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Abstract: Let K be an imaginary quadratic field different from 1�( )− and 3�( )− . For a nontrivial integral
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1 Introduction

Let K be an imaginary quadratic field with ring of integers K� . Let E be the elliptic curve with complex
multiplication by K� given by the Weierstrass equation:

E y x g x g g g g g: 4 with and .K K
2 3

2 3 2 2 3 3� �( ) ( )= − − = =

For z �∈ , let z[ ] denote the coset z K�+ in K� �/ . Then the map
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where ℘ is the Weierstrass ℘-function relative to K� , is a complex analytic isomorphism of complex Lie
groups ([1, Proposition 3.6 in Chapter VI]). Corresponding to E, we consider the Weber function
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where g gΔ 272
3

3
2

= − ( 0≠ ) and j E j K�( ) ( )= is the j-invariant of E. For a nontrivial ideal m of K� , by Km we
mean the ray class field of K modulo m. In particular, K K� is the Hilbert class field HK of K . Then we obtain
by the theory of complex multiplication that H K j EK ( ( ))= and

K H x y x y E, for some torsion point , onK Kh mm ( ( )) ( )= -
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if m is proper [2, Chapter 10]. In a letter to Hecke concerning Kronecker’s Jugendtraum (= Hilbert 12th
problem), Hasse asked whether every abelian extension of K can be generated only by a single value of the
Weber function Kh over K [3, p. 91] and Sugawara first gave partial answers to this question [4,5]. Recently,
Jung et al. [6] proved that if N Km �= and N 2, 3, 4, 6{ }∈ , then
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Koo et al. [7] further showed by utilizing the second Kronecker’s limit formula that (1) holds for N 5= and
N 7≥ . Besides, it is worth noting that Ramachandra [8] constructed a complicated primitive generator of Km

over K by using special values of the product of high powers of the discriminant Δ function and Siegel
functions, which is beautiful in theory.

Now, we assume that K is different from 1�( )− and 3�( )− , and so g g 02 3 ≠ and j 0, 1,728K�( ) ≠ ([9,
p. 200]). Let EK n n, 0�{ }

∈

≥

be the family of elliptic curves isomorphic to E given by the affine models
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Here we note that

x z φ z z .K n K
n

K K, h �( ) ( ([ ])) ( )= ℓ ∈ (3)

Letm be a proper nontrivial ideal of K� in such a way that Km properly contains HK . Letω be an element of K
so that ω ω K�[ ] = + is a generator of the K� -module K K

1m � �/

− . In this article, we shall prove the following
three assertions (Theorems 4.4, 5.2, and 6.4):
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where dK is the discriminant of K and Nm is the least positive integer in m.
(iii) If N Km �= for an integer N ( 2≥ ) whose prime factors are all inert in K , then K K x ωK n,m ( ( ))= for

every n 0�∈

≥

.

To this end, we shall make use of some inequalities on special values of the elliptic modular function and
Siegel functions (Lemmas 4.1 and 5.1), rather than using L-function arguments adopted in [7,8,10].

Finally, we hope to utilize the aforementioned results (i), (ii), and (iii) to investigate the images of
(higher dimensional) Galois representations attached to elliptic curves with complex multiplication.

1146  Ho Yun Jung et al.



2 Fricke and Siegel functions

In this preliminary section, we recall the definitions and basic properties of Fricke and Siegel functions.
Let � be the complex upper half-plane, that is, τ τIm 0� �{ ∣ ( ) }= ∈ > . Let j be the elliptic modular

function on � given by

j τ j τ τ, 1 ,�( ) ([ ]) ( )= ∈

where τ, 1[ ] stands for the lattice τ� �+ in � and j τ, 1([ ]) is the j-invariant of an elliptic curve isomorphic
to τ, 1� [ ]/ . Define the function J on � by

J τ j τ τ1
1,728

.�( ) ( ) ( )= ∈

Furthermore, for v v M Mv 1 2 1,2 1,2� �( ) ( )= [ ] ∈ ⧹ we define the Fricke function fv on � by
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where g τ g τ, 12 2( ) ([ ])= , g τ g τ, 13 3( ) ([ ])= , and τ τΔ Δ , 1( ) ([ ])= . Note that for M Mu v, 1,2 1,2� �( ) ( )∈ ⧹
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([9, Lemma 10.4]). For a positive integer N , let N� be the field given by
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Then, N� is a Galois extension of 1� whose Galois group is isomorphic to N IGL2 2� �( )/ /⟨− ⟩ ([11, Theorem
6.6]). It coincides with the field of meromorphic modular functions of level N whose Fourier coefficients
belong to the N th cyclotomic field ([11, Proposition 6.9]).

Proposition 2.1. If N 2≥ , M Mv N
1

1,2 1,2� �( ) ( )∈ ⧹ , and γ N IGL2 2� �( )∈ / /⟨− ⟩, then

f f .γ
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Moreover, if γ N ISL2 2� �( )∈ / /⟨− ⟩, then

f f α,γ
v v= ∘

where α is any element of SL2 �( ) (acting on � as fractional linear transformation) whose image in
N ISL2 2� �( )/ /⟨− ⟩ is γ.

Proof. See [2, Theorem 3 in Chapter 6] or [11, Theorem 6.6]. □

For v v M Mv 1 2 1,2 1,2� �( ) ( )= [ ] ∈ ⧹ , the Siegel function gv on � is given by the infinite product
expansion
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where q eτ
π τ2 i

= and q ez
π z2 i

= with z v τ v1 2= + . Observe that gv has neither a zero nor a pole on � .

Proposition 2.2. Let N be an integer such that N 2≥ , and let M Mv N
1
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Proof.
(i) See [12, Theorem 1.1 in Chapter 2 and p. 29].
(ii) See [12, Theorem 1.2 and Proposition 1.3 in Chapter 2]. □

Lemma 2.3. Let M Mu v, 1,2 1,2� �( ) ( )∈ ⧹ such that and Mu v v mod 1,2 �( ( ))≢ − . Then we have
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Proof. See [12, p. 51]. □

3 Extended form class groups

In this section, we review some necessary consequences of the theory of complex multiplication, and
introduce extended form class groups which might be an extension of Gauss’ form class group.

Let K be an imaginary quadratic field of discriminant dK . For a positive integer N , let dN K� ( ) be the set
of primitive positive definite binary quadratic forms of discriminant dK whose leading coefficients are
relatively prime to N , that is,
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be the set of equivalence classes. For each Q a x b xy c y dQ Q Q N K
2 2 � ( )= + + ∈ , let Q N[ ] be its class in dCN K( ),

and let

τ
b d

a2
,Q

Q K

Q
=

− +

which is the zero of the quadratic polynomialQ x, 1( ) lying in� . For a nontrivial ideal m of K� , let us denote
by Cl m( ) the ray class group modulo m, namely, I PCl K K,1m m m( ) ( ) ( )= / , where IK m( ) is the group of frac-
tional ideals of K relatively prime to m and PK,1 m( ) is the subgroup of PK m( ) (the subgroup of IK m( )

consisting of principal fractional ideals) defined by

P ν ν ν0 such that 1 mod .K K K,1 m m� �( ) ∣ { } ( )= ⟨ ∈ ⧹ ≡ ⟩

Then, when N Km �= , the map
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d N
Q τ τ

C Cl
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→

↦ = +

is a well-defined bijection, through which we may regard dCN K( ) as a group isomorphic to NCl K�( ) ([13,
Theorem 2.9] or [14, Theorem 2.5 and Proposition 5.3]). The identity element of dCN K( ) is the class Q Npr[ ]

of the principal form
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We call this group dCN K( ) the extended form class group of discriminant dK and level N .
In particular, dC K1( ) is the classical form class group of discriminant dK , originated and developed by

Gauss [15] and Dirichlet [16]. A form Q a x b xy c yQ Q Q
2 2

= + + in dK1� ( ) is said to be reduced if

a b a c b a cor 0 .Q Q Q Q Q Q Q− < ≤ < ≤ ≤ =

This condition yields

a d
3

.Q
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(6)

If we let Q Q Q, , , h1 2 … be all the reduced forms of discriminant dK , then we have h dC K1∣ ( )∣= and

d Q Q QC , , ,K h1 1 1 2 1 1( ) {[ ] [ ] [ ] }= …
(7)

([9, Theorem 2.8]). Set

τ

d
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and then τ τK Qpr= and τ , 1K K� [ ]= . By the theory of complex multiplication, we obtain the following results.

Proposition 3.1. Let K be an imaginary quadratic field and m be a nontrivial ideal of K� .
(i) If Km �= , then we obtain

K H K j τ .K Km ( ( ))= =

Furthermore, ifQi (i h d1, 2, , C K1∣ ( )∣= … = ) are reduced forms of discriminant dK , then the singular values
j τQi( )

are distinct (Galois) conjugates of j τK( ) over K .
(ii) If Km �≠ , then we have

K H φ ωK K Khm ( ( ([ ])))=

for any element ω of K for which ω ω K�[ ] = + is a generator of the K� -module K K
1m � �/

− . All such
φ ωK Kh ( ([ ])) are conjugate over HK .More precisely, if ξi (i K H1, 2, , : Km[ ]= … ) are nonzero elements of K�

such that

ξ P i K H P P K H1, 2, , : Gal ,i K K K K K,1 ,1m m mm m{( ) ( )∣ [ ]} ( ) ( )( ( ))= … = / ≃ /

then φ ξ ωK K ih ( ([ ])) are all distinct conjugates of φ ωK Kh ( ([ ])) over HK .

Proof.
(i) See [2, Theorem 1 in Chapter 10] and [9, Theorem 7.7 (ii)].
(ii) See [2, Theorem 7 and its Corollary in Chapter 10]. □
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By modifying Shimura’s reciprocity law ([11, Theorem 6.31, Propositions 6.33 and 6.34]), Eum et al.
established the following proposition.

Proposition 3.2. Let K be an imaginary quadratic field, N be a positive integer, and K N( ) be the ray class field
of K modulo the ideal N( ). Then the map

d K K

Q f τ f τ f is finite at τ

C GalN K N

N K

a b b

Q N K

2
0 1
Q Q K

�
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⎡
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( ) ⎤

⎦⎥

→ /

↦ ↦ ∈

− /

is a well-defined isomorphism.

Proof. See [13, Remark 3.3 and Theorem 3.10]. □

Remark 3.3. If M and N are positive integers such that M N∣ , then the natural map

d d
Q Q

C CN K M K

N M

( ) ( )

[ ] [ ]

→

↦

is a surjective homomorphism ([13, Remark 2.10 (i)]).

4 Some applications of inequality on singular values of j
Let K be an imaginary quadratic field of discriminant dK . By using inequality argument on singular values of
j developed in [6], we show that coordinates of elliptic curves in the family EK n n, 0�{ }

∈

≥

described in (2) can be
used in order to generate the ray class fields of K .

Let hK denote the class number of K , i.e., h d H KC :K K K1∣ ( )∣ [ ]= = . It is well known that

h d1 3, 4, 7, 8, 11, 19, 43, 67, 163K K= ⇔ = − − − − − − − − −

([9, Theorem 12.34]). So, if h 2K ≥ , then we have d 15K ≤ − .

Lemma 4.1. If h 2K ≥ and d 20K ≤ − , then we achieve

J τ J τ
J τ J τ

q1
1

877,383 1Q Q

K K
τ

2 3

2 3 K
5
2

( ) ( ( ) )

( ) ( ( ) )
∣ ∣ ( )

−

−

< < (8)

for all nonprincipal reduced forms Q of discriminant dK .

Proof. See [6, Lemma 6.3 (ii)]. □

Remark 4.2. If d 15K = − , then we obtain d Q QC ,K1 1 1 2 1( ) {[ ] [ ] }= with

Q x xy y Q x xy y4 and 2 2 .1
2 2

2
2 2

= + + = + +

Moreover, we have

j τ j τ j τ52,515 85,995 1 5
2

and 52,515 85,995 1 5
2K Q Q1 2( )

( ) ( )

= = − −

+

= − −

−

([1, Example 6.2.2]). One can check that inequality (8) also holds true.
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Lemma 4.3. Let K be an imaginary quadratic field other than 1�( )− and 3�( )− . Then we attain

H K for every n .K K
n

0�( )= ℓ ∈

>

Proof. If h 1K = , then the assertion is obvious because H KK = .
Now, assume that h 2K ≥ . Let σ be an element of H KGal K( )/ , which fixes K

n
ℓ . Then we find by

Proposition 3.1 (i) that

J τ J τ
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−
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−

−

for some reduced formQ of discriminant dK . Thus,Q must beQpr by Lemma 4.1 and Remark 4.2, and hence σ
is the identity element of H KGal K( )/ again by Proposition 3.1 (i). This observation implies by the Galois
theory that HK is generated by K

n
ℓ over K . □

Theorem 4.4. Let K be an imaginary quadratic field other than 1�( )− and 3�( )− , and let m be a
nontrivial proper integral ideal of K� . Let ω be an element of K such that ω K�+ is a generator of the

K� -module K
1m �/

− . If Km properly contains HK , then we have

K K x ω y ω for every n, .K n K n, ,
2
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Proof. For simplicity, let

X x ω φ ω Y y ωand .K n K
n

K K K n, ,h( ) ( ([ ])) ( )= = ℓ =

Set L K X Y, 2( )= which is a subfield of Km by Proposition 3.1 and the Weierstrass equation for EK n, stated
in (2).

Suppose on the contrary that K Lm ≠ . Then there is a nonidentity element σ of K KGal m( )/ , which leaves
both X and Y2 fixed. Note further that

σ K HGal Km( )∉ / (9)

because K H XKm ( )= by Proposition 3.1 (ii). By applying σ on both sides of the equality

Y X AX B A J J B J J4 with 1
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27
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n K K
K
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= − − =
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= − −

It then follows that

A A X B B .σ σ( )− = − (10)
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27

K
n5 1

3=
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+

generates HK over K by Lemma 4.3, we deduce by (9) and (10) that A A 0σ
− ≠ and

X B B
A A

H .
σ

σ K= −
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−

∈

Then we obtain

H H X K ,K K m( )= =

which contradicts the hypothesis K HKm ⊋ .
Therefore, we conclude that

K L K x ω y ω, .K n K n, ,
2

m ( ( ) ( ) )= = □
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Proposition 4.5. Let K be an imaginary quadratic field other than 1�( )− and 3�( )− , and let m be a
nontrivial proper integral ideal of K� . Let ω be an element of K such that ω K�+ is a generator of the

K� -module K
1m �/

− . Then we have
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This observation implies that

K N x ω H .K H K n K,Km
( ( ( ))) =

/

(11)
Hence we derive that if n m≥ , then

K x ω K x ω N x ω K x ω K

K
H x ω
K

, since is an abelian extension of

by 11
by 3  and Proposition 3.1.

K n K n K H K n K n

K K n

, , , ,

,

K m

m

m
( ( )) ( ( ) ( ( ))) ( ( )) ( )

( ( ))

= ⊆

= ( )

= ( )

/

□

5 Generation of ray class fields by x-coordinates of elliptic curves

By using some interesting inequalities on special values of Siegel functions, we shall find a concrete bound
of n in Proposition 4.5 for which if n is greater than or equal to this, then x ωK n, ( ) generates Km over K .

Lemma 5.1. Let M Mv 1,2 1,2� �( ) ( )∈ ⧹ , and let τ �∈ such that q e eτ
π τ π2 i 3∣ ∣ ∣ ∣= ≤

− .
(i) We have

g τ q2.29 .τv
1

24∣ ( )∣ ∣ ∣<

−

(ii) If M Mv N
1

1,2 1,2� �( ) ( )∈ ⧹ for an integer N 2≥ , then we obtain

g τ q
N

0.76 .τ
v

1
12

∣ ( )∣
∣ ∣

>

Proof. Let v vv 1 2= [ ] and z v τ v1 2= + . By Proposition 2.2 (i) we may assume that v0 1
1
2≤ ≤ . Set s qτ∣ ∣= .
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(i) We then derive that

g τ q q q q q q

s s s s

s s v v v

s e x e x

s e

s e
s

1 1 1 by 5

1 1 1

1 1 1 since0 1
2

and 1
6

1
12

2 because 1 for 0

2

2
2.29 .

τ
v v

z
n

τ
n

z τ
n

z

v v v

n

n v n v

n

n

n

e x

e

v
1

1

1

1

1
2 2

1 1
2

1

1

2

2

π n

n
π n

e
π

e π

1
2 1

2
1

1
6

1
2 1

2
1

1
6 1 1 1

1
24

1
24

3 1
2

1
24 1

3 1
2

1
24

2
3

2
1 3

1
24

∣ ( )∣ ∣ ∣ ( ∣ ∣) ( ∣ ∣ ∣ ∣)( ∣ ∣ ∣ ∣ )

( ) ( )

( )

( )

( )

( )

( ) ( )( )

∏

∏

∏

∏

≤ + + + ( )

= + + +

≤ + + ≤ ≤ − + ≥ −

≤ + < >

=

=

<

∑

− +

=

∞

−

− +

=

∞

+ −

−

=

∞

−

−

=

∞

−

−

−

− −

=

∞

− −

−

−

−

(ii) Furthermore, we see that

g τ s q s s

s e s s v v

s π
N

e e x e x

s
N

e πx e x x

s
N

e

s
N

1 1 1 by 5

min 1 , 1 1 because 1
6

1
6

min sin , 1 since 1 for 0 1
2

1 because both sin and 1 are for 0 1
2

1

0.76 .

v v
z

n

n v n v

n

n

π

n

e x

e π x

v
1

1

1
2 2

1
2

1

3

1

4 2

4 3

π
N N

N
π n

n
π n

e
π

e π

1
2 1

2
1

1
6 1 1

1
12

2 i 1

1
12

1 3 1
2

1
12 1

3 1
2

1
12

4
3

2
1 3

1
12

∣ ( )∣ ∣ ∣

∣ ∣ ( )

( )

( )

( )

( )

( )

{ }

{ }

( )( )
∏

∏

∏

≥ − − − ( )

≥ − − − − + ≤

≥ − − > < <

> − > < ≤

=

>

∑

− +

=

∞

+ −

=

∞

−

−

=

∞

− −

−
−

− −

=

∞

− −

−

−

−

−

□

Theorem 5.2. Let K be an imaginary quadratic field other than 1�( )− and 3�( )− . Let m be a proper
nontrivial ideal of K� in which Nm ( 2≥ ) is the least positive integer. Letω be an element of K such thatω K�+ is
a generator of the K� -module K

1m �/

− . If Km properly contains HK , then

K K x ωK n,m ( ( ))=

for every nonnegative integer n satisfying

n
π d N

π d

6 ln

ln877,383
1
6

.
K

K

13
24

229
76

5
2

m∣ ∣

∣ ∣

( )

≥

+

−

−

(12)

Proof. Since N K mm� ⊆ and ω K
1m �∈ ⧹

− , we have

N ω aτ b a b a b N Mfor some , such that .K 1,2m m� �( )= + ∈

[ ]

∉ (13)

Let n be a nonnegative integer satisfying (12). If h 1K = , then the assertion holds by the proof (Case 1) of
Proposition 4.5.

Now, we assume h 2K ≥ . Since Km properly contains HK , one can take a nonidentity element ρ of
K HGal Km( )/ . Note that ρ does not fix x ωK n, ( ) due to the fact K H x ωK K n,m ( ( ))= by (3) and Proposition 3.1

(ii). Suppose on the contrary that x ωK n, ( ) does not generate Km over K . Then there exists at least one
nonidentity element σ in K K x ω H x ω K x ωGal GalK n K K n K n, , ,m( ( ( ))) ( ( ( )) ( ( )))/ = / . Let P be a quadratic form in

dN Km
� ( ) such that P Nm

[ ] maps to σ through the surjection
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d K K K K
μ μ

C ~ Gal GalN K N

K

restriction
mm m

m

( ) ( )

∣

( )( )

⟶ / ⟶ /

↦

whose first map is the isomorphism given in Proposition 3.2. It follows from (7), Proposition 3.2, and Remark
3.3 that

P Q Q γfor some nonpricipal reduced form  and SL .γ
2 �( )= ∈

Here we observe that

τ γ τ aand 2.P Q Q
1( )= ≥

− (14)

Then we deduce that

x ω x ω
x ω x ω

σ K x ω x ω
f τ f τ
f τ f τ

a
N

b
N

φ

J τ J τ f τ f τ
J τ J τ f τ f τ

N
M M M

ρ K H

J τ J τ
J τ J τ

f τ f τ
f τ f τ

N
M M M

J γ τ J γ τ
J τ J τ

f γ τ f γ τ
f τ f τ

J τ J τ
J τ J τ

f τ f τ
f τ f τ

γ γ

J

J τ J τ
J τ J τ

g τ g τ g τ g τ
g τ g τ g τ g τ

q
q q

q q

q e e q e e

q N q q

q N q q

q q q q

e N e

u

v u v v

u v u v v

u u v v

1

because is the identity on which contains

with

by 3 , 13 , and the definitions of , and a Fricke function

1
1

for some 1 such that and mod

by Proposition 3.1 ii  and 4  since Gal id

1
1

for some , 1 such that and mod

by Proposition 3.2
1

1
by 14

1
1

with and

by the fact and Proposition 2.1

1
1

by Lemma 2.3

877,383
2.29

by Lemmas 4.1, 5.1, and Remark 4.2

because and by 6

877,383 229
76

877,383 229
76

since 1 and by 14

877,383 229
76

.

K n K n
ρ σ

K n K n
ρ

K n K n
ρ

K
n

K K
n

K
ρ σ

K
n

K K
n

K
ρ

K K

K
n

K
n

K K
σ

K
n

K
n

K K

K K

P P

K K

n
P P

K K

Q Q

K K

n
Q Q

K K

Q Q

K K

n
Q Q

K K

Q Q

K K

n
Q Q K K

K K Q Q

τ
n τ τ

N τ τ

τ
π d π

τ
π

τ
n

τ τ

τ
n

τ τ

τ τ τ τ

π d
n

π d

u u

u u

u v

u v

u v

u v

u v

u v

u v

u v

u v u v u v

u v u v u v

, ,

, ,

, ,

2 3

2 3

1,2 1,2 1,2

2 3

2 3

1,2 1,2 1,2

1 2 1 3

2 3

1 1

2 3

2 3
1 1

1

2 3

2 3

2 2

2 2

5
2

6

0.76 6

15 3

5
2

6

5
2

6

1 1 1 1

5
2

6

K
Q K

K Q

K
K

Q

π dK
aQ

K Q K

K K K

K Q K
aQ K

K K

1
6

1
6

1
12

1
6

1
6

1
3

1
6 5

12
1
3

1
6 5

24
1
3

1 1
2

1
6 13

24

h

m m

m

m

m

m

m

m

m

m

� � �

� � �

�

( ( ) ( ) )

( ) ( )

( ( )) ( )

( ( ) ( ( )) )

( ) ( ( ))
⎡

⎣⎢
⎤

⎦⎥

{ ( ) ( ( ) ) ( ( ) ( ))}

( ) ( ( ) ) ( ( ) ( ))

( ) ( ) ( ( ))

( )

( ) ( ( ) )

( ) ( ( ) )

( ) ( )

( ) ( )

( ) ( ) ( ( ))

( ( )) ( ( ( )) )

( ) ( ( ) )

( ( )) ( ( ))

( ) ( )

( ) ( ( ) )

( ) ( ( ) )

( ) ( )

( ) ( )

( ) ( ( ) )

( ) ( ( ) )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∣ ∣
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣

∣ ∣ ⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ (∣ ∣ ) (∣ ∣ )

⎛
⎝

⎞
⎠

( )

( )

( )

( )

( )

{ }

=

−

−

=

ℓ − ℓ

ℓ − ℓ

=

( ) ( )

=

− −

− −

∈ ⧹ ≢ −

( ) ( ) ∈ / ⧹

=

−

−

−

−

′ ′ ∈ ⧹ ′ ≢ ′ − ′

=

−

−

−

−

( )

=

−

−

−

−

″

= ′

″

= ′

∈

=

−

−

<

= ≤ = ≤ ( )

=

≤

> = ≤ ( )

=

″ ″

″ ″ ″ ″

″ ″

′ ′

− −

′

−

′

−

− −

+

+ −

+ −

+

− −

− ∣ ∣ −
−

−

+

− −

+

− −

− − − −

− ∣ ∣

+

∣ ∣

∣ ∣
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Now, by taking logarithm we obtain the inequality

n π d N π d0 1
6

ln877,383 5
2

6 ln 229
76

13
24K Km⎛

⎝
⎞
⎠

⎛
⎝

∣ ∣ ⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣< + − + +

with

π d πln877,383 5
2

ln877,383 5
2

15 0.K∣ ∣− ≤ − <

But this contradicts (12). Therefore, we conclude that K K x ωK n,m ( ( ))= . □

Example 5.3. Let K 5�( )= − , and so d 20K = − . Note that

K d

K d

K d

2 is ramified in since 2 ,

13 is inert in due to
13

1,

23 splits completely in because
23

1

K

K

K

⎧

⎨

⎪
⎪

⎩

⎪
⎪

∣

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

= −

=

([9, Proposition 5.16]). Let 1 2 3m p p p= be the product of three prime ideals

1 5 , 2 , 13 5 , 13 , and 15 5 , 231 2 3p p p[ ] [ ] [ ]= + − = − = + −

of K� satisfying 2 K 1
2p� = , 13 K 2p� = , and 23 K 3 3p p� = . In this case, by checking the degree formula for

K H: Km[ ] we see that Km properly contains HK . Since

2 13 23 ,K1 2 3 1
2

2 3 3m p p p p p p p �( )= ⊃ = ⋅ ⋅

we obtain N 2 13 23 598m = ⋅ ⋅ = , and hence one can estimate

π d N

π d

π

π

6 ln

ln877,383
1
6

20 6 ln 598

20 ln877,383
1
6

2.286282.
K

K

13
24

229
76

5
2

13
24

229
76

5
2

m∣ ∣

∣ ∣

( ) ( )

+

−

− =

+ ⋅

−

− ≈

If ω is an element of K such that ω K�+ is a generator of the K� -module K
1m �/

− , then we obtain by
Theorem 5.2 that

K K x ω nfor all 3.K n,m ( ( ))= ≥

Remark 5.4. At this stage, we conjecture that Theorem 5.2 may hold for every n 0�∈

≥

.

6 Ray class fields of special moduli

Let K be an imaginary quadratic field other than 1�( )− and 3�( )− , and let N ( 2≥ ) be an integer whose
prime factors are all inert in K . In this last section, we consider the special case where N Km �= and show
that Theorem 5.2 is also true for every n 0�∈

≥

.

Lemma 6.1. Let f 1�∈ . If f has neither a zero nor a pole on � , then it is a nonzero rational number.

Proof. See [2, Theorem 2 in Chapter 5] and [17, Lemma 2.1]. □

For an integer N 2≥ , let

S s t M s t N N s t0 , and gcd , , 1 .N 1,2 �( )∣ ( )=

{

[ ] ∈ ≤ < =

}

We define an equivalence relation N≡ on the set SN as follows: for Su v, N∈
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NMu v u v vor mod .N 1,2 �( ( ))≡ ⇔ ≡ −

Let

P S m Pu v u v u v, , such that and .N N N N N{( )∣ } ∣ ∣= ∈ ≢ =

Since 1 0 , 0 1[ ] [ ] represent distinct classes in SN N/≡ , we claim m 2N ≥ .

Lemma 6.2. If N is an integer such that N 2≥ , then we have

f f k J J for some k1 0 .
P

m

u v
u v

,

6 2 3

N
N N

N1 1 �{ ( ) } { }
( )

( )

∏
− = − ∈ ⧹

∈

Proof. For a b M1,2 �( )
[ ]

∈ with N a bgcd , , 1( ) = , let π a bN([ ])

denote the unique element of SN satisfying

π a b a b NMmod .N 1,2 �( ( ))
([ ])

≡

[ ]

Let α M2 �( )∈ with N αgcd , det 1( ( )) = , and let α∼ be its image in N IGL2 2� �( )/ /⟨− ⟩ ( Gal N 1� �( )≃ / ). Setting

f f f ,
Pu v

u v
,

6

N
N N
1 1

( )

( )

∏
= −

∈

we find that

f f f f f fby Proposition 2.1 by 4α

P
α α

P
π α π α

u v
u v

u v
u v

,

6

,

6

N
N N

N
N N N N

1 1 1 1

( ) ( )

( ) ( )
( ) ( )

∏ ∏
= − = − ( ) =

∈ ∈

∼

∼ ∼

because the mapping S SN N→ , π αu uN( )↦ , gives rise to an injection (and so, a bijection) of PN into itself.
This observation implies by the Galois theory that f lies in 1� .

On the other hand, we attain

f J J g g

g g

g J J g
g g

g g

1
3

by Lemma 2.3

1
3

with .

P

m

P

u v

u v u v

u v

u v

u v u v

u v

,

2 3

9

6 6

12 12

2 3

9
,

6 6

12 12

N

N N

N N

N

N

N N

N N

1 1

1 1

1 1

1 1

( )

⎧
⎨⎩

( ) ⎫
⎬⎭

( )

( ) ( )

( )

( ) ( )

∏

∏

=

−

=

−

=

∈

+ −

∈

+ −

Since f and J belong to 1� , so does g . Moreover, since g has neither a zero nor a pole on � , it is a nonzero
rational number by Lemma 6.1. Therefore, we obtain

f k J J k1 for some 0 .m2 3 N �{ ( ) } { }= − ∈ ⧹
□

Lemma 6.3. Let K be an imaginary quadratic field and N be an integer with N 2≥ . If every prime factor of
N is inert in K , then the principal ideal sτ tK K�( )+ is relatively prime to N K� for all s t, �∈ such
that N s tgcd , , 1( ) = .

Proof. We see that

sτ t sτ t sτ t τ τ s τ τ st t c s b st tN .K K K K K K K K K K
2 2 2 2

�( ) ( )( ) ( )+ = + + = + + + = − +

/

Now, we claim that sτ tNK K�( )+

/

is relatively prime to N . Indeed, we have two cases: d 0 mod 4K ( )≡ or
d 1 mod 4K ( )≡ .

Case 1. Consider the case where d 0 mod 4K ( )≡ , and then b 0K = and cK
d
4
K

= − . Let p be a prime factor

of N . Since p is inert in K , it must be odd and satisfy 1d
p
K

( )

= − . If

sτ t d s t pN
4

0 mod ,K K
K 2 2

�( ) ( )+ = − + ≡

/
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then the fact 1d
p
K

( )

= − forces us to obtain s p0 mod( )≡ and so t p0 mod( )≡ . But this contradicts the

fact N s tgcd , , 1( ) = . Therefore, sτ tNK K�( )+

/

is relatively prime to p, and hence to N .

Case 2. Let d 1 mod 4K ( )≡ , and so b 1K = and cK
d1

4
K

=

− . Let p be a prime factor of N . Since p is inert in

K , we derive

d p
d
p

p

5 mod 8 if 2,

1 if 2.

K

K
⎜ ⎟

⎧

⎨

⎪

⎩
⎪

( )

⎛

⎝

⎞

⎠

≡ =

= − >

Then we find that

sτ t d s st t
s st t p p

s t d s p p
N 1

4
mod if 2,

4 2 mod if 2,K K
K

K

2 2
2 2

2 2�( ) ⎧
⎨⎩

( )

{( ) } ( )
+ =

−

− + ≡

+ + =

′ − − >

/

where 4′ is an integer such that p4 4 1 mod( )⋅ ′ ≡ . When p 2= , we see that s st t p1 mod2 2 ( )+ + ≡ because

s and t are not both even. When p 2> , if sτ t pN 0 modK K�( ) ( )+ ≡

/

, then the fact 1d
p
K

( )

= − yields that

s p0 mod( )≡ and so t p0 mod( )≡ . But this again contradicts N s tgcd , , 1( ) = . Hence sτ tNK K�( )+

/

is rela-
tively prime to p, and so to N . Therefore, the principal ideal sτ tK K�( )+ is relatively prime to N K� . □

Theorem 6.4. Let K be an imaginary quadratic field other than 1�( )− and 3�( )− , and let N be an integer
such that N 2≥ . Let ω be an element of K so that ω K�+ is a generator of the K� -module N K K

1� �/

− . If every
prime factor of N is inert in K , then we attain

K K x ω for every n .N K n, 0�( ( ))( ) = ∈

≥

Proof. Since K N( ) is an abelian extension of K , K x ωK n,( ( )) is also an abelian extension of K containing

xK n N,
1

( )

by Proposition 3.1 (ii). Since

sτ t P N s t Sfor allK K K K N� �( ) ( )+ ∈ [ ] ∈

by Lemma 6.3, we obtain by Proposition 3.1 (ii) that

x sτ t
N

K x ω s t Sfor all .K n
K

K n N, ,⎛
⎝

⎞
⎠

( ( ))
+

∈ [ ] ∈

We then deduce that

K x ω x u τ u
N

x v τ v
N

u u v v

φ u τ u
N

φ v τ v
N

f τ f τ

φ

f f τ

k J J τ k

k

u vwith and

by 3

2 3
by the definitions of , and Fricke functions

2 3

2 3
1 for some 0 by Lemma 6.2

2 3
.

K n
P

K n
K

K n
K

P
K

n
K K

K
K

n
K K

K

P

K
n

K K

K K

K
n m

P
K

K
n m

m
K

K
n m

u v

u v

u v
u v

u v
u v

,
,

,
1 2

,
1 2

6
1 2 1 2

,

1 2 1 2
6

,
7 5

6 6

7 5

6

,

6

7 5

6
2 3

6 1

42 30

N

N

N
N N

N

N
N N

N
N

N

1 1

1 1

h h

h

�

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟

( ( )) ⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝

⎛

⎝

⎛

⎝
⎡
⎣

⎤
⎦

⎞

⎠

⎞

⎠

⎛

⎝

⎛

⎝
⎡
⎣

⎤
⎦

⎞

⎠

⎞

⎠

⎞

⎠

⎧
⎨⎩

⎛
⎝

⎞
⎠

( ) ( ) ⎫
⎬⎭

⎛
⎝

⎞
⎠

⎧

⎨
⎩

⎫

⎬
⎭

( )

⎛
⎝

⎞
⎠

[ { ( ) } ]( ) { }

⎛

⎝

⎞

⎠

( )

( )

( )

( )

( )

( )

∏

∏

∏

∏

∋

+

−

+

= [ ] = [ ]

= ℓ

+

− ℓ

+

( )

=

ℓ

−

=

ℓ

−

=

ℓ

− ∈ ⧹

=

ℓ

∈

∈

∈

∈

+
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Therefore, we achieve that

K x ω K x ω k

H x ω
K

,
2 3
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