd, then $s_i \neq 1$ and if $k + \frac{\ell-1}{2}$ is odd, then $s_i \neq \ell$.

We extend Proposition 2.4 to general modular forms of half-integral weight including noncusp forms in the following proposition.

Proposition 2.5. Assume that $f \in M_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form

$$f(z) \equiv a_f(0) + \sum_{n=1}^{\infty} \sum_{i=1}^{t} a_f(s_i n^2) q^{s_i n^2} \pmod{\nu}$$
 (2.3)

with square-free integers s_i . Then,

$$f(z) \equiv a_f(0) + \sum_{n=1}^{\infty} a_f(n^2) q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell n^2) q^{\ell n^2} \pmod{\nu}.$$

Proof. Without loss of generality, we assume that there is a positive integer n_1 such that $a_f(s_1n_1^2) \neq 0$ (mod ν). Let a be the exponent of ℓ in $s_1n_1^2$. Then, there is a unique square-free integer s_1' such that $s_1 n_1^2 = \ell^a s_1' m_1^2$ for some positive integer m_1 . By Lemma 2.1 (3), there is an integer k' and a modular form $g \in M_{k'+\frac{1}{2}}(\Gamma_0(4))$ such that $g \equiv f|U_{\ell^a} \pmod{\nu}$. By Lemma 2.1 (4), there is $h \in S_{k'+\ell+\frac{3}{2}}(\Gamma_0(4))$ such that $h \equiv \Theta(g)$ (mod v). Since $a_f(s_1n_1^2) \not\equiv 0 \pmod{v}$, we have $a_h(s_1'm_1^2) \not\equiv 0 \pmod{v}$ and then h has the form (2.1). Then, $s_1'=1$ by Proposition 2.4. This implies that $s_1\in\{1,\ell\}$. Therefore, Proposition 2.5 is proved.

Combining Theorem 2.2 and Proposition 2.5, we obtain an explicit formula of $f \in M_{k+\frac{1}{2}}(\Gamma_0(4))$ having the form (2.3) when $k < \ell - 1$.

Lemma 2.6. Assume that $f \in M_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form (2.3) and $f \not\equiv 0 \pmod{\nu}$. If $k < \ell - 1$, then $k \in \{0, \frac{\ell-1}{2}\}$. Moreover,

$$f(z) \equiv a_f(0) \left(1 + 2 \sum_{n=1}^{\infty} q^{n^2} \right) \pmod{v}$$
 if $k = 0$

and

$$f(z) \equiv a_f(0) \left(1 + 2\sum_{n=1}^{\infty} q^{\ell n^2}\right) \pmod{\nu} \quad \text{if } k = \frac{\ell - 1}{2}.$$

Proof. We assume that $k < \ell - 1$. By Theorem 2.2, we have $k \in \{0, 1, \frac{\ell - 1}{2}\}$. Note that $M_{\frac{1}{2}}(\Gamma_0(4))$ is generated by T. Thus, when k = 0, we obtain that f is a constant multiple of T. If f has the form (2.3), then $a_f(2) \equiv 0 \pmod{\nu}$ by Proposition 2.5. Note that $M_{\frac{3}{2}}(\Gamma_0(4))$ is generated by T^3 and $a_{T^3}(2) = 3$. Thus, when k = 1, we have $f \equiv 0 \pmod{\nu}$. When $k = \frac{\ell - 1}{2}$, we have by Theorem 2.2

$$f(z) \equiv \sum_{n=0}^{\infty} a_f(\ell n) q^{\ell n} \pmod{\nu}.$$

By Lemma 2.1 (3), there is $g \in M_{\frac{1}{2}}(\Gamma_0(4))$ such that $g \equiv f|U_{\ell} \pmod{\nu}$. Since g is a constant multiple of T, f is congruent to a constant multiple of $T|V_{\ell}$ modulo v.

3 Proof of Theorems

In this section, we prove Theorems 1.1, 1.3, 1.5, and 1.6. First, we prove Theorem 1.3.

Proof of Theorem 1.3. We fix a prime $\ell \geq 5$. We prove Theorem 1.3 by induction on k. When $k < \ell - 1$, Theorem 1.3 is true by Lemma 2.6. Thus, we assume that Theorem 1.3 is true when $k < k_0$ with a fixed positive integer k_0 , where k_0 is a positive integer larger than $\ell-1$.

To prove Theorem 1.3, it is enough to show that Theorem 1.3 is true when $k = k_0$ by induction on k. Assume that $f \in M_{k_0+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form (1.3). Then by Lemma 2.5, f has the form

$$f(z) \equiv a_f(0) + \sum_{n=1}^{\infty} a_f(n^2) q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell n^2) q^{\ell n^2} \pmod{\nu},$$

and

$$\Theta^{(\ell-1)/2}(f)(z) \equiv \frac{1}{2} \left(\sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} a_f(n^2) q^{n^2} \right) \pmod{\nu}.$$

By Lemma 2.1 (4), there is $g_0 \in S_{k_0 + \frac{\ell^2}{2}}(\Gamma_0(4))$ such that

$$g_0 \equiv \Theta^{(\ell-1)/2}(f) \pmod{\nu}$$
.

Let $k_1 := \max(k_0 + \frac{1}{2}, \omega(g_0)) - \frac{1}{2}$. Then, there is $g_1 \in M_{k_1 + \frac{1}{2}}(\Gamma_0(4); O_K)$ such that

$$g_1(z) \equiv (f - \Theta^{(\ell-1)/2}(f))(z) \equiv a_f(0) + \sum_{n=1}^{\infty} a_f(\ell n^2) q^{\ell n^2} + \sum_{n=1}^{\infty} a_f(\ell^2 n^2) q^{\ell^2 n^2} \pmod{\nu}.$$

Let k_2 be the largest integer satisfying

$$k_2 + \frac{1}{2} \le \frac{1}{\ell} \left(k_1 + \frac{1}{2} \right) \text{ and } k_2 \equiv \frac{\ell - 1}{2} + k_1 \equiv \frac{\ell - 1}{2} + k_0 \pmod{\ell - 1}.$$
 (3.1)

By Lemma 2.1 (3), there is $g_2 \in M_{k_2+\frac{1}{2}}(\Gamma_0(4); O_K)$ such that

$$g_2(z) \equiv g_1 | U_{\ell}(z) \equiv a_f(0) + \sum_{n=1}^{\infty} a_f(\ell n^2) q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell^2 n^2) q^{\ell n^2} \pmod{\nu}.$$

Since $k_0 > \frac{\ell}{2}$, we have

$$k_2 + \frac{1}{2} \le \frac{1}{\ell} \left(k_1 + \frac{1}{2} \right) \le \frac{1}{\ell} \left(k_0 + \frac{\ell^2}{2} \right) < k_0 + \frac{1}{2}$$

For a nonnegative integer k, we define a subset \mathcal{B}_k of $M_{k+\frac{1}{2}}(\Gamma_0(4))$ by

$$\mathcal{B}_k \coloneqq \begin{cases} \{\Theta^{k/2}(T)|V_{\ell^{2i}}\}_{0 \leq i < \alpha(\ell,k)} \cup \{\Theta^{(2k+\ell-1)/4}(T)|V_{\ell^{2i+1}}\}_{0 \leq i < \beta(\ell,k)} \cup \{T\} & \text{if } r_\ell(k) = \ell-1, \\ \{\Theta^{k/2}(T)|V_{\ell^{2i}}\}_{0 \leq i < \alpha(\ell,k)} \cup \{\Theta^{(2k+\ell-1)/4}(T)|V_{\ell^{2i+1}}\}_{0 \leq i < \beta(\ell,k)} \cup \{T|V_\ell\} & \text{if } r_\ell(k) = \frac{\ell-1}{2}, \\ \{\Theta^{k/2}(T)|V_{\ell^{2i}}\}_{0 \leq i < \alpha(\ell,k)} \cup \{\Theta^{(2k+\ell-1)/4}(T)|V_{\ell^{2i+1}}\}_{0 \leq i < \beta(\ell,k)} & \text{otherwise.} \end{cases}$$

To prove Theorem 1.3, it is enough to show that if $f \in M_{k_0 + \frac{1}{2}}(\Gamma_0(4); O_K)$ has the form (1.3), then f is congruent to a linear combination of \mathcal{B}_{k_0} modulo ν .

By Proposition 2.4, if k_0 is odd, then $g_0 \equiv 0 \pmod{\nu}$. Combining the assumption that Conjecture 1.2 is true, we have

$$g_0 \equiv \frac{a_f(1)}{2} \Theta^{k_0/2}(T) \pmod{\nu}.$$

Since $k_2 \equiv k_0 + \frac{\ell-1}{2} \pmod{\ell-1}$, it follows that $\Theta^{k_0/2}(T) \equiv \Theta^{(2k_2+\ell-1)/4}(T) \pmod{\nu}$. By the induction hypothesis, g_2 is congruent to a linear combination of \mathcal{B}_{k_2} . Since

$$f \equiv \left(f - \Theta^{\frac{\ell-1}{2}}(f)\right) + \Theta^{\frac{\ell-1}{2}}(f) \equiv g_2|V_\ell + g_0 \pmod{\nu},$$

we deduce that f is congruent to a linear combination of

$$\begin{cases} \{\Theta^{k_2/2}(T)|V_{\ell^{2i+1}}\}_{0\leq i<\alpha(\ell,k_2)}\cup\{\Theta^{(2k_2+\ell-1)/4}(T)|V_{\ell^{2i}}\}_{0\leq i<\beta(\ell,k_2)+1}\cup\{T|V_{\ell}\} & \text{if } r_{\ell}(k_2)=\ell-1,\\ \{\Theta^{k_2/2}(T)|V_{\ell^{2i+1}}\}_{0\leq i<\alpha(\ell,k_2)}\cup\{\Theta^{(2k_2+\ell-1)/4}(T)|V_{\ell^{2i}}\}_{0\leq i<\beta(\ell,k_2)+1}\cup\{T|V_{\ell^2}\} & \text{if } r_{\ell}(k_2)=\frac{\ell-1}{2},\\ \{\Theta^{k_2/2}(T)|V_{\ell^{2i+1}}\}_{0\leq i<\alpha(\ell,k_2)}\cup\{\Theta^{(2k_2+\ell-1)/4}(T)|V_{\ell^{2i}}\}_{0\leq i<\beta(\ell,k_2)+1} & \text{otherwise.} \end{cases}$$

If $r_{\ell}(k_2) = \frac{\ell-1}{2}$, then

$$T|V_{\ell^2} \equiv T - \Theta^{(\ell-1)/2}(T) \equiv T - \Theta^{(2k_2+\ell-1)/4}(T) \pmod{\nu}.$$

Thus, f is congruent to a linear combination of

$$\begin{cases} \{\Theta^{k_2/2}(T)|V_{\ell^{2i+1}}\}_{0\leq i<\alpha(\ell,k_2)}\cup\{\Theta^{(2k_2+\ell-1)/4}(T)|V_{\ell^{2i}}\}_{0\leq i<\beta(\ell,k_2)+1}\cup\{T|V_{\ell}\} & \text{if } r_{\ell}(k_2)=\ell-1,\\ \{\Theta^{k_2/2}(T)|V_{\ell^{2i+1}}\}_{0\leq i<\alpha(\ell,k_2)}\cup\{\Theta^{(2k_2+\ell-1)/4}(T)|V_{\ell^{2i}}\}_{0\leq i<\beta(\ell,k_2)+1}\cup\{T\} & \text{if } r_{\ell}(k_2)=\frac{\ell-1}{2},\\ \{\Theta^{k_2/2}(T)|V_{\ell^{2i+1}}\}_{0\leq i<\alpha(\ell,k_2)}\cup\{\Theta^{(2k_2+\ell-1)/4}(T)|V_{\ell^{2i}}\}_{0\leq i<\beta(\ell,k_2)+1} & \text{otherwise.} \end{cases}$$

To complete the proof, it is sufficient to show that

$$\alpha(\ell, k_2) \le \beta(\ell, k_0)$$
 and $\beta(\ell, k_2) + 1 \le \alpha(\ell, k_0)$. (3.2)

First, we assume that $k_0 + \frac{1}{2} \ge \frac{\ell^2}{2}$. Since $\Theta^m(T) \equiv \Theta^{(2m+\ell-1)/2}(T)$ for any positive integer m, we have $\omega(g_0) \le \omega(\Theta^{k_0/2}(T)) \le \frac{\ell^2}{2}$. This implies that

$$k_1 = \max\left(k_0, \, \omega(g_0) - \frac{1}{2}\right) = k_0.$$

Then by (3.1), we obtain (3.2).

Now, we assume that $k_0 + \frac{1}{2} < \frac{\ell^2}{2}$. In this case, we have

$$k_2 + \frac{1}{2} \le \frac{1}{\ell} \left(k_1 + \frac{1}{2} \right) \le \frac{1}{\ell} \cdot \max \left(k_0 + \frac{1}{2}, \omega(g_0) \right) \le \frac{\ell}{2}.$$

Further, assume that $k_2 \neq 0$ and $k_2 \neq \frac{\ell-1}{2}$. Then $\alpha(\ell, k_2) = \beta(\ell, k_2) = \beta(\ell, k_0) = 0$. By Lemma 2.6, we have $g_2 \equiv 0 \pmod{\nu}$, and then

$$f \equiv \Theta^{\frac{\ell-1}{2}}(f) \equiv \frac{a_f(1)}{2} \Theta^{k_0/2}(T) \pmod{\nu}.$$

Note that $\Theta^{(\ell-1)/2}(T) \equiv T - T^{\ell^2} \pmod{\nu}$, we have $\omega(\Theta^{(\ell-1)/2}(T)) = \frac{\ell^2}{2}$. Then, for a positive integer m with $m \leq \frac{\ell-1}{2}$, we have

$$\omega(\Theta^m(T)) = (\ell+1)m + \frac{1}{2}.\tag{3.3}$$

By (3.3), we have

$$\omega(\Theta^{k_0/2}(T)) = r_{\ell}(k_0) \cdot \frac{\ell+1}{2} + \frac{1}{2} \leq k_0 + \frac{1}{2}.$$

It implies that $\alpha(\ell, k_0) = 1$. Hence, $\alpha(\ell, k_2) = \beta(\ell, k_0)$ and $\beta(\ell, k_2) + 1 = \alpha(\ell, k_0)$. For the cases when $k_0 = 0$ and $k_0 = \frac{\ell-1}{2}$, we obtain (3.2) by direct computation. Thus, we conclude that if $f \in M_{k_0+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form (1.3), then f is congruent to a linear combination of \mathcal{B}_{k_0} modulo v. Therefore, Theorem 1.3 is proved by induction on k.

To prove Theorem 1.1, we use the following theorem which gives a sufficient condition for the weight $k+\frac{1}{2}$ that Conjecture 1.2 holds for $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4); O_K)$. It was proved in the proof of [7, Theorem 5.2].

Theorem 3.1. Assume that $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form

$$f(z) \equiv \frac{1}{2} \sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} a_f(n^2) q^{n^2} \pmod{\nu}$$
(3.4)

and $f \not\equiv 0 \pmod{v}$. Let p_{ℓ} be the smallest positive prime p such that $p \equiv 1 \pmod{\ell}$. If $2k + 1 < p_{\ell}^2$, then k is even and

$$f \equiv \frac{1}{2} a_f(1) \Theta^{k/2}(T) \pmod{\nu}.$$

Proof. We follow the proof of [7, Theorem 5.2]. By Proposition 2.4, we obtain that k is even. By Theorem 2.3, for each odd prime p with $p \not\equiv 0, 1 \pmod{\ell}$, we have

$$f|T_{p^2,k+\frac{1}{2}} \equiv (p^k + p^{k-1})f \pmod{\nu}$$
.

Hence, for any positive odd integer m which is not divisible by any prime p with $p \equiv 0, 1 \pmod{\nu}$, we have

$$a_f(m^2) \equiv a_f(1)m^k \pmod{\nu}$$
.

Let $k_1 := \max\left(k, \frac{r_\ell(k)}{2}(\ell+1)\right)$. Then, there is $g_1 \in S_{k_1+\frac{1}{2}}^+(\Gamma_0(4); O_K)$ such that

$$g_1 \equiv f - \frac{1}{2} a_f(1) \Theta^{r_\ell(k)/2}(T) \pmod{\nu}.$$

Let $h := g_1 - g_1 | U_4 | V_4 \in S_{k_1 + \frac{1}{2}}^+(\Gamma_0(16))$. Then, $a_h(n) \equiv 0 \pmod{\nu}$ for $n < p_\ell^2$. Since

$$\frac{1}{12}\left(k_1+\frac{1}{2}\right)\cdot\left[\mathrm{SL}_2(\mathbb{Z}):\Gamma_0(16)\right]=2k_1+1< p_\ell^2,$$

we have $h \equiv 0 \pmod{\nu}$ by the result of Sturm [18] called the Sturm bound. Then,

$$g_1(z) \equiv g_1|U_4|V_4(z) \equiv \sum_{m=1}^{\infty} a_{g_1}(4m^2)q^{4m^2} \pmod{\nu}.$$

From the proof of [7, Theorem 5.2], we have $g_1 \equiv 0 \pmod{\nu}$. Then,

$$f(z) \equiv \frac{1}{2} a_f(1) \Theta^{k/2}(T)(z) \equiv \frac{1}{2} a_f(1) \left(\sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} n^k q^{n^2} \right) \pmod{\nu}.$$

The following proposition is a refinement of Theorem 1.1.

Proposition 3.2. Let $g: \mathbb{R} \to \mathbb{R}$ be a function such that $\sqrt{g(x)} \log x$ is an increasing function and $\lim_{x \to \infty} g(x) = 0$. Let P be a set of primes ℓ such that for every $f \in S_{k+\frac{1}{3}}^+(\Gamma_0(4); O_K)$ with $k+\frac{1}{2} < g(\ell)\ell^2(\log \ell)^2$, if f has the form (1.2), then

$$f(z) \equiv \frac{1}{2} \sum_{i=0}^{a(\ell,k)-1'} a_f(\ell^{2i}) \Theta^{k/2}(T)(\ell^{2i}z) + \frac{1}{2} \sum_{i=0}^{\beta(\ell,k)-1'} a_f(\ell^{2i+1}) \Theta^{(2k+\ell-1)/4}(T)(\ell^{2i+1}z) \pmod{\nu}.$$

Then, there is an absolute constant C such that

$$\#\{\ell: \ell \notin P \text{ and } \ell \leq X\} \leq C_0 \sqrt{g(X)} \frac{X}{\log X} \left(1 + C \frac{\log \log X}{\log X}\right),$$

where
$$C_0 := \frac{2\sqrt{2}\pi^2}{3} \prod_{p>2} \frac{p^2}{p^2-1}$$
.

Proof. Let p_{ℓ} be the smallest positive prime p with $p \equiv 1 \pmod{\ell}$. By using Theorem 3.1 to follow the proof of Theorem 1.3, we deduce that if $p_{\ell}^2 > 2g(\ell)\ell^2(\log \ell)^2$, then $\ell \in P$. From this, for a positive number X, we have

$$\#\{\ell:\ell\notin P \text{ and } \ell\leq X\}\leq \#\{\ell:p_\ell^2\leq 2g(\ell)\ell^2(\log\ell)^2 \text{ and } \ell\leq X\}.$$

For convenience, let $h(x) := \sqrt{\frac{g(x)}{2}}$. Then, we have

$$\begin{split} \#\{\ell:p_{\ell}^2\leq 2g(\ell)\ell^2(\log\ell)^2 &\text{ and } \ell\leq X\} = \#\{\ell:p_{\ell}\leq 2h(\ell)\ell\log\ell \text{ and } \ell\leq X\} \\ &\leq \sum_{n=1}^{\infty} \#\{\ell:p_{\ell}=2n\ell+1, n< h(\ell)\log\ell \text{ and } \ell\leq X\} \\ &\leq \sum_{n=1}^{\infty} \#\{\ell:p_{\ell}=2n\ell+1, n< h(X)\log X \text{ and } \ell\leq X\} \\ &\leq \sum_{n=1}^{\lfloor h(X)\log X\rfloor} \#\{\ell:p_{\ell}=2n\ell+1 \text{ and } \ell\leq X\} \\ &\leq \sum_{n=1}^{\lfloor h(X)\log X\rfloor} \#\{\ell:2n\ell+1 \text{ is a prime and } \ell\leq X\}. \end{split}$$

By [19, Theorem 3.12], for any positive integer n, there is an absolute constant C such that

$$\#\{\ell: 2n\ell+1 \text{ is a prime and } \ell \leq X\} \leq A \left(\prod_{2$$

where

$$A \coloneqq 8 \prod_{2 < p} \left(1 - \frac{1}{(p-1)^2}\right).$$

Note that for any positive integer n, we have

$$\prod_{2$$

From this, we have

$$\sum_{n=1}^{\lfloor h(X) \log X \rfloor} \prod_{2
$$= \prod_{2 < p} \frac{p(p-1)}{(p+1)(p-2)} \sum_{n=1}^{\lfloor h(X) \log X \rfloor} \sum_{d \mid n} \frac{1}{d}$$

$$\le \prod_{2 < p} \frac{p(p-1)}{(p+1)(p-2)} \sum_{d=1}^{\lfloor h(X) \log X \rfloor} \frac{1}{d} \cdot \frac{h(X) \log X}{d}$$

$$\le \frac{\pi^2}{6} \prod_{2 < p} \frac{p(p-1)}{(p+1)(p-2)} h(X) \log X.$$$$

Thus, (3.5) becomes

$$\#\{\ell: p_\ell \leq 2h(\ell)\ell \log \ell \text{ and } \ell \leq X\} \leq \frac{4\pi^2}{3} \prod_{2 < p} \frac{p^2}{p^2 - 1} \cdot h(X) \frac{X}{\log X} \left(1 + C \frac{\log \log X}{\log X}\right).$$

Therefore, we conclude that

$$\#\{\ell: \ell \notin P \text{ and } \ell \leq X\} \leq \left(\frac{2\sqrt{2}\pi^2}{3} \prod_{2 < p} \frac{p^2}{p^2 - 1}\right) \cdot \sqrt{g(X)} \frac{X}{\log X} \left(1 + C \frac{\log \log X}{\log X}\right).$$

By using Proposition 3.2, we prove Theorem 1.1.

Proof of Theorem 1.1. Let $g(x) = (\log x)^{-\varepsilon}$. When $0 \le \varepsilon \le 2$, we obtain Theorem 1.1 by Proposition 3.2. If $\varepsilon > 2$, then there is no prime ℓ satisfying $p_{\ell}^2 \le 2g(\ell)\ell^2(\log \ell)^2$. Therefore, Theorem 1.1 is proved.

Now, we prove Theorem 1.5.

Proof of Theorem 1.5. To prove Theorem 1.5, first, we prove that if $\alpha(\ell, k) \ge 1$ and k is even, then $\dim \text{Null}(B_{k,m}) \ge 1$ for any positive integer m. Since $\alpha(\ell, k) \ge 1$, we have

$$\omega(\Theta^{r_\ell(k)/2}(T)) = \frac{r_\ell(k)}{2} \cdot (\ell+1) + \frac{1}{2} \le k + \frac{1}{2}.$$

Then, there is $h \in M_{k+\frac{1}{2}}(\Gamma_0(4); \mathbb{Z})$ such that $h \equiv \Theta^{r_\ell(k)/2}(T) \pmod{\nu}$. Let $(c(0), \ldots, c(k/2)) \in \mathbb{Z}^{(k/2)+1}$ such that

$$h = \sum_{j=0}^{k/2} c(j) F_2^j T^{2k+1-4j}.$$

Then, $(\overline{c(0)}, ..., \overline{c(k/2)}) \in \text{Null}(B_{k,m})$ for any positive integer m since h has the form

$$h(z) \equiv \frac{1}{2} \sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} a_h(n) q^{n^2} \pmod{\nu}.$$

Here, $\overline{c(j)}$ is the reduction of c(j) modulo ℓ . Thus, we conclude that $\dim \text{Null}(B_{k,m}) \geq 1$ for any positive integer m, when $\alpha(\ell, k) \ge 1$ and k is even.

Now, we assume that Conjecture 1.2 is true. Let $v = (\overline{v(0)}, ..., \overline{v(\lfloor \frac{k}{2} \rfloor)}) \in \text{Null}(B_{k,m})$ for all positive integers m, and let v(j) be an integer such that the reduction of v(j) modulo ℓ is equal to $\overline{v(j)}$. Let

$$f_{\nu} := \sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} \nu(j) F_2^j T^{2k+1-4j} \in M_{k+\frac{1}{2}}(\Gamma_0(4)).$$

Then f_{ν} has the form

$$f_{\nu}(z) \equiv \frac{1}{2} \sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} a_{f_{\nu}}(n^2) q^{n^2} \pmod{\nu}.$$

Note that $f_v \equiv \Theta^{(\ell-1)/2}(f_v) \pmod{v}$. We assume that k is even. By the assumption that Conjecture 1.2 is true, we have

$$f_{\nu} \equiv \frac{a_{f_{\nu}}(1)}{2} \Theta^{r_{\ell}(k)/2}(T) \pmod{\nu}.$$

Thus, $\lim_{m\to\infty} \dim \text{Null}(B_{k,m})$ is less than or equal to 1. If $\lim_{m\to\infty} \dim \text{Null}(B_{k,m}) = 1$, then there is $f \in S_{k+\frac{1}{2}}(\Gamma_0(4); \mathbb{Z})$ such that

$$f \equiv \Theta^{r_{\ell}(k)/2}(T) \pmod{\nu}$$
.

This implies that

$$r_{\ell}(k)\cdot\frac{\ell+1}{2}+\frac{1}{2}=\omega(\Theta^{r_{\ell}(k)/2}(T))\leq k+\frac{1}{2}.$$

By the definition of $\alpha(\ell, k)$, we have $\alpha(\ell, k) \ge 1$. Hence, we conclude that Conjecture 1.4 is true.

To complete the proof of Theorem 1.5, we assume that Conjecture 1.4 is true. Further, assume that $f \in S_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ has the form

$$\Theta(f) \equiv \frac{1}{2} \sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} sn^2 a_f(sn^2) q^{sn^2} \pmod{\nu}$$

with a square-free integer s and $\Theta(f) \not\equiv 0 \pmod{\nu}$. Then, k is even and s=1 by Proposition 2.4. By Lemma 2.1, there is $f_0 \in S_{k+\ell+\frac{3}{2}}(\Gamma_0(4))$ such that $f_0 \equiv \Theta(f) \pmod{\nu}$. Let $(d(0), ..., d((k+\ell+1)/2)) \in O_K^{(k+\ell+3)/2}$ satisfying

$$f_0 = \sum_{j=0}^{(k+\ell+1)/2} d(j) F_2^j T^{2k+2\ell+3-4j}.$$

Let $\mathbb{F}_{v} := O_{\mathbb{K}} v$. Then, for any positive integer m, we have

$$(\overline{d(0)}, \dots, \overline{d((k+\ell+1)/2)}) \in \text{Null}(B_{k+\ell+1,m}) \otimes_{\mathbb{F}_{\ell}} \mathbb{F}_{\nu},$$

where $\overline{d(j)}$ is the reduction of d(j) modulo v. By the assumption that Conjecture 1.4 is true, the dimension of Null($B_{k+\ell+1,m}$) is 1 for a sufficiently large m. Hence, f_0 is congruent to a constant multiple of $\Theta^{r_\ell(k+\ell+1)/2}(T)$ modulo v. Since $r_\ell(k+\ell+1) = r_\ell(k+2)$, we conclude that $\Theta(f)$ is congruent to a constant multiple of $\Theta^{r_\ell(k+2)/2}(T)$ modulo v.

We confirm Conjecture 1.2 under the assumption that $k \le 1,000$, or that $\ell \in \{5, 7, 11, 13, 17, 19\}$ and $k \le 10,000$.

Proof of Theorem 1.6. Note that if $\Theta(f) \equiv 0 \pmod{v}$, then Conjecture 1.2 is true since $a_f(1) \equiv 0 \pmod{v}$. Thus, we may assume that $\Theta(f) \not\equiv 0 \pmod{v}$. By Proposition 2.4, s = 1 and k is even. Then, f has the form

$$f(z) \equiv \frac{1}{2} \sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} a_f(n^2) q^{n^2} + \sum_{n=1}^{\infty} a_f(\ell n) q^{\ell n} \pmod{\nu}.$$

From this, we have

$$(f-\Theta^{(\ell-1)/2}(f))(z) \equiv \sum_{n=1}^{\infty} a_f(\ell n) q^{\ell n} \pmod{\nu}.$$

Assume that $k < \frac{\ell-1}{2}$. By Lemma 2.1 (3), if $f \notin \Theta^{(\ell-1)/2}(f) \pmod{\nu}$, then there is a nonnegative integer k_0 such that

$$k_0 \equiv k + \frac{\ell - 1}{2} \pmod{\ell - 1}$$
 and $k_0 + \frac{1}{2} \le \frac{1}{\ell} \left(k + \frac{\ell^2}{2} \right)$,

and there is $g_0 \in S_{k_0+\frac{1}{2}}(\Gamma_0(4))$ such that

$$g_0(z) \equiv (f - \Theta^{(\ell-1)/2}(f))|U_\ell(z) \equiv \sum_{n=1}^{\infty} a_f(\ell n) q^n \pmod{\nu}.$$

Since $k < \frac{\ell-1}{2}$, we have $k_0 = 0$ and then $g_0 = 0$. Thus, $f \equiv \Theta^{(\ell-1)/2}(f) \pmod{\nu}$ when $k < \frac{\ell-1}{2}$. This implies that $f \equiv 0 \pmod{\nu}$ by Lemma 2.6. Hence, we conclude that Conjecture 1.2 is true when $k < \frac{\ell-1}{2}$.

We fix a prime ℓ with $5 \le \ell \le 2001$. Assume that there is $f \in S_{k+\frac{1}{2}}(\Gamma_0(4); O_K)$ having the form

$$\Theta(f)(z) \equiv \frac{1}{2} \sum_{\substack{n \in \mathbb{Z} \\ \ell \nmid n}} n^2 a_f(n^2) q^{n^2} \pmod{\nu}$$

such that

$$\Theta(f) \not\equiv \frac{a_f(1)}{2} \Theta^{r_\ell(k+2)/2}(T) \pmod{\nu}.$$

Then, $f \cdot E_{\ell-1} \in S_{k+\ell-\frac{1}{2}}(\Gamma_0(4); O_K)$ satisfies

$$\Theta(f \cdot E_{\ell-1}) \not\equiv \frac{a_f(1)}{2} \Theta^{r_\ell(k+\ell+1)/2}(T) \pmod{\nu}.$$

Thus, for a positive integer m_0 , confirming Conjecture 1.2 for positive integers k such that $k \le m_0$ reduces to confirming Conjecture 1.2 for positive integers k such that $m_0 + 2 - \ell \le k \le m_0$.

When $\max(0, 1,002 - \ell) \le k \le 1,000$ and k is even, we obtain by numerical method

$$\dim \text{Null}(B_{k,1,000}) = \mathbb{1}_{+}(\alpha(\ell, k)).$$

In the proof of Theorem 1.5, we have $\dim \text{Null}(B_{k,m}) \geq \mathbb{I}_+(\alpha(\ell,k))$ for any positive integer m. Since $\dim \text{Null}(B_{k,m}) \leq \dim \text{Null}(B_{k,1,000})$ for $m \geq 1,000$, we have

$$\lim_{m\to\infty}\dim \operatorname{Null}(B_{k,m})=\mathbb{1}_{+}(\alpha(\ell,k))$$

when $\max(0, 1,002 - \ell) \le k \le 1,000$. By Theorem 1.5, we conclude that Conjecture 1.2 is true when $k \leq 1.000$.

The proofs for the cases when $\ell \in \{5, 7, 11, 13, 17, 19\}$ and $k \le 10,000$ are similar to the proof of the previous case. So, we skip it.

Acknowledgements: The authors appreciate referees for careful reading and useful comments. These comments improved the previous version of this article.

Funding information: Dohoon Choi was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C1007517). Youngmin Lee was supported by a KIAS Individual Grant (MG086301) at Korea Institute for Advanced Study.

Conflict of interest: The authors state no conflict of interest.

References

- J. Bruinier, Nonvanishing modulo & of Fourier coefficients of half-integral weight modular forms, Duke Math. J. 98 (1999), no. 3, 595-611, DOI: https://doi.org/10.1215/S0012-7094-99-09819-8.
- J. Bruinier and K. Ono, Coefficients of half-integral weight modular forms, J. Number Theory 99 (2003), no. 1, 164-179, DOI: https://doi.org/10.1016/S0022-314X(02)00061-6.
- K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms modulo ℓ , Ann. of Math. 147 (1998), no. 2, 453-470, DOI: https://doi.org/10.2307/121015.
- [4] S. Ahlgren and M. Boylan, Coefficients of half-integral weight modular forms modulo ℓ^i , Math. Ann. 331 (2005), no. 1, 219-239, DOI: https://doi.org/10.1007/s00208-004-0555-9.
- [5] S. Ahlgren and M. Boylan, Central critical values of modular L-functions and coefficients of half-integral weight modular forms modulo ℓ, Amer. J. Math. 129 (2007), no. 2, 429-454, DOI: https://doi.org/10.1353/ajm.2007.0006.
- [6] M. F. Vignéras, Facteurs gamma et équations fonctionnelles, Lecture Notes in Mathematics, Vol. 627, Springer, Berlin, 1977, pp. 79-103.
- [7] S. Ahlgren, D. Choi, and J. Rouse, Congruences for level four cusp forms, Math. Res. Lett. 16 (2009), no. 4, 683-701, DOI: https://doi.org/10.4310/MRL.2009.v16.n4.a10.
- K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, Vol. 102, American Mathematical Society, Providence, RI, 2004.
- [9] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, In: W. Kuijk and J.-P. Serre (eds), Modular Functions of One Variable III, Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, Heidelberg, 1973, pp. 191-268.
- [10] H. P. F. Swinnerton-Dyer, On ℓ -adic representations and congruences for coefficients of modular forms, In: W. Kuijk and J.-P. Serre (eds), Modular Functions of One Variable III, Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, Heidelberg, 1973, pp. 1-55.
- [11] N. Katz, A result on modular forms in characteristic p, In: J.-P. Serre and D. B. Zagier (eds), Modular Functions of one Variable V, Lecture Notes in Mathematics, Vol. 601, Springer, Berlin, Heidelberg, 1977, pp. 53-61.
- [12] B. H. Gross, A tameness criterion for Galois representations associated to modular forms (mod p), Duke Math. J. 61 (1990), no. 2, 445-517, DOI: https://doi.org/10.1215/S0012-7094-90-06119-8.
- [13] D. Choi and S. Lim, Congruences involving the U_ℓ operator for weakly holomorphic modular forms, Ramanujan J. **51** (2020), no. 3, 671-688, DOI: https://doi.org/10.1007/s11139-019-00154-z.
- [14] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271-285, DOI: https://doi.org/10.1007/BF01436180.

- [15] D. Choi, Modular forms of half-integral weight with few non-vanishing coefficients modulo ℓ , Proc. Amer. Math. Soc. 136 (2008), no. 8, 2683-2688, DOI: https://doi.org/10.1090/S0002-9939-08-09195-8.
- [16] D. Choi and T. Kilbourn, The weight of half-integral weight modular forms with few non-vanishing coefficients mod ℓ , Acta Arith. 127 (2007), no. 2, 193-197, DOI: https://doi.org/10.4064/aa127-2-8.
- [17] H. Carayol, Sur les représentations l-adiques associées aux formes modularies de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409-468.
- [18] J. Sturm, On the congruence of modular forms, In: D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B. Nathanson (eds), Number Theory, Lecture Notes in Mathematics, Vol. 1240, Springer, Berlin, Heidelberg, 1987, 275-280.
- [19] H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, Vol. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974.