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Abstract: This article is concerned with the nonlinear stability of traveling waves of a delayed susceptible-
infective-removed (SIR) epidemic model with nonlocal dispersal, which can be seen as a continuity work of
Li et al. [Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math.
Comput. 247 (2014), 723–740]. We prove that the traveling wave solution is exponentially stable when the
initial perturbation around the traveling wave is relatively small in a weighted norm. The time decay rate is
also obtained by weighted-energy estimates.
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1 Introduction

In this article, we investigate the exponential stability of traveling waves in the following nonlocal dispersal
delayed susceptible-infective-removed (SIR) epidemic model:
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where d d d σ μ γ, , , Λ, , ,S I R and ϱ are the positive constants. Here, S x t I x t, , ,( ) ( ) and R x t,( ) stand for the
densities of susceptible, infective, and removed individuals at position x and time t, respectively. The
parameters d d,S I and dR describe the spatial motility of each class; the constant Λ 0> represents
the entering flux of the susceptible; γ 0> is the recovery rate of the infective population; σ μ, , and ϱ are
all positive parameters representing the death rates for all the susceptible, infective, and removed popula-
tion, respectively; τ 0> denotes the latent period of the disease. Moreover, J y( ) denotes the probability

distribution of rates of dispersal over distance y and J x y v y t y v x t, d ,
�

( ) ( ) ( )∫ − − can be interpreted as the

net rate of increase due to dispersal of class v, where J x y v y t y, d
�

( ) ( )∫ − is the standard convolution with
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space invariable x and v can be either S I, or R. In practical use, there are various types of the incidence

term F S I,( ). The common types include bilinear incidence βSI , standard incidence βSI
S I R+ +

and saturated

incidence βSI
αI1 +
.

In this article, we focus on the case of saturated incidence, and therefore, we assume that F S I, βSI
αI1( ) =

+
.

Observing that the first two equations of (1.1) form a closed system and the function R can be derived
as long as both S and I are solved, from now on, we only consider the first two equations of (1.1).
Mathematically, for convenience, letting
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scaling the spatial time variables, and absorbing the appropriate constant into u1 and u2 in 1.1( ), we rewrite
(1.1) in the following form (dropping the tildes on d β, and α for notational convenience).
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Note that the infection-free equilibrium state (1, 0) always exists in system (1.2). Besides, when the basic

reproduction number R 1β
γ μ0 = >

+
, there also exists a positive endemic equilibrium state u u,1 2( )∗ ∗ , where
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It is easy to see that 1, 0( ) is unstable, and u u,1 2( )∗ ∗ is stable for the corresponding homogenous system
for (1.2).

Throughout this article, we assume that 1.2( ) satisfies the initial conditions
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We make the following conditions which are needed in the sequel.

(A1) J C1 �( )∈ , J x J x 0( ) ( )= − ≥ , J x xd 1
�

( )∫ = , and J is compactly supported.

The theory of traveling wave solutions of reaction-diffusion systems has attracted much attention due
to its significant nature in biology, chemistry, epidemiology and physics. For system (1.1), the spatial
dynamics of some special cases have been extensively studied. System (1.1) is a nonlocal version of the
following SIR epidemic model:
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Yang et al. [1] derived the existence of a traveling wave connecting the disease-free steady state and the
endemic steady state of (1.4) by the cross-iteration method and Schauder’s fixed point theorem. Later, by
the upper-lower solution method and Schauder’s fixed point theorem, Li et al. [2] further obtained the
existence and nonexistence of traveling waves of the subsystem

S x t
t

d S x t
x

σS x t βS x t I x t τ
αI x t τ

I x t
t

d I x t
x

βS x t I x t τ
αI x t τ

μ γ I x t

, , Λ , , ,
1 ,

,

, , , ,
1 ,

, ,

S

I

2

2

2

2

⎧

⎨
⎪

⎩
⎪

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

∂
∂

= ∂
∂

+ − −
−

+ −
∂

∂
= ∂

∂
+

−
+ −

− +
(1.5)

also, the minimal wave speed is established. When the natural death rate for all the susceptible, infective,
and removed population are the same constant, system (1.4) is rewritten as
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Applying the Schauder fixed point theorem to construct a family of solutions for the truncated problems
and via the limiting argument, Fu [3] obtained the noncritical waves and critical waves of system (1.6). For
the nonlocal system (1.1), Li et al. [4] proved the existence, nonexistence, and minimal wave speed of
traveling waves; moreover, they discussed how the latency of infection and the spatial movement of the
infective individuals affect the minimal wave speed.

Among the basic problems in the theory of traveling wave solutions, the stability of traveling wave
solutions is an extremely important subject. Let us draw the background on the progress of the study in
this subject. By the spectral analysis, Sattinger [5] considered a reaction-diffusion system without delay
and proved that the traveling wavefronts were stable to perturbations in some exponentially weighted
L∞ spaces. Using the semigroup estimates, Kapitula [6] also studied a reaction-diffusion system without
delay and obtained that the traveling wavefronts are stable in polynomially weighted L∞ spaces. By the
elementary super- and subsolution comparison and squeezing methods developed by Chen [7] (see also
Wang et al. [8,9] for this technique), Smith and Zhao [10] studied the global asymptotic stability,
Liapunov stability, and uniqueness of traveling wave solutions for a bistable quasimonotone delayed
reaction-diffusion bistable equation on � . For the monostable case, since the unstable equilibrium, the
study of the stability of traveling waves is more difficult than the bistable case. The first study of this case
was obtained by Mei et al. [11] by using the weighted-energy method. They investigated a time-delayed
diffusive Nicholson’s blowflies equation and proved that, under a weighted L2 norm, if the solution is
sufficiently close to a traveling wavefront initially, it converges exponentially to the wavefront as t → ∞.
By means of the weighted-energy method and the comparison principle, Lin and Mei [12] considered
Nicholson’s blowflies equation with diffusion and found that the wavefront is time-asymptotically stable
when the delay time is sufficiently small and the initial perturbation around the wavefront decays to zero
exponentially in space as x → ∞, but it can be large in other locations. In [13], Huang et al. used the
anti-weighted-energy method developed by Chern et al. [14], considered a nonlocal dispersion equation
with time delay, and proved that all noncritical traveling waves (the wave speed is greater than the
minimum speed), including those oscillatory waves, are time-exponentially stable when the initial
perturbations around the waves are small. For the nonlocal version, by means of the weighted-energy
method combined with the comparison principle, Lv and Wang [15] studied a nonlocal delayed reaction-
diffusion equation and proved that traveling wavefronts are exponentially stable to perturbation in some
exponentially weighted L∞ spaces. Later, Yu et al. [16] extended this method to investigate the stability
of invasion traveling waves for a competition system with nonlocal dispersals and proved that the
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invasion traveling waves are exponentially stable. For other related results on the stability of traveling
wave solutions, one can refer to [17–27].

Recently, Li et al. [28] investigated the delayed SIR epidemic model (1.4) and proved the exponential
stability of traveling waves when the delay τ is less than some constant τ0 by using the weighted-energy
method and nonlinear Halanay’s inequality.

Encouraged by papers [11], [28], and [29], in this article, we will further consider the nonlocal
dispersal delayed SIR epidemic model (1.1) by using the weighted energy method. But due to the effect
of the nonlocal dispersal and the lack of quasi-monotonicity, we are not clear whether the weighted-
energy method can also be used to solve the stability of traveling waves of this model. As a result, with
the help of some technology, we successfully apply this method to prove that all noncritical traveling
wave solutions with sufficiently large c 1≫ and arbitrarily large delays are exponentially stable. How-
ever, the shortcoming of this article is that we do not prove any nonlinear stability result for the slower
waves with c cmin> (c can be arbitrarily close to cmin ), where cmin denotes critical wave speed, and
particularly, the case for the critical traveling waves with cmin . We leave this problem for further
research.

The rest of this article is organized as follows. In Section 2, we give some preliminary lemmas and
state our main stability result. In Section 3, we reformulate system (1.2) into the corresponding per-
turbed system around a given traveling wave solution and state the stability theorem of the new
perturbed system. In Section 4, we devote to establish the a priori estimates, which are the core of
this article.

2 Preliminaries and main result

First, we introduce some notations throughout this article. Let C 0> denote a generic constant and
C i0 1, 2,i ( )> = … be a specific constant. I is an interval, typically I �= . Denote by L I2( ) the space of
square integrable functions defined on I and H I k 0k( )( )≥ the Sobolev space of the L2-function f x( ) defined
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If T 0> is a number and � is a Banach space, we denote by C T0, ,0 �([ ] ) the space of the � -valued
continuous function on T0,[ ] and by L T0, ,2 �([ ] ) the space of the � -valued L2-functions on T0,[ ].
The corresponding spaces of the � -valued L2-functions on 0,[ )∞ are defined similarly.

Throughout this article, we always assume that R 10 > .
A traveling wave solution of (1.2) is a solution with the form

u x t ϕ ξ u x t ϕ ξ ξ x ct, , , , ,1 1 2 2( ) ( ) ( ) ( )= = = +

where c 0> is called the wave speed, and ϕ ϕ C, ,1 2
0 � �( ) ( )∈ is called the profile function. Furthermore,

ϕ ϕ,1 2( ) with c 0> satisfies

1454  Xin Wu and Zhaohai Ma



cϕ ξ d J ξ y ϕ y ϕ ξ y σ σϕ ξ
βϕ ξ ϕ ξ cτ

αϕ ξ cτ

cϕ ξ J ξ y ϕ y ϕ ξ y
βϕ ξ ϕ ξ cτ

αϕ ξ cτ
μ γ ϕ ξ

d
1

,

d
1

,

1 1 1 1
1 2

2

2 2 2
1 2

2
2

�

�

⎧

⎨

⎪
⎪

⎩
⎪
⎪

( ) ( )[ ( ) ( )] ( )
( ) ( )

( )

( ) ( )[ ( ) ( )]
( ) ( )

( )
( ) ( )

∫

∫

′ = − − + − −
−

+ −

′ = − − +
−

+ −
− +

(2.1)

and the following asymptotic boundary conditions

ϕ ξ ϕ ξ ϕ ξ ϕ ξ u ulim , 1, 0 , lim , , .
ξ ξ1 2 1 2 1 2( ( ) ( )) ( ) ( ( ) ( )) ( )= =

→−∞ →+∞

∗ ∗ (2.2)

By using the upper-lower solutions and Schauder’s fixed point theorem, in [4], Li et al. proved the
existence of traveling wave solutions of system (1.2).

Theorem 2.1. (Existence of traveling waves). Assume that (A1) holds. Then, there exists a constant c 0min >

such that for any c cmin> or c cmin= and R 1β
ασ0 > + , system (1.2) has a nontrivial traveling wave solution

ξ ϕ ξ ϕ ξ ξ x ctΦ , ,1 2( ) ( ( ) ( ))= = + , which satisfies the asymptotic boundary conditions (2.2). However,
for R 10 < and c 0> or R 10 > and c c0 min< < , there exists no traveling wave solution of system (1.2)
with (2.2).
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where M and χ are suitable parameters.

In order to state our stability result, we need a technical assumption.
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According to (A2), it is easily checked
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where ϕ ϕ,1 2( ) is a traveling wave solution given in Theorem 2.1. Then, we have the following lemma.

Lemma 2.1. Assume that (A1) and (A2) hold. Then, there exists ξ 0>∗ such that for each ξ ξ≥ ∗, we have
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Proof. Applying the L. Hospital’s rule, we can easily prove

g ξ f η i g ξ f η jlim 0, 1, 3, lim 0, 2, 4,
ξ i ξ j1 2( ) ( ) ( ) ( )= > = = > =

→+∞
∗

→+∞
∗

which imply that there exists ξ �∈∗
+ such that for all ξ ξ≥ ∗, (2.4) is obtained. □

We define a weighted function as
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Now, we present the corresponding stability theorem for the Cauchy problems (1.2) and (1.3) as follows.

Theorem 2.2. (Stability). Assume that (A1) and (A2) hold. For any given traveling wave of (1.2) with the wave
speed c c c cmax , ,min{ }> ∼ , where
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where w x( ) is the weighted function given in (2.5), there exist positive constants δ0 and κ such that when
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then the solution u x t u x t u x t, , , ,1 2( ) ( ( ) ( ))= of the Cauchy problems (1.2) and (1.3) uniquely and globally exists
in time and satisfies

u x t ϕ x ct C H L H i, 0, , 0, , , 1, 2.i i w w
0 1 2 1� �( ) ( ) ([ ) ( )) ([ ) ( ))− + ∈ +∞ ⋂ +∞ =

Moreover, the solution u x t u x t u x t, , , ,1 2( ) ( ( ) ( ))= converges to the traveling wave ϕ x ct ϕ x ct,1 2( ( ) ( ))+ +
exponentially in time t, i.e.,
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3 Reformulation of the problem

Let u x t u x t, , ,1 2( ( ) ( )) be the solution of Cauchy problems (1.2) and (1.3), and ϕ x ct ϕ x ct,1 2( ( ) ( ))+ +
be a given traveling wave solution of (1.2). Let ξ x ct= + and
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Then, problems (1.2) and (1.3) can be reformulated as
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and
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with the initial condition
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where τ 0≥ and T 0> . When r 0= , we denote N T N T0( ) ( )= .
Now, we state the stability result for the perturbed Cauchy problems (3.2)–(3.4), which automatically

implies Theorem 2.2.

Theorem 3.1. (Stability). Assume that (A1) and (A2) hold. For any given traveling wave of (1.2) with the wave
speed c c c cmax , ,min{ }> ∼ , if the initial perturbations satisfies

U ξ H x
U ξ s C τ H L τ H x s τ
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, , 0 , , 0 , , , , 0 ,

w

w w
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where w x( ) is the weighted function given in (2.5) and c and c∼ are as defined in Theorem 2.2, there exist
positive constants δ0 and κ such that when N δ0 0( ) ≤ , then the solution U ξ t U ξ t, , ,1 2( ( ) ( )) of the Cauchy
problems (3.2)–(3.4) uniquely and globally exists in τΩ ,( )− +∞ and satisfies

U ξ t Ce tsup , , 0
ξ

i
κt

�

∣ ( )∣ ≤ ≥
∈

−

for some positive constant C.

By using the continuity extension method [11,25], the global existence of U ξ t U ξ t, , ,1 2( ( ) ( )) and its
exponential decay estimate given in Theorem 3.1 directly follows from the local existence result and the
a priori estimate given below.

Lemma 3.1. (Local existence). Assume that (A1) and (A2) hold. Consider the Cauchy problem with the initial
time r 0≥
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If U ξ U ξ s r τ r, 0 , , Ω ,r r1 2( ) ( ) ( )∈ − , and N δ0r 1( ) ≤ for a given positive constant δ1, then there exists

a constant t t δ 00 0 1( )= > such that U ξ t U ξ t r τ r t, , , Ω ,1 2 0( ( ) ( )) ( )∈ − + and N t τ N2 1 0r r0( ) ( ) ( )≤ + .

The proof of Lemma 3.1 can be given by the elementary energy method, see [11,25] for details and
we omit it here. Now, we state the a priori estimate as follows:

Lemma 3.2. (A priori estimate). Assume that (A1) and (A2) hold. Let U ξ t U ξ t τ T, , , Ω ,1 2 0( ( ) ( )) ( )∈ − be a local
solution of (3.2)–(3.4). Then, there exist positive constants δ κ0, 02 > > , and C 10 > independent of T0 such
that, when N T δ0 2( ) ≤ , it holds that
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The proof for the a priori estimate of the solution in the space τ TΩ , 0( )− plays a crucial role in this article
and is discussed in the next section.

Proof of Theorem 3.1. Let δ κ,0 and C0 be constants given in Lemma 3.2 independent of T0. Set
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Applying Lemma 3.2 on the interval τ t, 0[ ]− , then for all t t0, 0[ ]∈ , we have
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Consider the Cauchy problem (3.5) with the initial time r t0= . Combining (3.7) with (3.10), we obtain
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Combining Lemma 3.1 with (3.10), we have the same t0 such that U ξ t U ξ t τ t, , , Ω ,1 2 0( ( ) ( )) ( )∈ − and
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Consequently,
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Applying Lemma 3.2 on the interval τ t, 2 0[ ]− again, then for all t t0, 2 0[ ]∈ , we obtain (3.6) and
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Consider the Cauchy problem (3.5) with the initial time r t2 0= , we obtain
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Repeating this procedure, we can prove that the solution U ξ t U ξ t, , ,1 2( ( ) ( )) of the Cauchy problems
(3.2)–(3.4) uniquely and globally exists in τΩ ,( )− +∞ with the relation (3.6) for t 0,[ )∈ +∞ . □

4 A priori estimate

In this section, we are going to prove Lemma 3.2. We need the following important lemma.
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Lemma 4.1. (Key inequality). Assume that (A1) and (A2) hold. Let w ξ( ) be the weighted function given by
(2.5), then for any c c c cmax , ,min{ }> ∼ , there exist positive constants C i 1, 2, 3, 4i ( )= such that

A ξ C i 1, 2, 3, 4 .w
i

i( ) ( )≥ = (4.1)

Moreover, we have

B ξ C κ C κminκ w
i

i
i, 0

1 4
( ) ( ) { ( )}͠ ͠≥ =

≤ ≤
(4.2)

for all ξ �∈ and κ κ κ κ κ κ0 min , , ,0 1 2 3 4{ }< < = , where κ 0i > is the unique solution to the equation C κ 0i( )͠ =
(i 1, 2, 3, 4= ) and

C κ C κ i C κ C K e κ i2 1, 3 , 2 1 2 2, 4 .i i i i
κτ

2
2( ) ( ) ( ) ( ) ( )͠ ͠= − = = − − − =

Proof. Since c c c cmax , ,min{ }> ∼ , we have

cη K d J y e y K K M K M σd 2η y
2 3 4 2 3 1

�

( ) ( )∫> + + + + −∗ − ∗

and

cη K K J y e y K K M K M μ γ3 d 2 .η y
1 2 3 4 2 3 1

�

( ) ( ) ( )∫> + + + + + − +∗ − ∗

First, we prove that A ξ Cw
1

1( ) ≥ holds.
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Case 1. ξ ξ≤ ∗. From (2.5), we have w ξ e η ξ ξ( ) ( )= − −∗ ∗
. Using the fact that w ξ( ) is nonincreasing, we obtain

A ξ c w
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w ξ
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Case 2. ξ ξ> ∗. In this case, w ξ w ξ cτ 1( ) ( )= + = and w ξ 0( )′ = . Thus, by Lemma 2.2, we have

A ξ σ d
βϕ ξ cτ

αϕ ξ cτ
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d J y w ξ y

w ξ
y
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Let C K K M K Mmin , f η
1 3 4 2 3 1 2

1( ) ( ){ }= + +
∗

, then A ξ Cw
1

1( ) ≥ holds.

Next, we prove that A ξ Cw
2

2( ) ≥ holds.

Case 1. ξ ξ≤ ∗. It follows from w ξ e η ξ ξ( ) ( )= − −∗ ∗
and the monotonicity of w ξ( ) that
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Case 2. ξ ξ> ∗. From (2.5), we have w ξ w ξ cτ 12( ) ( )= + = and w ξ 0( )′ = . By Lemma 2.2, we obtain
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Let C K K M K Mmin , f η
2 3 4 2 3 1 2

2{( ) }( )= + +
∗
, then A ξ Cw

2
2( ) ≥ holds.

The proofs of A ξw
3 ( ) and A ξw

4( ) are similar, and we only sketch the outline. When ξ ξ≤ ∗, we obtain

A ξ cη σ K d J y e y
β ϕ ξ cτ

αϕ ξ cτ

β ϕ ξ
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αβϕ ξ ϕ ξ cτ
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and
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When ξ ξ> ∗, we obtain

A ξ g ξ f η A ξ g ξ f η
2

0 and
2

0.w w
3

3
1 4

4
2( ) ( )

( )
( ) ( )

( )
≥ ≥ > ≥ ≥ >

∗ ∗

Let C Cmin , f η
3 5 2

1( ){ }=
∗

and C Cmin , f η
4 6 2

2( ){ }=
∗

, then A ξ Cw
3

3( ) ≥ and A ξ Cw
4

4( ) ≥ hold.
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We estimate B ξκ w,
2 ( ) as

B ξ A ξ β e w ξ cτ
w ξ

ϕ ξ cτ
αϕ ξ

κ

C K e κ
C κ

2 1
1

2

2 1 2
0

κ w w
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κτ

,
2 2 2 1
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2

0

( ) ( ) ( )
( )

( )
( )

( ( ))
( )

( )͠

= − −
+ +

+
−

≥ − − −
≥ >

by selecting a constant κ sufficiently small such that κ κ0 2< < , where κ 0,2 ( )∈ ∞ is the unique root of the

equation C κ 02( )͠ = . The others are similar. □

Next, we are going to derive the a priori estimate for U ξ t,1( ) and U ξ t,2( ) in the weighted Sobolev

space Hw
1 �( ).

Lemma 4.2. Assume that (A1) and (A2) hold. Let U ξ t U ξ t τ T, , , Ω ,1 2 0( ( ) ( )) ( )∈ − be a local solution of
(3.2)–(3.4). Then, for any c c c cmax , ,min{ }> ∼ , there exists a positive constant C, such that

U t e U s s Ce U U s s td 0 d , 0,
i

i L
i

t

κ t s
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i
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(4.3)

provided N T 10( ) ≪ , where the weighted function w ξ( ) is defined by (2.5) and κ is given as in Lemma 4.1.

Proof. Multiplying (3.2) and (3.3) by e w ξ U ξ t,κt2
1( ) ( ) and e w ξ U ξ t,κt2

2( ) ( ), respectively, we obtain
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and
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Integrating (4.4) and (4.5) over t0,� [ ]× with respect to ξ and t, respectively, we have
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where
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and
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Substituting (4.8)–(4.10) into (4.6) and (4.7), respectively, we can obtain
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and
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From (4.11) and (4.12), we obtain

e U t e U t κ c w
w

σ d
βϕ ξ cτ

αϕ ξ cτ

d J y w ξ y
w ξ

y
βϕ ξ

αϕ ξ cτ
e w ξ U ξ s ξ s

κ c w
w

μ γ J y w ξ y
w ξ

y
βϕ ξ cτ

αϕ ξ cτ

βϕ ξ
αϕ ξ cτ

e
βϕ ξ cτ

αϕ ξ
w ξ cτ

w ξ
e w ξ U ξ s ξ s

U e
βϕ ξ cτ

αϕ ξ
w ξ cτ U ξ s ξ s H t H t

2 2
1

d
1

, d d

2 2 2 1 d
1

1
2

1
, d d

0 2
1

, d d ,

κt
L

κt
L

t

κs

t

κτ κs

i
i L

τ

κ s τ

2
1 2 2

2 2

0

2

2

1

2
2

2
1
2

0

2

2

1

2
2

2 1

2
2

2
2
2

1

2
2

0

2 1

2
2 20

2
31 32

w w

w

2 2

2

� �

�

�

� �

�

�

∣∣ ( )∣∣ ∣∣ ( )∣∣ ⎧
⎨⎩

⎛
⎝

⎞
⎠

( )
( )

( )
( )

( )
( )

( ( ))

⎫
⎬
⎭

( ) ( )

⎧
⎨
⎩

⎛
⎝

⎞
⎠

( )
( )

( )
( )

( )

( )
( ( ))

( )
( ( ))

( )
( )

⎫
⎬
⎭

( ) ( )

∣∣ ( )∣∣
( )

( ( ))
( ) ( ) ( ) ( )

( ) ( )

( )
( )

∫∫

∫

∫∫ ∫

∫ ∫∑

+ + − − ′ + + +
−

+ −

−
+

−
+ −

+ − − ′ + + + −
+

−
−

+ −

−
+ −

−
+

+
+

≤ +
+

+
+ + +

= −

+

(4.13)

1466  Xin Wu and Zhaohai Ma



i.e.,
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where B ξμ w
i
, ( ) are given in the beginning of this section. For the nonlinearity R ξ cτ s τ,( )− − , using Taylor’s

formula, we have

R ξ cτ s τ F U ξ s ϕ ξ U ξ cτ s τ ϕ ξ cτ F ϕ ξ ϕ ξ cτ

F ϕ ξ ϕ ξ cτ U ξ s F ϕ ξ ϕ ξ cτ U ξ cτ s τ

β
α ϕ ξ cτ θ U ξ cτ s τ

U ξ s U ξ cτ s τ

αβ ϕ ξ θ U ξ s
α ϕ ξ cτ θ U ξ cτ s τ

U ξ cτ s τ

L U ξ s U ξ cτ s τ L U ξ cτ s τ

, , , , ,

, , , ,

1 ,
, ,

,
1 ,

,

, , , ,

1 1 2 2 1 2

1 1 2 1 2 1 2 2

2 1 2
2 1 2

1 1 1

2 1 2
3 2

2

1 1 2 2 2
2

∣ ( )∣ ∣ ( ( ) ( ) ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( ) ( ( ) ( )) ( )∣

( ( ( ) ( )))
( ) ( )

( ( ) ( ))
( ( ( ) ( )))

( )

∣ ( ∣∣ ( )∣ ∣ ( )∣

− − = + − − + − − −

− ∂ − − ∂ − − −

≤
+ − + − −

− −

−
+

+ − + − −
− −

≤ − − + − −

where θ 0, 11 ( )∈ and

L β
α ϕ ξ cτ θ U ξ cτ s τ

L
αβ ϕ ξ θ U ξ s

α ϕ ξ cτ θ U ξ cτ s τ

sup
1 ,

,

sup
,

1 ,
.

ξ

ξ

1
2 1 2

2

2
1 1 1

2 1 2
3

�

�

( ( ( ) ( )))
( ( ) ( ))

( ( ( ) ( )))

=
+ − + − −

=
+

+ − + − −

∈

∈

Using the Sobolev’s embedding theorem H C1 � �( ) ( )↪ and the embedding inequality H Hw
1 1� �( ) ( )↪

since w ξ 1( ) ≥ , we can immediately obtain
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Then, we have
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and
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According to Lemma 4.1 and substituting (4.16) and (4.17) into (4.14), we obtain
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Letting N T0 min ,C κ
C

C κ
C0
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( ) ( ) ( )͠ ͠{ }< < , we immediately obtain (4.3). □

Similar to that in Lemma 4.2, we derive the estimates for U ξ t,ξ1 ( ) and U ξ t,ξ2 ( ).

Lemma 4.3. Assume that (A1) and (A2) hold. Let U ξ t U ξ t τ T, , , Ω ,1 2 0( ( ) ( )) ( )∈ − be a local solution of
(3.2)–(3.4). Then, for any c c c cmax , ,min{ }> ∼ , there exists a positive constant C, such that

U t e U s s Ce U U s s td 0 d , 0,
i

iξ L
i

t

κ t s
iξ L

κt

i
i H

τ
H

1

2
2

1

2

0

2 2 2

1

2

0 2

0

20 2
w w w w
2 2 1 1� � � �

∣∣ ( )∣∣ ∣∣ ( )∣∣
⎛

⎝
⎜⎜

∣∣ ( )∣∣ ∣∣ ( )∣∣
⎞

⎠
⎟⎟( )

( )
( ) ( ) ( )∫ ∫∑ ∑ ∑+ ≤ + ≥

= =

− − −

= −

(4.19)

provided N T 10( ) ≪ , where the weighted function w ξ( ) is defined by (2.5) and κ is given as in Lemma 4.1.

Thus, the a priori estimate Lemma 3.2 immediately obtained from Lemmas 4.2 and 4.3.
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