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1 Introduction

Let K be an imaginary quadratic field with ring of integers Og. Let E be the elliptic curve with complex
multiplication by Ok given by the Weierstrass equation:

E:y?=4x-gx-g with g =5(0k) and g =g(O).
For z € C, let [z] denote the coset z + Ok in C/Ok. Then the map
¢ 1 C/Ox — E©) (cPYC))
[z] = [p(z; Ok) : p'(z; Ok) : 1],

where g is the Weierstrass gp-function relative to Ok, is a complex analytic isomorphism of complex Lie
groups ([1, Proposition 3.6 in Chapter VI]). Corresponding to E, we consider the Weber function
bx : E(C) — PYC) given by

%x if j(E) + 0, 1,728,

2
B, y) = %xz if J(E) = 1,728,

g3 3 of s
=x3 if j(E) =0,
A J(E)
where A = g23 - 27g32 (#0) and j(E) = j(Ok) is the j-invariant of E. For a nontrivial ideal m of O, by K, we

mean the ray class field of K modulo m. In particular, Ko, is the Hilbert class field Hk of K. Then we obtain
by the theory of complex multiplication that Hy = K(j(E)) and

K., = Hx(bg(x,y)) for some m-torsion point (x, y) on E
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if m is proper [2, Chapter 10]. In a letter to Hecke concerning Kronecker’s Jugendtraum (= Hilbert 12th
problem), Hasse asked whether every abelian extension of K can be generated only by a single value of the
Weber function hx over K [3, p. 91] and Sugawara first gave partial answers to this question [4,5]. Recently,
Jung et al. [6] proved that if m = NOg and N € {2, 3, 4, 6}, then

K, - K(W(%([ﬂ))) or K= K(hx(%([%]))). M

Koo et al. [7] further showed by utilizing the second Kronecker’s limit formula that (1) holds for N = 5 and
N > 7. Besides, it is worth noting that Ramachandra [8] constructed a complicated primitive generator of K,
over K by using special values of the product of high powers of the discriminant A function and Siegel
functions, which is beautiful in theory.

Now, we assume that K is different from Q(v/=1) and Q(+/=3), and so %8 # 0and j(Ox) + 0, 1,728 ([9,
p. 200]). Let {Ex n}ncz., be the family of elliptic curves isomorphic to E given by the affine models

_ —1)2
EK,n . )/2 _ 4X3 _ ]KUK 1)€K2nx _ ]K(]K 1) eK3n’ (2)

27 272
where

1

i(0 d e =Ji0x — 1)3.
1,728]( ) and & =JgUg - 1)

Jx =

Then for each n € Z., we have a parametrization

C/Ok — Egn(C) (cPX(C))
[z] = [xk,n(2) : Yk n(2) : 11,

with

&%
A

8

3
xin(@) = 620z 0) and  y (2) = (eK"T) o'z 0.

Here we note that
xk,n(2) = &"br(pg([z])) (z € ©). 3

Let m be a proper nontrivial ideal of Ok in such a way that K,,, properly contains Hg. Let w be an element of K
so that[w] = w + Ok is a generator of the Og-module m 'O / Ok. In this article, we shall prove the following
three assertions (Theorems 4.4, 5.2, and 6.4):

(i) We have K, = K(xg,n(w), yKyn(w)z) for every n € Z.,.

(ii) We obtain K, = K(xg,n(w)) for every n € Z., satisfying

13 229
Saldd + 6ln(7Nm) 1
>nyldgl - n877,383 6

where dy is the discriminant of K and N, is the least positive integer in m.
(iii) If m = NOg for an integer N (>2) whose prime factors are all inert in K, then K, = K(xg,,(w)) for
every n € Zso.

To this end, we shall make use of some inequalities on special values of the elliptic modular function and

Siegel functions (Lemmas 4.1 and 5.1), rather than using L-function arguments adopted in [7,8,10].
Finally, we hope to utilize the aforementioned results (i), (i), and (iii) to investigate the images of

(higher dimensional) Galois representations attached to elliptic curves with complex multiplication.
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2 Fricke and Siegel functions

In this preliminary section, we recall the definitions and basic properties of Fricke and Siegel functions.
Let H be the complex upper half-plane, that is, H = {t € C|Im(t) > 0}. Let j be the elliptic modular
function on H given by

j@ =j(r, 1) (T € H),
where [1, 1] stands for the lattice Zt + Z in C and j([7, 1]) is the j-invariant of an elliptic curve isomorphic

to C/[t, 1]. Define the function J on H by

J(r) = ﬁj(r) (T € H).

Furthermore, for v = [Vi V2] € M;2(Q)\M;,,(Z) we define the Fricke function f; on H by

s 8(1)85(T)

— _7
() =-2'3 AT

Pt + v [1,1]) (T € H),

where g,(1) = g([7, 1]), &(1) = g([7, 1]), and A(r) = A([7, 1]). Note that for u, v € M; 5,(Q)\M;,»(Z)
fu=f © u=vor -v(mod M Z)) (4)
([9, Lemma 10.4]). For a positive integer N, let Fy be the field given by
Q) ifN=1,

= ﬂ(fvwe%Ml,z(m\Ml,z(Z)) it N> 2,

Then, Fy is a Galois extension of #; whose Galois group is isomorphic to GLy(Z /NZ)/{-L) ([11, Theorem
6.6]). It coincides with the field of meromorphic modular functions of level N whose Fourier coefficients
belong to the Nth cyclotomic field ([11, Proposition 6.9]).

Proposition 2.1. If N > 2, v ¢ %MLZ(Z)\MLZ(Z), andy € GLy(Z /[NZ)/{-L), then
fi =fuy-
Moreover, ify € SLy(Z [NZ)[{-L), then
fi=Fea
where a is any element of SLy(Z) (acting on H as fractional linear transformation) whose image in
SL,(Z /NZ)/{-L) is y.
Proof. See [2, Theorem 3 in Chapter 6] or [11, Theorem 6.6]. O

For v =[v1 V2] € M} »(Q)\M;,5(Z), the Siegel function g, on H is given by the infinite product
expansion

1

2 1
gv(T) = _eﬂivz(vl_l)qrz Vf-w+=2)

- g)[[A - gfg)A - gfg;) (T € H), (5)

n=1

where g; = e and g, = ™ with z = v + v,. Observe that g, has neither a zero nor a pole on H.

Proposition 2.2. Let N be an integer such that N > 2, and let v € %MI,Z(Z)\MLZ(Z).
(i) Ifu € oM (Z)\MAZ) such thatw = v or - v (mod M (Z)), then gi* = g™

(i) The function g&m belongs to Fy and satisfies
&Y =g." (v €GLA(Z/NZ)/(-L) = Gal(Fw/F).



1148 =— Ho Yun Jung et al. DE GRUYTER

Proof.
(i) See [12, Theorem 1.1 in Chapter 2 and p. 29].
(ii) See [12, Theorem 1.2 and Proposition 1.3 in Chapter 2]. (|

Lemma 2.3. Let u, v € M; 5,(Q)\M;,»(Z) such that u # v and —v (mod M, ,(Z)). Then we have

(fu _ fv)6 — ]2(] - 1)3 glivgg—v.
39 12,12
8u 8y

Proof. See [12, p. 51]. O

3 Extended form class groups

In this section, we review some necessary consequences of the theory of complex multiplication, and
introduce extended form class groups which might be an extension of Gauss’ form class group.

Let K be an imaginary quadratic field of discriminant dk. For a positive integer N, let Qy(dk) be the set
of primitive positive definite binary quadratic forms of discriminant dx whose leading coefficients are
relatively prime to N, that is,

ng(aQ’ bQ’ CQ) =1,
X ged(ag, N) =1,
Qn(dx) = Q([y]) = agx® + boxy + coy® € Z[x, y] ag > 0,

b} - 4aqcq = dx
The congruence subgroup
L(N) = {y ¢ SL2)ly = [}) ’;] (mod NMZ(ZD}
defines an equivalence relation ~y on the set Qy(dx) as
Q-vQ & Q' = Q(y[;]) for some y € [(N).

Let
Cn(dg) = Qn(dg) [~

be the set of equivalence classes. For each Q = agx? + bgxy + cgy? € Qn(dk), let [Q]y be its class in Cy(dk),
and let

~bo + \/dx
n=————"

ZaQ

which is the zero of the quadratic polynomial Q(x, 1) lying in H. For a nontrivial ideal m of O, let us denote
by Cl(m) the ray class group modulo m, namely, Cl(m) = Ix(m)/Pk,(m), where Ix(m) is the group of frac-
tional ideals of K relatively prime to m and Pg (m) is the subgroup of Px(m) (the subgroup of Ix(m)
consisting of principal fractional ideals) defined by

Pg 1(m) = (vOg|v € Og\{0} suchthat v =1 (mod m)).

Then, when m = NOg, the map
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Cn(dg) — CI(NOg)
[Qly =, 1] = [Z7q + Z]

is a well-defined bijection, through which we may regard Cy(dx) as a group isomorphic to CI(NOg) ([13,
Theorem 2.9] or [14, Theorem 2.5 and Proposition 5.3]). The identity element of Cy(dx) is the class [Qp]n
of the principal form

o Ky if d = 0 (mod 4),

Qpr = X2 + bgxy + cxy? = 4

X2+ xy + 1_le<yz if dg =1 (mod 4).

We call this group Cy(dx) the extended form class group of discriminant dyx and level N.
In particular, Ci(dk) is the classical form class group of discriminant di, originated and developed by
Gauss [15] and Dirichlet [16]. A form Q = agx? + bgxy + cgy? in Qi(dk) is said to be reduced if

—ag<bg<ag<cyg or 0<bg<ag=co.
This condition yields

ag < |d_K| (6)

3

If we let Q;, Qa, ..., Qp be all the reduced forms of discriminant dy, then we have h = |Cy(dy)| and

Ci(dx) = {[Qil1, [Qz]1, -..,[Qnh} (7)
([9, Theorem 2.8]). Set
dx . _
—_— if d[{ =0 (mod 4),
T = 2
-1+ dK

if dK =1 (mod 4),
and then ¢ = 1g,, and Ok = [, 1]. By the theory of complex multiplication, we obtain the following results.

Proposition 3.1. Let K be an imaginary quadratic field and m be a nontrivial ideal of O.
(i) If m = Ok, then we obtain

K = Hg = K(j(1%)).

Furthermore, ifQ; (i = 1, 2,..., h = |C{(dy)|) are reduced forms of discriminant dx, then the singular values
j(1q,) are distinct (Galois) conjugates of j(1x) over K.
(ii) If m + Ok, then we have

Kin = Hi(bx (@ ([w])))

for any element w of K for which [w] = w + Ok is a generator of the Og-module m~'Ox /Ox. All such
hx (@ ([w])) are conjugate over Hy. More precisely, if &, (i = 1, 2,...,[K,, : Hk]) are nonzero elements of Ox
such that

{(&)Px(m)li = 1, 2, ...,[Ky : Hx]} = Pg(m)/ Py, 1(m)(=Gal(Ky, / Hx)),
then b (i ([§w])) are all distinct conjugates of hx (@i ([w])) over Hk.
Proof.

(i) See [2, Theorem 1 in Chapter 10] and [9, Theorem 7.7 (ii)].
(i) See [2, Theorem 7 and its Corollary in Chapter 10]. O
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By modifying Shimura’s reciprocity law ([11, Theorem 6.31, Propositions 6.33 and 6.34]), Eum et al.
established the following proposition.

Proposition 3.2. Let K be an imaginary quadratic field, N be a positive integer, and Ky be the ray class field
of K modulo the ideal (N). Then the map
Cn(dx) — Gal(Kvy /K)

aq (bo-bx)/2
[Qly = | f(m) '-’f[ o 1 ](TQ)IfE Fy is finite at T

is a well-defined isomorphism.
Proof. See [13, Remark 3.3 and Theorem 3.10]. O

Remark 3.3. If M and N are positive integers such that M | N, then the natural map

Cn(dx) — Cu(dx)
[Qly — [Qlm

is a surjective homomorphism ([13, Remark 2.10 (i)]).

4 Some applications of inequality on singular values of j

Let K be an imaginary quadratic field of discriminant dg. By using inequality argument on singular values of
j developed in [6], we show that coordinates of elliptic curves in the family {Ex n}ncz., described in (2) can be
used in order to generate the ray class fields of K.

Let hg denote the class number of K, i.e., hx = |Ci(dx)| = [Hk : K]. It is well known that

hK =1 & d[( = —3, —4, —7, —8, —11, —19, —43, —67, -163

([9, Theorem 12.34]). So, if hx > 2, then we have dg < —15.

Lemma 4.1. If hy > 2 and dx < -20, then we achieve

2 —_1)3 5
00D 7] 75 14,5 @

for all nonprincipal reduced forms Q of discriminant d.

Proof. See [6, Lemma 6.3 (ii)]. O

Remark 4.2. If di = —15, then we obtain Ci(dx) = {[Q1];, [Q2]:} with
Qi =x>+xy+4y> and Qy=2¢+xy + 2%
Moreover, we have

1+45

j() = j(1q,) = -52,515 - 85,995 >

and j(1o,) = -52,515 - 85,995

1-5
2

([1, Example 6.2.2]). One can check that inequality (8) also holds true.
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Lemma 4.3. Let K be an imaginary quadratic field other than Q(~/-1) and Q(~/-3). Then we attain
Hx = K(¢¢™) for every n € Z.q.

Proof. If hy = 1, then the assertion is obvious because Hy = K.
Now, assume that hg > 2. Let 0 be an element of Gal(Hg/K), which fixes €x". Then we find by
Proposition 3.1 (i) that

n

_ |
"

1

_ @0 @) - D’ " ‘ J(19)°J(19) - 1)°
J(@)*J (1) - 1)° J(@)*J (%) - 1)?
for some reduced form Q of discriminant dx. Thus, Q must be Q,; by Lemma 4.1 and Remark 4.2, and hence o

is the identity element of Gal(Hg /K) again by Proposition 3.1 (i). This observation implies by the Galois
theory that Hg is generated by €" over K. O

Theorem 4.4. Let K be an imaginary quadratic field other than Q(v-1) and Q(/-3), and let m be a
nontrivial proper integral ideal of Ok. Let w be an element of K such that w + Ok is a generator of the
Ox-module m™1/Ox. If K., properly contains Hg, then we have

K = KOt n(@), Yg n(@)?)  for every n € Z.,.

Proof. For simplicity, let
X = xgn(w) = &"hx(pp([w])) and Y=y (w).

Set L = K(X, Y?) which is a subfield of K,, by Proposition 3.1 and the Weierstrass equation for Eg , stated
in (2).

Suppose on the contrary that K., # L. Then there is a nonidentity element o of Gal(K,, / K), which leaves
both X and Y? fixed. Note further that

o ¢ Gal(Ky, /Hx) &)

because K, = Hg(X) by Proposition 3.1 (ii). By applying ¢ on both sides of the equality

Y2=4X3 - AX-B with A = MEKZ" and B = M&f”,
27 27
we obtain
Y2 = 4X3 - A°X — B°.
It then follows that
(A° - A)X = B - B°. (10)
Since
5n+1
AB = &
273
generates Hy over K by Lemma 4.3, we deduce by (9) and (10) that A — A # 0 and
B’ - B
X=- € I‘IK.
A% - A

Then we obtain
Hy = Hy(X) = Ky,

which contradicts the hypothesis K, 2 Hg.
Therefore, we conclude that

Ky = L = K(xg,n(®), Vg (@)?). a



1152 —— Ho Yun Jung et al. DE GRUYTER

Proposition 4.5. Let K be an imaginary quadratic field other than Q(~/-1) and Q(~/-3), and let m be a
nontrivial proper integral ideal of Ok. Let w be an element of K such that w + Ok is a generator of the
Ox-module m~1/Ox. Then we have

K = K(xg,n(w)) for sufficiently large n € Z.,.

Proof. Note that & = J(1x)2(J(1%) — 1)? is nonzero because K is different from Q(~/-1) and Q(+/-3). There
are two possible cases: hx = 1 or hg > 2.
Case 1. If hgx = 1 (and so Hg = K), then for any n € Z,,

K(xg,n(w)) = Hg("bx (@i ([w]))) by (3)
= Hx(hx(x([w]))) by Proposition 3.1 (i)
=K, by Proposition 3.1 (ii).

Case 2. Consider the case where hg > 2. Let Gal(H /K) = {0y = id, 03, ...,0n} and d = [K,, : Hk]. Observe by
Proposition 3.1 (i) that for eachi = 1, 2,..., hg there is a unique reduced form Q; of discriminant dg,
and so J(1x)% = J(1g,). By Lemma 4.1 and Remark 4.2 we can take a sufficiently large positive integer
m so that

ki

forall i=2,3,..., h.
104

" ‘I ()’ U(t) - 1)°
@0 (@) - 17

md . ’ Ni,, /(i (@ ([w])))
Ni., /(i (@ ([@])))°

We then see by (3) and Proposition 3.1 (i) that if n € Z,, satisfiesn > m and 2 < i < hg, then

nd

‘ Nk, / 5 (X, n(@))° ‘ _ & N, /. (bx (@ ([w])))%
Nk, /i (Xx,n(@)) e Nk, /m(hx (@ ([w])))
This observation implies that
K(Nk,, 5, (Xx,n(w))) = Hg. (11)

Hence we derive that if n > m, then

K(xg n(w)) = K(xg,n(w), Nx,, /5,(Xx,n(w))) since K(xg(w)) (cK,) isan abelian extension of

K
= Hg(xg,n(w)) by (11)
=K, by (3) and Proposition 3.1.

5 Generation of ray class fields by x-coordinates of elliptic curves

By using some interesting inequalities on special values of Siegel functions, we shall find a concrete bound
of n in Proposition 4.5 for which if n is greater than or equal to this, then x¢ ,(w) generates K, over K.

Lemma 5.1. Let v € My ,(Q)\M,; 5(Z), and let T € H such that |g;| = |e*""| < e73,
(i) We have

18, () < 2.29]gq| 2.

(i) Ifv e %Ml,z(Z)\MLZ(Z) for an integer N > 2, then we obtain

0.76|gq|®

I8y (T)] > N

Proof. Let v = [vi V2] and z = wT + v,. By Proposition 2.2 (i) we may assume that 0 < v; < % Set s = |qq|.
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(i) We then derive that

18o(D < g2 01 + 1D + lgelg:DA + lge"lg:I) by (5)

n=1

= sl b(1 4 [T (1+ 579) (1 + 577%)
n=1

— 1 . 1 1 1
<s a1+ D[] +s72)? since0<vi<= and v —vi+ — > ——
1 2 6 12
1 = —m3yn-1
<25 % Hez(e )2 pecause 1+ x < e for x > 0
n=1

©  _pf3yn-1
= 25 @2 Lo 2

3
1 2 2
= 25" %13

<2.29 s,

(ii) Furthermore, we see that

Ig(D)] = s30T O qz|ﬁ(1 -sm1)(1-5") by (5)
n=1

i - 1 1 1
> si min{|1 — e, 1- s%} [J-s"2)7 because v - v + ri
n=1

o0
. . T —ny3\n-1 . 1
> sn mm{ sin—, 1- (e‘"ﬁ)fv} [Te“c™ " since 1-x> e for 0 <x< >
n=1
1 o g f3n-1 . 1
> sﬁﬁe“‘ @2 pecause both sin(x) and 1 — e”3% are > x for 0 < x < 5
3
11 e 2
=S12—@1-¢™3
0.76s12
> 12 . D
N

Theorem 5.2. Let K be an imaginary quadratic field other than Q(v/-1) and Q(v/-3). Let m be a proper
nontrivial ideal of Ok in which N,, (=2) is the least positive integer. Let w be an element of K such that w + Ok is

a generator of the Og-module m™'/Ok. If K., properly contains Hg, then

Ky = K(xg,n(w))
for every nonnegative integer n satisfying

13 229
Saidd + 61n(7—6Nm)

_1 (12)
>nld| -1n877,383 6
Proof. Since N,,Ox € m and w € m™\Og, we have
Nyw = atg + b forsome a,b € Z suchthat [a b] ¢ NoM;2(Z2). (13)

Let n be a nonnegative integer satisfying (12). If hx = 1, then the assertion holds by the proof (Case 1) of
Proposition 4.5.

Now, we assume hi > 2. Since K, properly contains Hg, one can take a nonidentity element p of
Gal(K,, /Hk). Note that p does not fix xg ,(w) due to the fact K,, = Hx(xx,»(w)) by (3) and Proposition 3.1
(ii). Suppose on the contrary that xx ,(w) does not generate K., over K. Then there exists at least one
nonidentity element ¢ in Gal(K,, / K(xg n(w))) = Gal(Hgx(xg,n(w)) / K(xx,n(w))). Let P be a quadratic form in
Qn,(dg) such that [P]y, maps to o through the surjection
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restriction

Crn,(dx) —= Gal(Kw,/K) —  Gal(Kn/K)
u = Mk,

whose first map is the isomorphism given in Proposition 3.2. It follows from (7), Proposition 3.2, and Remark
3.3 that

P =Q" forsome nonpricipal reduced form Q and y € SLy(Z).
Here we observe that
=y p) and aqg=2. (14)
Then we deduce that
(X n(@) — X n(@)P)”

Xg,n(W) — Xg,n(W)P
because o is theidentity on K(xx,,(w)) which contains xg,,(w)”
@M = @) | [1 L]

e"fu () — (C"fu(Tx))P No Np
by (3), (13), and the definitions of bhg, ¢, and a Fricke function
J (@)™ () = D*"(fu(wx) = fr(@m))}°
J(@)(J () = D>"(fu(tc) - (1))

for some v € NLMM(Z)\MLZ(Z) such that u # v and —v (mod M; »(Z))

m

1=

by Proposition 3.1(ii) and (4) since p € Gal(K,, / HK)\{ide}
_ ‘ J@)J (1) - D' fu(p) — fo(wp)

J@)?U () - 1| | fu(tk) - fu(m)
for some u’, v’ € NLMl,z(Z)\MLz(Z) such that u’ # v/ and -v' (mod M; »(Z))

m

by Proposition 3.2
J ' @) J( () - 1’
J(w)*U (%) - 1)°
_|T@r0() - D’[*| fw (o) - fvr(Ta)

J@)*U() - 1?| | fu() - fo(w)
by the fact J € #/; and Proposition 2.1
J@PU(r) - 1P|
J(w)*J (%) - 1)

n

fu(y (1) - fo(y A1)
fu(tx) = fu(tx)

by (14)

with u” = u'y~! and v" = v'y!

n+

gu”+v"(TQ)gu”—v"(TQ)gu(TK)z v(TK)Z
Suv(T0)8u (1) (10)°8y(10)
n+g 2-296|qrg|_112 |QTK|_;’

6
0.76 1 1
(%) 14ndt gl
L

-
because |qy| = e ™4l < e5 and |g,| = e %@ <e™3by(6)

by Lemma 2.3

< (877,383 qu,(lg) by Lemmas 4.1, 5.1, and Remark 4.2

5\"*5(229 \°
:(877,383 |qTK|2> 6(7—6Nm) |G| 72 G5

5\"*5(229 \°
3(877,383 IqTK|2> 6(7—6Nm) |G| 2 |G

since |gq | > 1 and |qq, |7 = (Igg ™% < (Igo[™)? by (14)

1 6
- (877,383 e 3" ldxl)"”’(ﬁzvm) ol T
76
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Now, by taking logarithm we obtain the inequality

0< (n + %)(ln877,383 - gmlldKl) + 6ln(ENm) + E71 |dx|

76 24
with
In877,383 - gn\/ |dg| < 1n877,383 — gnJE <0.
But this contradicts (12). Therefore, we conclude that K,, = K(xg n(w)). O

Example 5.3. Let K = Q(+/-5), and so dx = —20. Note that

2is ramified in K since 2 | dg,
13 isinertin K due to (f—;) = -1,

23 splits completelyin K because (‘21—13() =1

([9, Proposition 5.16]). Let m = p, p,p; be the product of three prime ideals
p=[1++-5,2], p,=[134/-5,13], and p;=[15+-5,23]

of Ok satisfying 20k = pf, 130k = p,, and 230k = p;3p5. In this case, by checking the degree formula for
[K., : Hk] we see that K., properly contains Hg. Since

m=piP,ps O pfpzpﬂ_% =(2-13 - 23)0,
we obtain N,, = 2 - 13 - 23 = 598, and hence one can estimate
13 229 13 229
el + 6ln(%Nm) iﬂm + 6ln(% : 598)

- 1 - L L 2286282,
>nyldk| - In877,383 6 -ny20 - In877,383 6

If w is an element of K such that w + O is a generator of the Og-module m~1/Ok, then we obtain by
Theorem 5.2 that

Ky = K(xg n(w)) forall n > 3.

Remark 5.4. At this stage, we conjecture that Theorem 5.2 may hold for every n € Z.,.

6 Ray class fields of special moduli

Let K be an imaginary quadratic field other than Q(v/-1) and Q(+/-3), and let N (>2) be an integer whose
prime factors are all inert in K. In this last section, we consider the special case where m = NOg and show
that Theorem 5.2 is also true for every n € Z.,.

Lemma 6.1. Let f € F. If f has neither a zero nor a pole on H, then it is a nonzero rational number.

Proof. See [2, Theorem 2 in Chapter 5] and [17, Lemma 2.1]. O

For an integer N > 2, let
Sv={ls t] e Mjx(Z)|0 <s,t <N and gcd(N, s, t) =1}.

We define an equivalence relation =y on the set Sy as follows: for u, v € Sy
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usyv & u=vor-v(mod NM (Z)).
Let
Py ={(u,v)|Ju, v € Sy suchthat u #y v} and my = |Py].

Since [1 0], [0 1] represent distinct classes in Sy /=y, we claim my > 2.

Lemma 6.2. If N is an integer such that N > 2, then we have

6
[T (fiu-fiv) =Kk0PU - D} for some k € Q\{0}.
(u,v)ePy
Proof. For [a b] € My,»(Z) with gcd(N, a, b) = 1, let iy([a  b]) denote the unique element of Sy satisfying
my(la b)) =[a b] (mod NM,(Z)).
Let a € My(Z) with gcd(N, det(a)) = 1, and let & be its image in GL,(Z /NZ)/{-bL) (=Gal(¥y/F7). Setting
6
f=T1 (fru-fiv)
(u,v)ePy

we find that

H (fﬁuﬁ - f%vﬁ)6 by Proposition 2.1 = H (f%rr]v(ua) - f%mv(va))6 by (4) =f

(u,v)ePy (u,v)ePy

f&

because the mapping Sy — Sy, u — my(ua), gives rise to an injection (and so, a bijection) of Py into itself.
This observation implies by the Galois theory that f lies in 7.
On the other hand, we attain

6 6
2(7 _ 1)3 81, 1 u—
f= H I 5 D) N(ml‘;)g’;;u v by Lemma 2.3
(u,v)ePy 3 g%ug%v
6 6
= g{—] U I)B}mN with g= ] SiwrvSiay
- - 12 ;12 .
3 (u,v)ePy gﬁugﬁv

Since f and J belong to ¥, so does g. Moreover, since g has neither a zero nor a pole on H, it is a nonzero
rational number by Lemma 6.1. Therefore, we obtain

f=k{J>J - 1)} for some k € Q\{0}. O
Lemma 6.3. Let K be an imaginary quadratic field and N be an integer with N > 2. If every prime factor of
N is inert in K, then the principal ideal (stx + t)Og is relatively prime to NOx for all s,t € Z such
that gcd(N, s, t) = 1.
Proof. We see that
N oStk + t) = (sT¢ + E)(STk + t) = TxTiS® + (T + Ti)St + t2 = cxs® — byst + 2.

Now, we claim that Ng,q(st¢ + t) is relatively prime to N. Indeed, we have two cases: dx = 0 (mod 4) or
dK =1 (mod 4).
Case 1. Consider the case where dyx = 0 (mod 4), and then by = 0 and ¢ = —‘2—’(. Let p be a prime factor

of N. Since p is inert in K, it must be odd and satisfy (%K) =-1.1If

Nejolsti + ) = - %s + 2 0 (mod p),
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then the fact (%") = —1 forces us to obtain s = 0 (mod p) and so t = 0 (mod p). But this contradicts the
fact gcd(N, s, t) = 1. Therefore, Nx,o(stx + t) is relatively prime to p, and hence to N.

Case 2. Letdy =1 (mod 4), and so by = 1and cx = L

Z‘d". Let p be a prime factor of N. Since p is inert in

K, we derive

dgy =5 (mod 8) if p=2,

(@)z—l if p>2.
4

Then we find that

NK/Q(STK + t) =

1_szz—st+t2= s? + st + t? (mod p) if p=2,
4 | 4'{(s - 2t)? - dgs® (mod p) if p > 2,

where 4’ is an integer such that 4 - 4’ = 1 (mod p). When p = 2, we see that s> + st + t?> = 1 (mod p) because
s and t are not both even. When p > 2, if Ng,q(stc + t) = 0 (mod p), then the fact (%K) = —1 yields that

s =0 (mod p)andsot = 0 (mod p). But this again contradicts gcd(N, s, t) = 1. Hence Nk ,o(s7k + t) is rela-
tively prime to p, and so to N. Therefore, the principal ideal (s7x + t)Oy is relatively prime to NO. O

Theorem 6.4. Let K be an imaginary quadratic field other than Q(~/-1) and Q(~/-3), and let N be an integer
such that N > 2. Let w be an element of K so that w + O is a generator of the Og-module N'Oy [ Ok. If every
prime factor of N is inert in K, then we attain

Ky = K(xg,n(w)) for every n € Z.o.

Proof. Since Ky is an abelian extension of K, K(xx n(w)) is also an abelian extension of K containing
XK,n(%) by Proposition 3.1 (ii). Since
(stx + t)Ok € Px(NOg) forall[s t] € Sy
by Lemma 6.3, we obtain by Proposition 3.1 (ii) that
XK,H(STKTH) € K(xgn(w)) forall [s t] e Sy.

We then deduce that

6
KOxn@) > [] (XK,H(M) - XK,H(M)) with w = [u; W] and v = [vi V;]

(u,v)ePy N N
6
= ] (EK"UK(‘PK([%]))—EK"UK(fPK([%]))) by (3)
(u,v)ePy
e \° 6
- T 455 (fntao) - fp(0)
(u,v)ePy

by the definitions of ¢, hx and Fricke functions

) (227K3'15 )6mN{ [T (- fI},v)6}(TK)

(u,v)ePy

n \6my
= ( ;1;5) [k{J2(J - 1)3¥™](1%) for some k € Q\{0} byLemma 6.2

6n+1\"™
= k( t ) .
242330
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Therefore, we achieve that

£K6n+l

K(XK,H(CU)) = K(XK,n(w)’ k(242—330) N)

= Hx(xg n(w)) byLemma 4.3
=Ky by (3) and Proposition 3.1. O
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