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Abstract: The notion of dual uniformity is introduced on UC Y Z,( ), the uniform space of uniformly con-
tinuous mappings between Y and Z , where Y , �( ) and Z, �( ) are two uniform spaces. It is shown that
a function space uniformity on UC Y Z,( ) is admissible (resp. splitting) if and only if its dual uniformity on

Y f U f UC Y Z U, ,Z 2
1
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− is admissible (resp. splitting). It is also shown that a uniformity on
YZ� ( ) is admissible (resp. splitting) if and only if its dual uniformity on UC Y Z,( ) is admissible (resp.

splitting). Using duality theorems, it is also proved that the greatest splitting uniformity and the greatest
splitting family open uniformity exist on YZ� ( ) andUC Y Z,( ), respectively, and these two uniformities are
mutually dual splitting uniformities.
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1 Introduction

In [1], Gupta et al. introduced the concept of uniform space over uniform continuity, wherein they intro-
duced point-entourage uniformity and entourage-entourage uniformity on UC Y Z,( ), the family of uni-
formly continuous mappings between the uniform spaces Y , �( ) and Z, �( ) and gave a systematic study
of properties of such uniform structures. Any metric on X generates a uniformity on X; similarly, a uni-
formity on X generates a topology on X . The reverse of either of them is not true. In that sense, uniform
spaces are positioned between metric spaces and topological spaces. Hence, structures in one of them are
expected to have their counterpart in the other and vice versa. This is further evident from the fact that in
[1], various concepts of function space topologies including admissibility, splittings, etc. have been intro-
duced and successfully investigated for uniformities over uniform spaces (see also [2–9]). Some more
relevant literature can be found in [10–12]. Recently, it has been shown that the admissibility of the function
space topology for a pair of topological vector spaces provides sufficient conditions for the existence of a
solution to variational inequality problems [13,14]. This motivates us for further study of this concept for
uniform spaces too.

In this article, we introduce and study the concept of dual uniformity for the uniformities onUC Y Z,( ).
We have come up with a good number of results of interest. It is found that a uniformity on UC Y Z,( )

is admissible (resp. splitting) if and only if its dual uniformity on YZ� ( ) is admissible (resp. splitting).
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Similarly, a uniformity on YZ� ( ) is admissible (resp. splitting) if and only if its dual uniformity onUC Y Z,( )

is admissible (resp. splitting). We have also proved the existence of the greatest splitting uniformity on
YZ� ( ) as well as the greatest splitting family open uniformity on UC Y Z,( ). In addition, it is shown that

these two uniformities are mutually dual splitting uniformities. We also provide few examples to illustrate
the concept of dual uniformity and how admissibility and splittingness of dual uniform spaces are con-
nected with the uniform spaces.

2 Preliminaries

Definition 2.1. [15,16] A uniform structure or uniformity on a non-empty set X is a family � of subsets
of X X× satisfying the following properties:

(2.1.1) if U �∈ , then X UΔ ⊆ ;
where X x x X X x XΔ , for all{( ) }= ∈ × ∈ ;

(2.1.2) if U �∈ , then U 1 �∈

− ;
where U 1− is called inverse relation of U and is defined as :

U x y X X y x U, , ;1 {( ) ∣ ( ) }= ∈ × ∈

−

(2.1.3) if U �∈ , then there exists some V �∈ such that V V U∘ ⊆ ;
where the composition U V x z X X,{( ) ∣∘ = ∈ × for some y X∈ , x y V,( ) ∈ and y z U,( ) }∈ ;

(2.1.4) if U V, �∈ , then U V �∩ ∈ ;
(2.1.5) if U �∈ and U V X X⊆ ⊆ × , then V �∈ .

The pair X, �( ) is called a uniform space and the members of � are called entourages.

Definition 2.2. [17] A subfamily � of a uniformity � is called a base for � if each member of � contains
a member of � .

Definition 2.3. [17] A subfamily � of a uniformity � is called a sub-base for � if the family of finite
intersections of members of � is a base for � .

The finite intersection of the members of a sub-base generates a base. A uniformity is obtained by
taking the collection of supersets of the members of its base.

Theorem 2.4. [17] A non-empty family � of subsets of X X× is a base for some uniformity on X if and only
if conditions (2.1.1)–(2.1.4) defined above hold.

Theorem 2.5. [17] A non-empty family � of subsets of X X× is a sub-base for some uniformity on X if and
only if conditions (2.1.1)–(2.1.3) defined above hold.

In particular, the union of any collection of uniformities on X forms a sub-base for a uniformity for X .

Definition 2.6. [17] Let X, �( ) and Y , �( ) be two uniform spaces. A mapping f X Y: → is called uniformly
continuous if for each V �∈ , there exists U �∈ such that f U V2[ ] ⊂ (where f X X Y Y:2 × → × is a map
corresponding to f defined as f x x f x f x, ,2( ) ( ( ) ( ))′ = ′ for x x X X,( )′ ∈ × ), that is, f U f U V1 2( ) ( )× ⊆ ,
where U U U1 2= × .

The following concepts and definitions were introduced in [1]:
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The collection of all uniformly continuous functions from X to Y is denoted by UC X Y,( ). Let � be
a uniformity on UC X Y,( ). Then the pair UC X Y, , �( ( ) ) is called a uniform space over uniformly continuous
mappings or uniform space over uniform continuity.

Definition 2.7. Let Y , �( ) and Z, �( ) be two uniform spaces and let X, �( ) be another uniform space.
Then for a map g X Y Z: × → , we define g X UC Y Z: ,( )→

∗ by g x y g x y,( )( ) ( )=

∗ .

The mappings g and g∗ related in this way are called associated maps.

Definition 2.8. [1] Let Y , �( ) and Z, �( ) be two uniform spaces. A uniformity � on UC Y Z,( ) is called
(1) admissible if for each uniform space X, �( ), uniform continuity of g X UC Y Z: ,( )→

∗ implies uniform
continuity of the associated map g X Y Z: × → ;

(2) splitting if for each uniform space X, �( ), uniform continuity of g X Y Z: × → implies uniform con-
tinuity of g X UC Y Z: ,( )→

∗ , where g∗ is the associated map of g .

3 Main results

3.1 Dual uniformity concerning UC Y Z,( )

In this section, we introduce the concept of dual uniform spaces for the uniform spaces over UC Y Z,( ).

Definition 3.1. Let Y , �( ) and Z, �( ) be two uniform spaces. Then we define:

Y f U f UC Y Z U, , .Z 2
1

� �( ) { ( ) ∣ ( ) }= ∈ ∈

−

Definition 3.2. Let Y , �( ) and Z, �( ) be two uniform spaces and UC Y Z,( ) be the class of all uniformly
continuous mappings from Y to Z . Then for subsets Y YZ Z� � �( ) ( )⊂ × , UC Y Z UC Y Z, ,� ( ) ( )⊂ × ,
and U �∈ , we define:

f g f U g U f g UC Y Z
f U g U f g

, , , , , ,
, , .

U

U

2
1

2
1

2
1

2
1

� �

� �

{ ( ) ∣ ( ( ) ( )) ( )}

{ ( ( ) ( )) ∣ ( ) }

= ∈ ∈

= ∈

− −

− −

Definition 3.3. Let Y , �( ) and Z, �( ) be two uniform spaces. Let U be a sub-base for a uniformity on YZ� ( ).
Then we define:

U, .UU U� �� �( ) { ∣ }= ∈ ∈

Theorem 3.4. U�( ) is a sub-base for a uniformity on UC Y Z,( ).

Proof. By Theorem 2.5, it is enough to show that U�( ) satisfies conditions (2.1.1)–(2.1.3).
(1) Let U U� �( )∈ and f UC Y Z,( )∈ . Since U� ∈ and U is a sub-base for a uniformity on YZ� ( ), we have

f U f U,2
1

2
1 �( ( ) ( )) ∈

− − for all f UC Y Z,( )∈ and U �∈ . Thus, we have f f, U�( ) ∈ for all f UC Y Z,( )∈ .
Hence, Δ U�⊂ .

(2) Let U U� �( )∈ and f g, U�( ) ∈ . Then we have f U g U,2
1

2
1 �( ( ) ( )) ∈

− − . Since U� ∈ , there exists 1 U� ∈

− .

Thus, we have g U f U,2
1

2
1 1�( ( ) ( )) ∈

− − − . Hence, we have g f, U
1 U� �( ) ( )∈ ∈

− .

(3) Let U U� �( )∈ . Since U� ∈ and U is a sub-base for a uniformity on YZ� ( ), there exists an entourage
U� ∈ such that � � �∘ ⊂ . Now, we claim that U U U� � �∘ ⊂ , where U U� �( )∈ . Let f g, U U� �( ) ∈ ∘ .

Then there exists h UC Y Z,( )∈ such that f h, U�( ) ∈ and h g, U�( ) ∈ . Then we have f U h U,2
1

2
1 �( ( ) ( )) ∈

− −
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and h U g U,2
1

2
1 �( ( ) ( )) ∈

− − and so f U g U,2
1

2
1 � �( ( ) ( )) ∈ ∘

− − . Since� � �∘ ⊂ ,wehave f U g U,2
1

2
1 �( ( ) ( )) ∈

− − ,

that is, f g, U�( ) ∈ . Hence, we have U U U� � �∘ ⊂ .

Therefore, U�( ) forms a sub-base of a uniformity over UC Y Z,( ). □

Uniformity generated by the sub-base U�( ) is called the dual uniformity to U and it is denoted by V U( ).
Similarly, we define:

Definition 3.5. Let Y , �( ) and Z, �( ) be two uniform spaces. Let V be a sub-base for a uniformity on
UC Y Z,( ). Then we define:

U, .UV V� � � �( ) { ∣ }= ∈ ∈

Theorem 3.6. Let V be a sub-base for a uniformity on UC Y Z,( ). Then V�( ) is a sub-base for a uniformity
on YZ� ( ).

Proof. By Theorem 2.5, it is enough to show that V�( ) satisfies conditions (2.1.1)–(2.1.3).
(1) Let U V� �( )∈ , and f U YZ2

1
�( ) ( )∈

− so that f UC Y Z,( )∈ . Since V� ∈ and V is a sub-base for

a uniformity on UC Y Z,( ), we have f f, �( ) ∈ . Thus, f U f U, U2
1

2
1

�( ( ) ( )) ∈

− − for all f U YZ2
1

�( ) ( )∈

−

and (2.1.1) holds.
(2) Let U V� �( )∈ and f U g U, U2

1
2

1
�( ( ) ( )) ∈

− − . Then we have f g, �( ) ∈ . Since V� ∈ , there exists
1 V� ∈

− . Thus, we have g f, 1�( ) ∈

− . Hence, we have g U f U, U2
1

2
1 1 V� �( ( ) ( )) ( )∈ ∈

− − − .

(3) Let U V� �( )∈ . Since V� ∈ and V is a sub-base for a uniformity onUC Y Z,( ), there exists an entourage

V� ∈ such that � � �∘ ⊂ . Now, we claim that U U U� � �∘ ⊂ , where U V� �( )∈ . Let f U ,2
1( ( )−

g U U U2
1

� �( )) ∈ ∘

− . Then there exists h UC Y Z,( )∈ such that f U h U, U2
1

2
1

�( ( ) ( )) ∈

− − and h U ,2
1( ( )−

g U U2
1

�( )) ∈

− . Then we have f h, �( ) ∈ and h g, �( ) ∈ and so f g, � �( ) ∈ ∘ . Since � � �∘ ⊂ ,

we have f g, �( ) ∈ , that is, f U g U, U2
1

2
1

�( ( ) ( )) ∈

− − . Hence, we have U U U� � �∘ ⊂ .

Therefore, V�( ) forms a sub-base of a uniformity over YZ� ( ). □

Uniformity generated by the sub-base V�( ) is called dual uniformity to V and is denoted by U V( ).
We explain the above with the help of the following examples:

Example 3.7. Let Y �= be the set of all real numbers. Then, consider the family of subsets of � �×

U x y x y ε,ε {( ) ∣ ∣ ∣ }= − <

for ε 0> . The uniform structure generated by the subsetsUε for ε 0> is called the Euclidean uniformity of � .
We say, a subset D � �⊆ × is an entourage if for some ε 0> , we have U Dε ⊆ .

Let Z �= be the set of integers. Then the p-adic uniform structure on �, for a given prime number p, is
the uniformity � generated by the subsets n� of � �× , for n 1, 2, 3, ,= … where n� is defined as follows:

k m k m p, mod .n
n� {( ) ∣ }= ≡

LetY �= be the set of real numbers with Euclidean uniformity � and Z �= be the set of integers with
p-adic uniform structures � . LetUC ,� �( ) be the collection of all the uniformly continuous functions from
the uniform space Y to Z . Consider the point-entourage uniformity for UC ,� �( ) defined in [1], having
a sub-base defined as:

x x, , ,p n n, � � �� �� {( ) ∣ }= ∈ ∈

where

x f g UC Y Z UC Y Z f x g x, , , , , .n n� �( ) {( ) ( ) ( ) ∣ ( ( ) ( )) }= ∈ × ∈
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Here, structure of the point-entourage uniformity is the collection of all the pair f g,( ) of uniformly con-
tinuous functions from � to � such that f x g x( ) ( )− is divisible by pn for some x �∈ and n �∈ .

Now, we define the dual of the point-entourage uniformity as follows:
Consider

x f g f g x, , , , , ,n m m m n2
1

2
1� � � � �(( ) ) {( ( ) ( )) ∣ ( ) ( )}= ∈

− −

for some n m, �∈ .
Let V denote a sub-base for the point-entourage uniformity defined as above, on UC Y Z,( ).

Then, consider

x n m x, , for some , and .n mV � � � ��( ) {(( ) ) ∣ }= ∈ ∈

It can be easily verified that V�( ) satisfies the first three conditions of Definition 2.1. Thus, V�( ) forms
a sub-base for the dual of the point-entourage uniformity.

Example 3.8. Let Y �= be the set of real numbers with Euclidean uniformity � and Z �= be the set of
integers with p-adic uniform structures � . Let UC ,� �( ) be the collection of all the uniform continuous
functions from the uniform space Y to Z .

Now, consider the entourage-entourage uniformity for UC ,� �( ) defined in [1] having a sub-base
defined as:

U U, , ,ε n ε n, � �� � �� � {( ) ∣ }= ∈ ∈

where

U f g UC Y Z UC Y Z f U g U f f f UC Y Z, , , , , , , ,ε n n1 2� �( ) {( ) ( ) ( ) ∣ ( ( ) ( )) } { ( ) ∣ ( )}= ∈ × ⊆ ⋃ ∈

where U U Uε 1 2= × .
Now, we define the dual of this entourage-entourage uniformity as follows.
Consider

U f g f g U, , , , , ,ε n m m m ε n2
1

2
1� � � � �(( ) ) {( ( ) ( )) ∣ ( ) ( )}= ∈

− −

for some ε 0,> and n m, �∈ .
LetY �= and Z �= be the set of real numbers and integers, respectively. Let 1V be a sub-base for the

entourage-entourage uniformity defined above on UC Y Z,( ).
Then, consider

U n m ε, , for some , and 0 .ε n m1V � � ��( ) {(( ) ) ∣ }= ∈ >

It can be easily verified that 1V�( ) satisfies the first three conditions of Definition 2.1. Thus, 1V�( ) forms
a sub-base for the dual of the entourage–entourage uniformity.

3.2 Duality theorems

Now we introduce the notion of admissibility and splittingness on YZ� ( ) and investigate them between
a uniformity on UC Y Z,( ) and its dual.

Definition 3.9. Let Y , �( ) and Z, �( ) be two uniform spaces. Let X, �( ) be another uniform space.
Let g X Y Z: × → and g X UC Y Z: ,( )→

∗ be two associatedmaps. Thenwe define amap g X Y: Z� � ( )× →

as g x U g x U, 2
1( ) [ ( )] ( )=

∗ − , for every x X∈ andU �∈ .

Definition 3.10. Let Y , �( ) and Z, �( ) be two uniform spaces. Let X, �( ) be another uniform space. A map
M X Y: Z� � ( )× → is called uniformly continuous with respect to the first variable if the map
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M X Y:U Z� ( )→ defined by M x M x U,U( ) ( )= is uniformly continuous for every x X∈ and for some
fixed U �∈ .

Now we define the admissibility and splittingness of the uniform space Y ,Z U�( ( ) ).

Definition 3.11. Let Y , �( ) and Z, �( ) be two uniform spaces. The uniform space Y ,Z U�( ( ) ) is
(1) admissible if for any uniform space X, �( ) and every map g X Y Z: × → , uniform continuity with

respect to the first variable of the map g X Y: Z� � ( )× → implies the uniform continuity of the
map g X Y Z: × → ;

(2) splitting if for any uniform space X, �( ) and every map g X Y Z: × → , uniform continuity of the
map g X Y Z: × → implies uniform continuity with respect to the first variable of the map
g X Y¯ : Z� � ( )× → .

In this section, we investigate how duality links the admissibility and splittingness of a uniform space
UC Y Z,( ) and that on YZ� ( ).

Theorem 3.12. Let Y , �( ) and Z, �( ) be two uniform spaces and B be a sub-base for a uniformity U on
YZ� ( ). Then the uniform space Y ,Z U�( ( ) ) is splitting if and only if the dual uniform space UC Y Z, , V U( ( ) ( ))

generated by U is splitting.

Proof. Let the uniformity U on YZ� ( ) be splitting, that is for every uniform space X, �( ), uniform con-
tinuity of the map g X Y Z: × → implies uniform continuity with respect to the first variable of the map
g X Y¯ : Z� � ( )× → . We have to show that its dual uniform space UC Y Z, , V U( ( ) ( )) is splitting. That is,
uniform continuity of the map g X Y Z: × → implies the uniform continuity of its associated map
g X UC Y Z: ,( )→

∗ . Let g X Y Z: × → be uniformly continuous. Since Y ,Z U�( ( ) ) is splitting, by definition
g X Y¯ : Z� � ( )× → is uniformly continuous with respect to the first variable. Let U� be any entourage in
the dual uniformity of UC Y Z,( ), where � is an entourage of the uniform space Y ,Z U�( ( ) ). Since the map
g X Y¯ : Z� � ( )× → is uniformly continuous with respect to the first variable, that is, the map g X Y¯ :U Z� ( )→

is uniformly continuous and U� ∈ , we have the set A x x X X g x g x, ¯ , ¯U U � �{( ) ∣ ( ( ) ( )) }= ′ ∈ × ′ ∈ ∈ . We have
to show that the map g X UC Y Z: ,( )→

∗ is uniformly continuous. It is sufficient to show that there exists a set
B x x X X g x g x, , U�{( ) ∣ ( ( ) ( )) }= ′ ∈ × ′ ∈

∗ ∗ is an entourage in X, �( ). We claim that A B= . Let x y B,( ) ∈ , that

is, g x g y, U�( ( ) ( )) ∈

∗ ∗ . Thus we have, g x U g y U,2
1

2
1 �([ ( )] ( ) [ ( )] ( )) ∈

∗ − ∗ − and g x U g y U¯ , , ¯ , �( ( ) ( )) ∈ . Hence, we
have g x g y¯ , ¯U U �( ( ) ( )) ∈ and B A⊂ . Similarly, let x x A,( )′ ∈ . Therefore, we have g x g x¯ , ¯U U �( ( ) ( ))′ ∈ . Thus,

g x U g x U¯ , , ¯ , �( ( ) ( ))′ ∈ , which implies g x U g x U,2
1

2
1 �([ ( )] ( ) [ ( )] ( ))′ ∈

∗ − ∗ − . We have g x g x, U�( ( ) ( ))′ ∈

∗ ∗ . Hence,
we have A B⊂ and thus A B= . Therefore, the map g∗ is uniformly continuous.

Conversely, suppose UC Y Z, , V U( ( ) ( )) is splitting. We show that Y ,Z U�( ( ) ) is splitting. Let g X Y Z: × →

be uniformly continuous. We will show that g X Y¯ : Z� � ( )× → is uniformly continuous with respect to the
first variable. Since UC Y Z, , V U( ( ) ( )) is splitting, by definition g X UC Y Z: ,( )→

∗ is uniformly continuous.
Let U �∈ and � be any entourage in Y ,Z U�( ( ) ). Therefore, U� is an entourage in the dual uniform space
UC Y Z, , V U( ( ) ( )). As the map g∗ is uniformly continuous, the set x x X X g x g x, , V U{( ) ∣ ( ( ) ( )) ( )}′ ∈ × ′ ∈

∗ ∗ is
an entourage in uniform space X, �( ). By applying similar logic as in the previous part, we obtain that the

x x X X g x g x, ¯ , ¯U U �{( ) ∣ ( ( ) ( )) }′ ∈ × ′ ∈ is a member of X, �( ). Hence, the map ḡ is uniformly continuous with
respect to the first variable. Therefore, Y ,Z U�( ( ) ) is splitting. □

Theorem 3.13. Let Y , �( ) and Z, �( ) be two uniform spaces,V be a sub-base for a uniformityA onUC Y Z,( ).
Then the uniform space UC Y Z, , A( ( ) ) is splitting if and only if the dual uniform space Y ,Z U V�( ( ) ( )) gener-
ated by A is splitting.

Proof. Let UC Y Z, , A( ( ) ) be a splitting uniform space. We have to show that its dual uniform space
Y ,Z U V�( ( ) ( )) is also splitting. For this, it is sufficient to show that for any uniform space X, �( ), uniform

continuity of the map g X Y Z: × → implies uniform continuity with respect to the first variable of the map
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g X Y¯ : Z� � ( )× → . Suppose g X Y Z: × → is uniformly continuous. Since UC Y Z, , A( ( ) ) is splitting, by
definition g X UC Y Z: ,( )→

∗ is uniformly continuous. We will show that g X Y¯ : Z� � ( )× → is uniformly
continuous with respect to the first variable. Let U� be any entourage in the dual uniform space

Y ,Z U V�( ( ) ( )). Then we have U� ∈ is an entourage in uniform space UC Y Z, , A( ( ) ). Since the map
g X UC Y Z: ,( )→

∗ is uniformly continuous, there exists an entourage A X X⊂ × such that g A2 �( ) ⊂

∗ .

Consider x y A,( ) ∈ . Therefore, we have g x g y, �( ( ) ( )) ∈

∗ ∗ . SinceU �∈ , we have g x U g y U,2
1

2
1([ ( )] ( ) [ ( )] ( ))∗ − ∗ −

U�∈ , which implies g x U g y U¯ , , ¯ , U�( ( ) ( )) ∈ , which further implies g x g y¯ , ¯U U U�( ( ) ( )) ∈ . Hence, we have
g A¯U U2 �[ ] ( ) ⊂ . Therefore, themap ḡ is uniformly continuous with respect to the first variable. Hence, the result.

Conversely, suppose the uniform space Y ,Z U V�( ( ) ( )) is splitting. We show that the space UC Y Z, , A( ( ) )

is also splitting. Let g X Y Z: × → be uniformly continuous. Since Y ,Z U V�( ( ) ( )) is splitting, by definition
themap g X Y¯ : Z� � ( )× → is uniformly continuous with respect to the first variable. We have to show that
themap g X UC Y Z: ,( )→

∗ is also uniformly continuous. Let A� ∈ be any entourage in UC Y Z, , A( ( ) ). For a
fixedU �∈ , U� is an entourage in the dual uniform space Y ,Z U V�( ( ) ( )). For thisfixedU �∈ , themap ḡU is
uniformly continuous and since U� is an arbitrary entourage, there exists an entourage A �∈ of X, �( )

such that g A¯U U2 �[ ] ( ) ⊂ . Consider x y A,( ) ∈ . We have g x g y¯ , ¯U U U�( ( ) ( )) ∈ , that is, g x U g y U¯ , , ¯ , U�( ( ) ( )) ∈ .

Hence, we have g x U g y U, U2
1

2
1

�([ ( )] ( ) [ ( )] ( )) ∈

∗ − ∗ − , which implies g x g y, �( ( ) ( )) ∈

∗ ∗ for all x y A,( ) ∈ . Thus,
we have g A2 �( ) ⊂

∗ . Hence, themap g∗ is uniformly continuous and the space UC Y Z, , A( ( ) ) is splitting. □

Now, we illustrate the above results with the help of the following result. Here, we prove that the dual of
the point-entourage uniformity defined in Example 3.7 is splitting.

Proposition 3.14. LetY �= and Z �= be the set of real numbers and integers, respectively. Let U V( ) be the
uniformity defined by the sub-base V�( ) on ��� ( ). Then the space , U V���( ( ) ( )) is splitting.

Proof. Let X, �( ) be any uniform space. Since the point-entourage uniformity is splitting [1], it is sufficient
to show that the uniform continuity of the map g X UC: ,� �( )→

∗ implies uniform continuity of the
map g X¯ : ��� � ( )× → .

Let for some x �∈ and for some given n m, �∈ , x, ,n m� �(( ) ) be any entourage in ��� ( ). Now, x, n�( )

is an entourage in UC ,� �( ) and the map g∗ is uniformly continuous. Therefore, there exists an entourage
A X X⊆ × such that g A x, n2 �( ) ( )⊆

∗ . Let a b A,( ) ∈ , then we have, g a g b x, , n�( ( ) ( )) ( )∈

∗ ∗ . Since m� belongs

to � , we have g a g b x, , ,m m n m
1 1� � � �([ ( )] ( ) [ ( )] ( )) (( ) )∈

∗ − ∗ − . Thus, g a g b x¯ , , ¯ , , ,m m n m� � � �( ( ) ( )) (( ) )∈ ,
which implies g a g b x¯ , ¯ , ,n mm m

� �� �( ( ) ( )) (( ) )∈ . As a b A,( ) ∈ was chosen arbitrarily; therefore, we have

g A x¯ , ,n m2m
� �� ( ) (( ) )[ ] ⊆ . Hence, the map ḡ is uniformly continuous with respect to the first variable.

Therefore, the dual of point-entourage uniformity is also splitting. □

In the next set of theorem, we investigate that how admissibility links uniform space and its dual
uniform space.

Theorem 3.15. Let Y , �( ) and Z, �( ) be two uniform spaces. Let B be a sub-base for a uniformity U on
YZ� ( ). Then the uniform space Y ,Z U�( ( ) ) is admissible if and only if its dual uniform space UC Y Z, , V U( ( ) ( ))

generated by U is admissible.

Proof. Let the uniform space Y ,Z U�( ( ) ) be admissible. We show that its dual uniform space UC Y Z, , V U( ( ) ( ))

is also admissible, that is, for any uniform space X, �( ) and the map g X Y Z: × → , uniform continuity of
the map g X UC Y Z: ,( )→

∗ implies the uniform continuity of its associated map g X Y Z: × → . Let
g X UC Y Z: ,( )→

∗ be uniformly continuous and B� ∈ be any entourage. Therefore, for a fixed U �∈ ,

U� is an entourage in the dual uniform space UC Y Z, , V U( ( ) ( )). Since the map g X UC Y Z: ,( )→

∗ is
uniformly continuous, there exists an entourage A �∈ such that g A U2 �( ) ⊂

∗ . For x x A X X,( )′ ∈ ⊂ × ,

wehave g x g x, U�( ( ) ( ))′ ∈

∗ ∗ . Therefore, g x U g x U,2
1

2
1 �([ ( )] ( ) [ ( )] ( ))′ ∈

∗ − ∗ − ,which implies g x U g x U¯ , , ¯ , �( ( ) ( ))′ ∈ .
Hence, we have g x g x¯ , ¯U U �( ( ) ( ))′ ∈ . Thus, we have g A¯U �( ) ⊂ and the map ḡ is uniformly continuous with
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respect to the first variable. Then since Y ,Z U�( ( ) ) is admissible, by definition g X Y Z: × → is uniformly
continuous and hence UC Y Z, , V U( ( ) ( )) is admissible.

Conversely, suppose UC Y Z, , V U( ( ) ( )) is admissible. We show that Y ,Z U�( ( ) ) is admissible. Let the
map g X Y¯ : Z� � ( )× → be uniformly continuous with respect to the first variable and U� be any en-
tourage in the dual uniform space UC Y Z, , V U( ( ) ( )). For U �∈ , the map g X Y¯ :U Z� ( )→ is uniformly
continuous and B� ∈ . Therefore, there exists an entourage A X X⊂ × in X, �( ) such that g A¯U 2 �[ ] ( ) ⊂ .

For x x A,( )′ ∈ , we have g x g x¯ , ¯U U �( ( ) ( ))′ ∈ , that is, g x U g x U¯ , , ¯ , �( ( ) ( ))′ ∈ . Hence, we have g x U ,2
1([ ( )] ( )∗ −

g x U2
1 �[ ( )] ( ))′ ∈

∗ − , which implies g x g x, U�( ( ) ( ))′ ∈

∗ ∗ for all x x A,( )′ ∈ . Hence, g A U2 �( ) ⊂

∗ . Therefore, the
map g∗ is uniformly continuous and since UC Y Z, , V U( ( ) ( )) is admissible, by definition g X Y Z: × →

is uniformly continuous. Hence, the result. □

Theorem 3.16. Let Y , �( ) and Z, �( ) be two uniform spaces. Then a uniform space UC Y Z, , V( ( ) ) is admis-
sible if and only if its dual uniform space Y ,Z U V�( ( ) ( )), generated by V, is admissible.

Proof. Let the uniform space UC Y Z, , V( ( ) ) be admissible, that is, for each uniform space X, �( ), uniform
continuity of g X UC Y Z: ,( )→

∗ implies uniform continuity of the associated map g X Y Z: × → . We show
that its dual uniform space Y ,Z U V�( ( ) ( )) is admissible, that is, for every map g X UC Y Z: ,( )→

∗ , uniform
continuity with respect to the first variable of the map g X Y¯ : Z� � ( )× → implies the uniform continuity
of the map g X Y Z: × → . Let g X Y¯ : Z� � ( )× → be uniformly continuous with respect to the first vari-
able and V� ∈ be any entourage. Then, for a fixedU �∈ , U� is an entourage in the dual uniform space

Y ,Z U V�( ( ) ( )). Since the map g X Y¯ : Z� � ( )× → is uniformly continuous with respect to first variable, we
haveU �∈ and the map g X Y¯ :U Z� ( )→ is uniformly continuous. Thus, for entourage U� , there exists an

entourage A �∈ such that g A¯u U2 �[ ] ( ) ⊂ . For x x A X X,( )′ ∈ ⊂ × , we have g x g x¯ , ¯U U U�( ( ) ( ))′ ∈ for all

x x A,( )′ ∈ . Therefore, g x U g x U, U2
1

2
1

�([ ( )] ( ) [ ( )] ( ))′ ∈

∗ − ∗ − , for all x x A,( )′ ∈ , which implies g x g x, �( ( ) ( ))′ ∈

∗ ∗ .
Hence, we have g A2 �( ) ⊆

∗ . Thus, the map g X UC Y Z: ,( )→

∗ is uniformly continuous. By definition
g X Y Z: × → is uniformly continuous and hence the result.

Conversely, suppose Y ,Z U V�( ( ) ( )) is admissible. We show that the dual space UC Y Z, , V( ( ) ) is admis-
sible. Let g X UC Y Z: ,( )→

∗ be uniformly continuous and U� be any entourage in the dual uniform space
Y ,Z U V�( ( ) ( )). Then, for the entourage V� ∈ and uniform continuity of the map g X UC Y Z: ,( )→

∗ , there
exists an entourage A X X⊂ × in X, �( ) such that g A2 �( ) ⊂

∗ . For x x A,( )′ ∈ , we have g x g x, �( ( ) ( ))′ ∈

∗ ∗ ,

that is, g x U g x U, U2
1

2
1

�([ ( )] ( ) [ ( )] ( ))′ ∈

∗ − ∗ − . Hence, we have g A¯U U2 �[ ] ( ) ⊆ , which implies that the map ḡ is
uniformly continuous with respect to first variable. Then by definition g X Y Z: × → is uniformly contin-
uous and hence the result. □

In the following, we show that the dual of entourage-entourage uniformity defined in Example 3.8
is admissible.

Proposition 3.17. LetY �= and Z �= be the set of real numbers and integers, respectively. Let 1U V( ) be the
uniformity defined by the sub-base 1V�( ) on ��� ( ). Then the space , 1U V���( ( ) ( )) is admissible.

Proof. Let Y �= and Z �= be the set of real numbers and integers, respectively. Let 1U V( ) be the uni-
formity defined by the sub-base 1V�( ) on ��� ( ). We have to show that the space , 1U V���( ( ) ( ))

is admissible.
Let X, �( ) be any uniform space. Then, we have to show that, for every map g X UC: ,� �( )→

∗ ,
uniform continuity with respect to the first variable of the map g X¯ : ��� � ( )× → implies the uniform
continuity of the map g X: � �× → .

Since the space UC ,� �( ) is admissible under entourage–entourage uniformity [1], it is sufficient to
show that the map g X UC: ,� �( )→

∗ is uniformly continuous. Let for some ε n0, �> ∈ , U ,ε n�( ) be any
entourage in UC ,� �( ). Then for any given fixed m� , U , ,ε n m� �(( ) ) is an entourage in the dual space

��� ( ). Since the map g X¯ : ��� ( )→ is uniformly continuous with respect to the first variable, thus
map g X¯ :

m
�� �� ( )→ is uniformly continuous. Therefore, for the entourage U , ,ε n m� �(( ) ), there exists
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an entourage A �∈ such that g A U¯ , ,ε n m2m
� ��[ ] ( ) (( ) )⊆ . Let a b A X X,( ) ∈ ⊆ × , we have g a g b¯ , ¯m m� �( ( ) ( ))

U , ,ε n m� �(( ) )∈ for all a b A,( ) ∈ . Therefore, g a g b,m m2
1

2
1� �([ ( )] ( ) [ ( )] ( )) ∈

∗ − ∗ − U , ,ε n m� �(( ) ). Thus, we have
g a g b U, ,ε n�( ( ) ( )) ( )∈

∗ ∗ . Hence, g A U ,ε n2 �( ) ( )⊆

∗ . Thus, the map g X UC: ,� �( )→

∗ is uniformly contin-
uous. Hence, the proof. □

3.3 Mutually dual uniformities

In this section, we discuss about the mutually dual uniformities over the uniform spaces.

Lemma 3.18. Let Y , �( ) and Z, �( ) be two uniform spaces. Then for Y YZ Z� � �( ) ( )⊆ × , we have
U .U U� � �{( ) ∣ }= ⋃ ∈

Proof. Let U �∈ . Then we have f U g U f g, ,U U U2
1

2
1� �( ) { ( ( ) ( )) ∣ ( ) }= ∈

− − = f U g U f U, ,2
1

2
1

2
1{ ( ( ) ( )) ∣ ( ( )− − −

g U2
1 � �( )) }∈ ⊆

− . Hence, UU U� ��{( ) ∣ }⋃ ∈ ⊂ .

Similarly, let V �∈ . Then for some U �∈ and f g UC Y Z, ,( )∈ , we have V f U g U,2
1

2
1( ( ) ( ))=

− − .

Since f U g U, U U2
1

2
1 �( ( ) ( )) ( )∈

− − , we have UU U� � �{( ) ∣ }⊂ ⋃ ∈ . Therefore, U U� �{( ) }= ⋃ . □

Lemma 3.19. Let Y , �( ) and Z, �( ) be two uniform spaces. Let 1U and 2U be two uniformities on the set YZ� ( )

such that 1 2U U⊂ . Then 1 2V U V U( ) ( )⊂ .

Proof. Let Y , �( ) and Z, �( ) be two uniform spaces and 1U , 2U be two uniformities on the set YZ� ( ) such
that 1 2U U⊂ . We have to show that 1 2V U V U( ) ( )⊂ .

Let U� be any entourage in the dual uniform space 1V U( ). Thus, � is an entourage in 1U . Therefore,

2U� ∈ as well. Hence, U 2V U� ( )∈ . Hence, the result. □

Lemma 3.20. Let Y , �( ) and Z, �( ) be two uniform spaces and 1V , 2V be two uniformities overUC Y Z,( ) such
that 1 2V V⊂ . Then 1 2U V U V( ) ( )⊂ .

Proof. Let Y , �( ) and Z, �( ) be two uniform spaces and 1V , 2V be two uniformities overUC Y Z,( ) such that

1 2V V⊂ . Then we have to show that 1 2U V U V( ) ( )⊂ .
Let U� be any entourage in the corresponding dual uniform space 1U V( ). Thus, � is an entourage in

1V . Therefore, 2V� ∈ as well. Hence, U 2U V� ( )∈ . Hence, the result. □

Theorem 3.21. Let Y , �( ) and Z, �( ) be two uniform spaces and U be a uniformity over YZ� ( ). Then we have
the following:
(1) .U U V U U V U V U( ( )) ( ( ( ( ))))⊂ ⊂ ⊂……

(2) .V U V U V U V U V U V U( ) ( ( ( ))) ( ( ( ( ( )))))⊂ ⊂ ⊂……

Proof.
(1) First, we show that U U V U( ( ))⊂ . For this, let Y YZ Z� � �( ) ( )∈ × . Then from Lemma 3.18, we have

U U,U� � �{(( ) ) ∣ }= ⋃ ∈ . Therefore, U U V U( ( ))⊂ . Thus, by using Lemmas 3.19 and 3.20, we obtained
the required result.

(2) Can be proved in a similar way. □

Now, we provide our main theorem of this section.

Theorem 3.22. Let Y , �( ) and Z, �( ) be two uniform spaces. There exists the greatest splitting uniformity
over YZ� ( ).
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Proof. Let i IiU{ ∣ }∈ be the set of all splitting uniformities over YZ� ( ). Consider i IiU U{ ∣ }= ∨ ∈ . We claim
that U is the greatest splitting uniformity over YZ� ( ). From Theorem 3.12, it is sufficient to show that its dual
uniform space UC Y Z, , V U( ( ) ( )) is splitting.

Since Y ,Z iU�( ( ) ), i I∈ are splitting uniform spaces, by Theorem 3.12, their dual uniform spaces
UC Y Z, , iV U( ( ) ( )) are splitting. Let σ i IiU{ ∣ }= ⋃ ∈ . Then σ forms a sub-base for U. In the light of
Theorem 3.4, σ�( ) is a a sub-base for a uniformity on UC Y Z, , V U( ( ) ( )). On the other hand, we have

σ i IiU� �( ) {( ( )) ∣ }= ⋃ ∈ . Since iU�( ) is sub-base for iV U( ), we have σ�( ) is a sub-base for i IiV U{ ( ) ∣ }∨ ∈ ,
thus we have i IiV U V U( ) { ( ) ∣ }= ∨ ∈ . Since iV U( ) is splitting for every i I∈ , i IiV U{ ( ) ∣ }∨ ∈ is also splitting.
Therefore, V U( ) is also splitting and hence U is splitting. □

Definition 3.23. Let Y , �( ) and Z, �( ) be two uniform spaces. Then a uniformity onUC Y Z,( ) (respectively
YZ� ( )) is said to be a family-open uniformity if it is a dual to a uniformity on YZ� ( ) ( respectivelyUC Y Z,( )) ;

Definition 3.24. Let Y , �( ) and Z, �( ) be two uniform spaces and let U and V be uniformities over YZ� ( )

andUC Y Z,( ), respectively. Then the pair ,U V( ) is called a pair of mutually dual uniformities if U U V( )= and
V V U( )= , respectively.

Now we provide few more results regarding greatest splitting uniformities in the light of dual uniform
spaces.

Theorem 3.25. Let Y , �( ) and Z, �( ) be two uniform spaces. Then there exists the greatest splitting family-
open uniformity on UC Y Z,( ).

Proof. Let U be the greatest splitting uniformity on YZ� ( ). Now, we claim that the family-open uniformity
V U( ) is the greatest splitting family open uniformity on UC Y Z,( ).

Let V V U( )′ = ′ be a splitting family-open uniformity on UC Y Z,( ). Thus from Theorem 3.12, U′ is a
splitting uniformity on YZ� ( ). Thus, U U′ ⊂ . By Lemma 3.19, V U V U( ) ( )′ ⊂ . Thus, V U( ) is the greatest
splitting family open uniformity. □

Theorem 3.26. Let Y ,Z U�( ( ) ) and UC Y Z, , V( ( ) ) be two uniform spaces. Let also U be the greatest-splitting
uniformity and V be the greatest family-open uniformity on UC Y Z,( ). Then the pair ,U V( ) is a pair of
mutually dual splitting uniformities.

Proof. Let U be the greatest-splitting uniformity on YZ� ( ) andV be the greatest family-open uniformity on
UC Y Z,( ). Then from the last theorem, we have V U V( ) = . In the view of Theorem 3.21, we have
U U V U U V( ( )) ( )⊂ = . Thus by Theorem 3.13, the uniformity U V( ) is also splitting. Thus, U V U( ) ⊂ . There-
fore, we have U U V( )= . Hence, the pair ,U V( ) forms a pair of mutually dual splitting uniformities. □

4 Conclusion

This article is a sequel to the authors’ earlier investigations on uniformities on the space of uniformly
continuous mappings between uniform spaces [1]. Here, it is shown that properties of splittingness and
admissibility of uniformity on UC Y Z,( ) implies the same for its dual uniformity on YZ� ( ) and vice versa.
The existence of the greatest splitting uniformity on UC Y Z,( ) and the greatest family open splitting uni-
formity on YZ� ( ) are established and their duality relations are examined. Similar studies were carried out
earlier for function space topologies [4], but not for uniformities. Our investigation has shown that the same
can be achieved for function space uniformities as well. However, it still remains open to investigate the
relationship between a uniformity on UC Y Z,( ) and that of the dual of its dual on YZ� ( ).

Acknowledgement: This research was supported by Deanship of Scientific Research, Prince Sattam bin
Abdulaziz University, Alkharj, Saudi Arabia.

Dual uniformities  1935



Conflict of interest: The authors state no conflict of interest.

References

[1] A. Gupta, A. S. Hamarsheh, R. D. Sarma, and R. George, A study on uniformities on the space of uniformly continuous
mappings, Open Math. 18 (2020), 1478–1490.

[2] P. J. Collins, Uniform topologies on function space and topologies on power set, Topology Appl. 43 (1992), 15–18.
[3] S. Dolecki and F. Mynard, A unified theory of function spaces and hyperspaces: local properties, Houston J. Math. 40

(2014), no. 1, 285–318.
[4] D. N. Georgiou, S. D. Iliadis, and B. K. Papadopoulos, On dual topologies, Topology Appl. 140 (2004), 57–68.
[5] D. N. Georgiou and S. D. Iliadis, On the greatest splitting topology, Topology Appl. 156 (2008), 70–75.
[6] A. Gupta and R. D. Sarma, Function space topologies for generalized topological spaces, J. Adv. Res. Pure Math. 7 (2015),

no. 4, 103–112.
[7] A. Gupta and R. D. Sarma, A study of function space topologies for multifunctions, Appl. Gen. Topol. 18 (2017), no. 2,

331–344.
[8] A. Gupta and R. D. Sarma, On dual topologies for function spaces over Y Z,μ ν,	 ( ), Sci. Stud. Res. Ser. Math. Inform. 28

(2018), 41–52.
[9] F. Jordan, Coincidence of function space topologies, Topology Appl. 157 (2010), 336–351.
[10] P. Debnath, N. Konwar, and S. Radenović,Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural

Science, Springer Nature, Singapore, 2021.
[11] N. V. Dung and S. Radenović, Remarks on the approximate fixed point sequence of α β,( )-maps, Rev. R. Acad. Cienc.

Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 4, 193.
[12] V. Toodorčević, Harmonic Quasiconformal mappings and Hyperbolic Type Metrics, Springer Nature, Switzerland AG, 2019.
[13] A. Gupta, S. Kumar, R. D. Sarma, P. K. Garg, and R. George, A note on the generalized nonlinear vector variational-like

inequality problem, J. Funct. Spaces 2021 (2021), 4488217.
[14] S. Kumar, A. Gupta, P. K. Garg, and R. D. Sarma, Topological solutions of η-generalized vector variational-like inequality

problems, Math. Appl. 10 (2021), no. 2, 115–123.
[15] R. Arens and J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951), 5–31.
[16] R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432.
[17] J. L. Kelly, General Topology, Springer-Verlag, New York, 1975.

1936  Ankit Gupta et al.


	1 Introduction
	2 Preliminaries
	3 Main results
	3.1 Dual uniformity concerning UC(Y,Z)
	3.2 Duality theorems
	3.3 Mutually dual uniformities

	4 Conclusion
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


