DE GRUYTER Open Mathematics 2022; 20: 1112-1125 a

Research Article

Jun Sun* and Wanrong Liu

Robust estimation for varying coefficient
partially functional linear regression models
based on exponential squared loss function

https://doi.org/10.1515/math-2022-0501
received April 28, 2021; accepted September 11, 2022

Abstract: In this article, we present a new robust estimation procedure based on the exponential squared
loss function for varying coefficient partially functional linear regression models, where the slope function
and nonparametric coefficients are approximated by functional principal component basis functions and B
splines, respectively. Under some mild conditions, the convergence rates of the resulted estimators are
obtained. Simulation studies indicate that our proposed method can achieve robustness against outliers or
heavy-tail error distributions and perform no worse than the popular least-squares estimation method for
the normal error case. Finally, a real data example is used to illustrate the application of the proposed
method.
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1 Introduction

Varying coefficient models have become an important research topic in modern statistics and have been
frequently applied for addressing problems in various scientific areas, such as economics, biomedical
science, finance, medicine, and engineering. One superior characteristic that makes the varying coefficient
models attractive is that they have the ability to explore the dynamic pattern by allowing coefficients to vary
over the so-called index variable. Moreover, varying coefficient models retain the virtues of both parametric
and nonparametric models; therefore, the possible modeling biases can be reduced and the curse of
dimensionality can be avoided. Recently, much effort has been devoted to studying the methodological,
theoretical, and applied sides around varying coefficient models, and we refer, for instance, to [1-6].
Nowadays, technological innovations allow us to create and store large-scale data sets. In many cases,
these data sets can be viewed as functions of time or spatial points or some other continua. Such type of
data is termed functional data. In recent years, functional data analysis has attracted much attention
among statisticians and practitioners. As the fundamental tool and mathematical framework for functional
data analysis, the functional linear model (FLM), which characterizes the relationship between a scalar
response and a functional predictor with a linear operator, is seeing a rise in popularity in practice. For a
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systematic coverage of statistical methods and inferences of FLM, see [7-13] and others. It is well known
that the FLM model is useful. But in many practical situations, the simple relationship between the
response variable and functional covariate may not be sufficient. To improve the power of prediction
and interpretation of FLM, several extensions of FLM have been proposed for the analysis of mixed data
with complex structures. Recently, Peng et al. [14] incorporated some real-valued covariates in FLM and
proposed a mixed data model, namely, a varying coefficient partially functional linear regression model
(VCPFLRM). The VCPFLRM takes the form

Y = ZTR(U) + Ia(t)X(t)dt e @
T

where Y is a real-valued random variable defined on a probability space (Q, 8, P), Z = (Zi, ...,Z,)T and U
are observed explanatory variables and so-called index variables defined on the same probability space,
respectively. S(U) = (B,(U), ...,ﬁp(U))T consists of p unknown varying-coefficient functions, {X(t) : t € 7}
is a zero mean, the second-order stochastic process valued in H = L2(7), the set of all square-integrable
functions on 7~ with the inner product (x, y) = _[ x(t)y(t)dt, Vx,y € H and norm |x|| = {x, x)'?, a(t) € H is
unknown slope function, the error term ¢ is assumed to be independent of (Z, U, X) with E(¢|Z, U, X) = 0.
Without loss of generality, we assume that U takes values from the unit interval [0, 1] and suppose
throughout that 7 = [0, 1]. The VCPFLRM is flexible and includes some existing statistical models. For
example, when a(t) = 0, it reduces to the varying coefficient model; when S(-) are all set as constant,
it reduces to the partially FLM [15]; when p = 1 and Z; = 1, it reduces to the semi-FLM [16].

To estimate the slope function a(-) and the coefficient functions ﬁj(~), j=1,...,p in VCPFLRM, Peng
et al. [14] proposed the least squares estimation procedure based on B-spline basis function approxima-
tions. Feng and Xue [17] proposed a profile least squares estimation by using functional principal compo-
nent (FPC) analysis and local linear smoothing technique. However, all the above existing articles are built
on least square method and the assumptions that the error is normally distributed, which are sensitive to
outliers and heavy-tailed error distributions. Hence, robustness against outliers is a very important issue in
the VCPFLRM. Recently, Wang et al. [18] investigated a new estimation method for linear regression models
by minimizing exponential squared loss (ESL) p(-), i.e., p(t) = 1 — exp(-t?/h), where the tuning parameter
h € (0, co) controls the degree of robustness and efficiency for the estimators. For large h, 1 — exp(-t2/h) =
t2/h, and therefore the proposed estimators are similar to the least squares estimators in the extreme case.
For a small h, the outliers in the observations t will receive a small impact on the estimators. Therefore, this
method is more robust to outliers than the least squares method. Due to its nice property, this method has
been quickly extended to the statistical models for the sake of robust inference, the recent literature include
but are not restricted to Jiang et al. [19] for the varying coefficient partially nonlinear model, Song et al. [20]
for the single index varying coefficient model, Yu et al. [21] for the semi-functional linear regression model,
Lv et al. [22] for the generalized varying coefficient partially linear model. Even though exponential-
squared-based estimation has been well developed, the theory and methodology for VCPFLRM are none.
It is therefore our impetus for applying this method to VCPFLRM.

The main objective of this article is to propose a new robust estimation procedure based on the ESL
function for the VCPFLRM. To estimate a(-) in VCPFLRM, two commonly used approaches have been
proposed, including the FPC basis method and the basis function expansions (such as B-spline functions
approximation) method. Since FPC has some desirable properties in approximating a smooth function, for
example, it is a data-driven technique where the data can be represented as linear combinations of func-
tions estimated from the data. Besides, by requiring the order of generalized Fourier coefficients based on
the FPC basis, we can control the smoothness of the slope function. Due to these advantages mentioned
above, we first use B splines and FPC basis to approximate the varying coefficient functions and slope
function in model (1), respectively. With the help of these approximations, the estimation problem based on
the ESL function for VCPFLRM becomes a problem of estimating the coefficients in the linear combinations.
Under some mild regularity conditions, we show that the estimators of coefficient functions and slope
functions can achieve the optimal convergence rate. Moreover, our numerical studies and a real data
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application in the sequel demonstrate that our proposed method is at least comparable to some existing
works. It is worth pointing out that there exist some essential differences between our proposed method and
that of Wang et al. [18] and Yu et al. [21]. First, our studied VCPFLRM is flexible enough to cover the classical
linear regression model and the semi-functional linear regression model as special cases. Accordingly,
a different approach is required to deal with varying coefficient functions (), this difference leads to
different theoretical properties for proposed estimators. Second, compared with the works of [18] and
[21], though the estimate of B(-) and a(-) can be easily obtained by transforming the original VCPFLRM
to a standard linear regression model, we need to choose extra tuning parameters by the data-driven
procedure for spline estimates of B(-), such as the number of interior knots, which controls the dimensions
of the spline spaces used to approximate the true varying coefficient functions.

The rest of the article is organized as follows. In Section 2, we describe the proposed estimation
procedure for VCPFLRM. In Section 3, we establish the theoretical properties of the resulted estimators.
In Section 4, we develop an estimation algorithm and discuss the selection of tuning parameters. Section 5
illustrates the numerical performance of the proposed method through simulation experiments. A real data
analysis is presented in Section 6, and some concluding remarks are followed in Section 7. All proofs of
theorems are provided in the Appendix.

2 Estimation procedure

Let {Y;, Z;, U, X;}i, be an independent and identically distributed sample that is generated from model (1).
Motivated by [18], we estimate the slope function a(t) and nonparametric coefficients f(U) in VCPFLRMs by
maximizing the following ESL function

" (¥ - Z7B() ~ [ a®X(HdD)?
Y expi- p o ) )
i=1

In what follows, we first approximate the nonparametric components S(U) by B splines. Let B(u) =
(By(w), ...,Bg(w))T be the B-spline basis functions, where K = k, + q + 1is the number of basis functions, q is
the degree of the spline, and k, is the number of internal knots that control the smoothness of nonpara-
metric functions. Thus, for any function Bj(u), j=1,..., p, we have

K
Bw) = Y myBe(w). 3)
k=1

Note that it is possible to specify different K for each component, but we assume that they are the same
for simplicity. Next, we construct the covariance function and the empirical covariance function for the
random process X(-) as follows:

K(s, t) = Cov(X(s), X(1)), K(s,t) = %Zn:Xi(s)Xi(t). 4)
i=1

Obviously, the covariance function K(s, t) defines a linear operator that maps a function f to Kf given
by (Kf)(s) = IK (t, s)f (t)dt. We assume that the linear operator with kernel K(s, t) is positive definite. Let
A >A >--> 0and }[1 > }[2 > > /i,,“ =...= 0 be the ordered eigenvalue sequences of the linear operators
with kernels K(s, t) and K(s, t). {¢}-} and {(ﬁj} are an orthonormal sequence of eigenfunctions, and it is clear
that the vectors ¢,, ¢,, ... form an orthonormal basis in H. Then, consider the spectral decomposition of the

covariance function K(s, t) and K(s, t) as follows:

K(s, t) = YASS)P0),  K(s, ) = Y Ad(s)dy(0). )
j=1 j=1
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According to the Karhunen-Loévere presentation, two L?-valued functions X(¢) and a(t) have the following
expansions:

X(t) = Y &pt), alt) = Y yi(0), (6)
i=1 j=1

where ¢, = I;X (Opt)dt, y; = I; a(t)q,')]-(t)dt. It follows that ¢;s are uncorrelated random variables with mean

0 and variance E(é’iz) = A;. For more details, see [23].
Let Hi = (ZilBl((Ji)’ e 9ZilBK(l]i)y cee ’ZipBK([]i))T’ n= (rllTx cee arl:;)T with rl] = (rljp ceey rl]K)T Based on equa-
tions (3)—(6), model (1) can be rewritten as follows:

m
Y=~Mn+ Yy, X) +e& i=1..,n, )
j=1

where m < n is the truncation level that trades off approximation error against variability and typically
diverges with n. Replace ¢, by ¢, for j = 1,..., m, model (7) can be rewritten as follows:

Y=Tn+Vy+e i=l..n, ®

where Vi = {(X;, qﬁj)}jzl,,_,,m, Y = WY, Thus, the objective function (2) becomes

C Y, - IIin - Vy)?
Qn(1, y) = Zexp{—( '}1 V) } ©9)
i=1

Denote the maximizer of (9) by 7 and y. Consequently, the estimated component functions are given by

Biw) = BT, &) = YL 7b (D).

3 Theoretical results

In this section, we aim to establish the theoretical properties of the resulting estimators. First, we need to
make some definitions and assumptions. We assume that the true functions in model (1) are ay(-) and
Boj(-), j=1,...,p. We use C to denote a generic positive constant that can vary from line to line. a, ~ b,

means that a,/b, is bounded away from zero and infinity as n — co. The notation |-|| is the L? norm for a
function or the Euclidean norm for a vector. Let S = (X(t), ao(t)), ¥,(¢) = exp(-¢2/h), F(z,u,s, h) =
EW,©NZ=2z,U=u,S =5),and G(z, u, s, h) = EQp,(€)’|Z = z, U = u, S = s). The following regularity con-
ditions will be required, which are common and some can be found in [14], [24].
(C1) EIX()I* < C < oo, E[¢'] < CAZ, fori > 1, fort > 2, E(|Z; ') < oo for j = 1,..., p.
(C2) The eigenvalues A; and score coefficients y; satisfy the following conditions, respectively.

(a) There exist some constant C and a > 1 such that

Cliv<A<Ci™® A-Ayqg=2Ciel ix1.
(b) There exist some constant C and b > a2 + 1 such that

¥ <Gb, g1

(C3) The tuning parameter m satisfies m ~ n(a+2b),

(C4) The density function of U, fy(u) is bounded away from O and infinity on [a, b]. Furthermore,
we assume that fy(u) is continuously differentiable on (a, b).

(C5) ﬁ}-(t) € ¥r,j =1,..., p for some r > 2, where ¥, is the collection of all functions on [0, 1] whose dth

order derivative satisfies the Holder condition of the order ¢ withr=d + ¢and 0 < ¢ < 1.
(C6) F(z,u,s,h)andG(z, u, s, h) are continuous with respect to (z, u, s) and F(z, u, s, h) < 0 forany h > 0.
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(C7) E@y(e)lz, u, s) = 0, E@p,*(e)|z, u, 5), EQP, (e)\z, u, s), E@;"(e)lz, u, s) are continuous with respect

to (z, u, s).

Theorem 1. Suppose that the regularity conditions (C1)—(C7) hold, and the number of interior knots k, ~ na,
then we have

2b-1

I&C) - ao(IP = Op(nats + maim),  IB() = By IP = Op(nas + noaim),  j=1...,p.

Remark 1. Theorem 1 derives the convergence rates of the estimators a(-) and ﬁi(~). When we take

m ~ky ~nzaand 1 +a<r< 2L then |B() - By ()P = o,,(n;,—ia) and [a(-) - ao()I? = op(n-%:—zﬁ), we

see that ﬁj(~) obtains the optimal global convergence rate, but &(-) obtains Op(n‘zﬁ'), the introduction of the

varying coefficient component affects the convergence rate of the slope function a(-). When we take
a+2b-1 2b-1

m =k ~nats and r> 2 we show [B() B (IF = Op(n ") and 18C) - ao(IIP = Op(n i3,

so a(-) attains the same convergence rate as those of the estimators of [10] and [15], which are optimal in

the minimax sense. However, ﬁj(-) do not obtain the optimal global convergence rate, so the convergence
rates of varying coefficient components are also affected by a(-). When we take k, ~ na+1 ~ m ~ nai», and

2b-1

r= 2a+1)’°

both the estimators @(-) and ﬁj(~) obtain the optimal global convergence rates.

4 Computational issue

4.1 Algorithm implementation

In this subsection, we apply the Newton-Raphson iteration algorithm to solve the estimating equation (9)
since the ESL is smooth with continuous second-order derivative. To be more specific, let ¥ = (ITf, V1),
6=n",y", and Qu(6) = -YI, exp{-(¥; - ¥]6)¥h}, then we outline the iterative algorithm as follows:

Step 1. Start with an initial estimator 6.

Step 2. Update the estimator é(k) of 0 by using the iterative procedure

" [92.®
6-6" 0 log® |

Step 3. Iterate Step 2 until convergence and denote the final estimator of 6 as 6.

kD _ gt _ | 9°Qn(6)
0600

4.2 Selection of tuning parameter h

In this subsection, we will address how to select the tuning parameter h for the proposed estimators in
practice. For simplicity, we further assume that ¢ is independent of (Z, U, X). Following the advice of [19],
we can estimate F(h) and G(h) in implementation by

R 184 R . 1< R .
G = 23 2t exp(-2mP, Bh) = 23 2 exp(-82/h)EE - h2),
nish nih
where & = ¥, - II'} — V9, fj, and J are estimated based on the pilot estimates. In practice, one can use
some existing methods such as mean regression and median regression methods to obtain these pilot
estimates. Therefore, the optimal h can be chosen as

hop = arg min{G(WE(hY6%,
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where ¢ is estimated based on the pilot estimator. Then, we can use the grid search method recommended
in [25] to find h, we find that the possible grid points for h can be selected from 0.56 x 1.02,j =1, 2, ..., k for
some fixed k, such as k = 50 or k = 100. In our numerical analysis, we set k = 100.

4.3 Extra parameter selections

To achieve good numerical performance, one also needs to choose the number of interior knots k, and the
tuning parameter m, appropriately. There are many methods such as the generalized cross-validation
selector [26] and the BIC selector [27] can be used. In this work, we use cubic splines in all our numerical
examples. Then use a BIC-type criterion to select k, and m, that is,

n - TF VT
BIC (kn, m) = log| ) [1 - exp{— % H’ﬁn viy) }] + _logn(p(kn +4) +m),
: n

i=1 opt

where 1 and y are the proposed estimators by minimizing (9) with the number of interior knots k, and the
first m principal components. In this work, we select the tuning parameter and the number of interior knots
by minimizing the above BIC criterion on the ranges 1 < m < 8 and [n"®] < k, < [8n"?], respectively, where
[@] denotes the largest integer not greater than .

5 Simulation experiments

In this section, we conduct simulations to compare the finite sample performance of our proposed estima-
tion method (ESL) with the other two methods: the quantile regression method [24] with quantile T = 0.5
(QR) and the least square (LS) method [14]. We generated data from the model as follows:

Y = ZB,(U) + ZyB,(U) + Z3B5(U) + Ia(t)X(t)dt + &,
T

where the coefficient functions are §,(u) = 2sin(2u), B,(u) = 8u(1 — w), and fy(u) = 5.5 + 10expQu - 1),
the covariate Z = (Z;, Z,, Z3)T, with each Z;, i = 1, 2, 3, being standard normal distribution and the correla-
tion between Z; and Z; being 0. 5/, U ~ U(0, 1). For the functional linear component, we take the same
form as [21], that is, a(t) = V2 sin(rit2) + 3+/2 sin(3nt2) and X(t) = Z?Sl.fivj(t), where the & are indepen-
dently distributed as the normal with mean 0 and variance A; = 10((j — 0.5)7)2, vj(t) = V2 sin((j - 0.5)mt).
In order to examine the robustness and efficiency of our proposed method, the following three different
error distributions are considered:

Case 1. € follows the standard normal distribution, abbreviated as N(O, 1).

Case 2. € follows the standard t distribution with three degrees of freedom, abbreviated as ¢(3), which is
used to produce heavy-tailed distribution.

Case 3. ¢ follows the contaminated normal distribution with k% data from N(O, ¢) and remaining
1 - k% data from N(O, 1), abbreviated as 0.9N(0, 1) + 0.1N(0, 10). Obviously, the k% data can be regarded
as outliers, and we set k = 10 and ¢ = 10 in this case.

To evaluate the performance of our estimation for slope function a(-) and coefficient functions Bj(~),
we define the following square root of the average square errors (RASE):

RASE0=\/ LS @ - awy,

1,grid -1

np, grid -1

1 M) grid R .
RASE =\/ Y Biw) - w2, j=1,2,3,
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where{t;,i = 1,...,M,gria} and {w;, i = 1,..., 1, griq} are the grid points at which the functions a(-) and ﬁi(-) are
evaluated, respectively. In our simulation experiments, we simply set 1y giq = 201 and n, ¢iq equals to
the sample size n in each scenario. A total of 200 replications with n = 100, 200, 600 are performed. The
mean, median, and standard error (SE) of the RASE values for three error distribution cases are reported in
Tables 1-3. Several observations can be found in Tables 1-3. First, when the error follows a standard normal
distribution, the LS estimate slightly outperforms the QR and ESL estimates, and ESL performs slightly
better than QR. Second, ESL is significantly superior to LS in the other two cases, and this is expected
because the performance of LS is sensitive to heavy-tailed distributions or outliers, ESL seems to be slightly
better than QR in most cases. Third, for the given error distribution, all the considered estimators become
better and better as the sample size n increase gradually. Figure 1 demonstrates the performances of average
curve estimates of ﬁi(~) and a(-) whent ~ 0.9N(0, 1) + 0.1N(0, 10) and n = 100. The plots for other cases are
similar and are omitted. All these results indicate that our proposed method works well under the con-
sidered settings. To further demonstrate the performance of three different methods, we also consider the
Cauchy error distribution. The results are given in Figure 2. We find LS has poor performance since the LS
estimates will break down and suffer from consistency when the error is Cauchy.

To further compare the efficiency of the LS, QR, and ESL estimation of the nonparametric functions

g = (a(), ﬁj(~)), we consider the ratio of average squared error (RT) defined as

s N @) - ay Y S B - By @) - ASEGS)
ASE = a(t) — a(t))® + (u) - B:(w)?t, RT@) = LS’
Mgida & ’ ngal 5 ASE(8)

Table 1: Simulation results for comparison under N(0, 1) error distribution when the sample size n = 100, 200, 600

n Method RASE, RASE RASE, RASE 5
100 LS Mean 0.4443 0.2916 0.2635 0.2743
Median 0.4100 0.2823 0.2596 0.2628
SE 0.1733 0.0844 0.0902 0.0948

QR Mean 0.4477 0.3480 0.3194 0.3263

Median 0.4205 0.3261 0.3155 0.3227

SE 0.1619 0.1036 0.1126 0.1154

ESL Mean 0.4354 0.3274 0.2952 0.3012

Median 0.4105 0.3146 0.2868 0.2878

SE 0.1472 0.1028 0.1124 0.1061

200 LS Mean 0.2952 0.2137 0.1679 0.1665
Median 0.2810 0.2081 0.1590 0.1614

SE 0.0977 0.0491 0.0600 0.0582
QR Mean 0.3285 0.2473 0.2094 0.2004

Median 0.3022 0.2427 0.1992 0.1901

SE 0.1133 0.0628 0.0752 0.0673

ESL Mean 0.3146 0.2328 0.1865 0.1845

Median 0.2972 0.2294 0.1773 0.1777
SE 0.1033 0.0539 0.0711 0.0620

600 LS Mean 0.1728 0.1529 0.0928 0.0921
Median 0.1639 0.1505 0.0917 0.0887
SE 0.0631 0.0266 0.0305 0.0299

QR Mean 0.1805 0.1785 0.1127 0.1126

Median 0.1682 0.1748 0.1101 0.1113

SE 0.0668 0.0284 0.0360 0.0371

ESL Mean 0.1762 0.1696 0.0993 0.1003
Median 0.1670 0.1664 0.0984 0.0989

SE 0.0624 0.0196 0.0321 0.0320
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Table 2: Simulation results for comparison under t(3) error distribution when the sample size n = 100, 200, 600

n Method RASE RASE ; RASE, RASE 5
100 LS Mean 0.5620 0.4460 0.4235 0.4098
Median 0.4624 0.4126 0.3908 0.3735

SE 0.3453 0.2233 0.2226 0.1807

QR Mean 0.4670 0.4122 0.3796 0.3815

Median 0.4487 0.3772 0.3554 0.3543

SE 0.1551 0.1505 0.1506 0.1388

ESL Mean 0.4696 0.3964 0.3752 0.3777

Median 0.4403 0.3666 0.3473 0.3443

SE 0.1628 0.1452 0.1627 0.1637

200 LS Mean 0.3350 0.2967 0.2652 0.2621
Median 0.3080 0.2810 0.2608 0.2452

SE 0.1280 0.0896 0.0951 0.1034

QR Mean 0.3101 0.2688 0.2351 0.2395

Median 0.2884 0.2634 0.2256 0.2250

SE 0.1006 0.0654 0.0798 0.0913

ESL Mean 0.3151 0.2615 0.2267 0.2238

Median 0.2882 0.2522 0.2249 0.2114

SE 0.1044 0.0721 0.0767 0.0852

600 LS Mean 0.1944 0.2007 0.1579 0.1506
Median 0.1783 0.1929 0.1523 0.1430

SE 0.0887 0.0628 0.0572 0.0534

QR Mean 0.1736 0.1852 0.1287 0.1269

Median 0.1582 0.1807 0.1259 0.1256

SE 0.0631 0.0280 0.0420 0.0451

ESL Mean 0.1729 0.1747 0.1173 0.1150

Median 0.1616 0.1714 0.1106 0.1130

SE 0.0618 0.0247 0.0387 0.0381

where g 5 denotes the LS estimate of g, and § could be taken as the QR or ESL estimate. The corresponding
results are summarized in Table 4.

From Table 4, we can see that the RTs of the ESL method are slightly smaller than 1 compared with the
RTs of the QR method when the error is normally distributed, for the other two error distributions, the RTs of
the ESL method are greater than 1, which indicates that our proposed estimation method can significantly
improve the estimation efficiency.

6 A real data analysis

For illustration purposes, we apply the proposed methodology to analyze the spectral data. The data set
contains 215 chopped meat samples, each data sample contains fat, protein, moisture contents, and spectral
curve. The three contents are measured in percent and determined by analytic chemistry. The spectral curve
consists of 100 wavelengths of absorbance spectrum records. Our main interest is to explore the relation-
ship between fat content and other factors. In the subsequent analysis, we treat the fat content as the
response variable Y, the protein content as Z, the moisture content as U, and the spectral curve as X(t).
Beforehand, we standardize the response variable Y and two other contents Z and U. As done in [17], we use
the following VCPFLRM to fit the data:
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Table 3: Simulation results for comparison under 0.9N(0, 1) + 0.1N(0, 10) error distribution when the sample
size n = 100, 200, 600

n Method RASE, RASE RASE, RASE 3
100 LS Mean 0.8708 0.8677 0.7990 0.8095
Median 0.6436 0.7485 0.6906 0.7061

SE 0.7456 0.5025 0.4587 0.4369

QR Mean 0.4723 0.4329 0.4056 0.4057

Median 0.4469 0.3674 0.3851 0.3685

SE 0.1562 0.2029 0.1706 0.1859

ESL Mean 0.4591 0.3460 0.3182 0.3211

Median 0.4318 0.3023 0.2916 0.2973

SE 0.1732 0.1951 0.1416 0.1487

200 LS Mean 0.4754 0.5300 0.5423 0.5536
Median 0.4003 0.5009 0.5111 0.5247

SE 0.2881 0.1910 0.2462 0.2259

QR Mean 0.3145 0.2692 0.2295 0.2424

Median 0.2941 0.2645 0.2217 0.2360

SE 0.1022 0.0647 0.0800 0.0795

ESL Mean 0.3073 0.2268 0.1875 0.1960

Median 0.2836 0.2180 0.1799 0.1903

SE 0.1086 0.0520 0.0637 0.0695

600 LS Mean 0.2555 0.3250 0.2904 0.2970
Median 0.2344 0.3193 0.2843 0.2930

SE 0.1128 0.0859 0.1081 0.1156

QR Mean 0.1744 0.1898 0.1267 0.1278

Median 0.1677 0.1858 0.1238 0.1244

SE 0.0584 0.0286 0.0406 0.0415

ESL Mean 0.1700 0.1638 0.1026 0.1053

Median 0.1596 0.1608 0.1008 0.1025

SE 0.0609 0.0271 0.0326 0.0351

1,050
Y = By(U) + ZB,(U) + I aOX ()t + €. (10)
850

For a fair evaluation, the randomly selected 129 samples are used as training data to build the model,
and the remaining 86 observations are left as the validation data for prediction purposes. The prediction
performance is measured by the mean squared error proposed by [28], which is defined as MSE =
ézie Y- Y)?, where G is the validation data set. To verify the proposed robust estimation procedure,
we re-analyzed this data set by including some outliers in the training response variable; in other words,
the response Y of training data with ¢ high leverage outliers being replaced by Y + x (Case 1: k = 5,1 = 10,
Case 2: ¥ = 10, 1 = 10 and Case 3: x = 5, t = 20). Then, we apply the three different estimation procedures
(LS, QR with quantile T = 0.5, and ESL) to analyze the data set by VCPFLRM stated as (10). The mean
values of MSE of the proposed ESL procedure with those of QR and LS methods based on 200-time
repetitions are shown to be 0.022, 0.023, and 0.706 for Case 1, 0.019, 0.032, and 2.378 for Case 2,
0.035, 0.042, and 1.323 for Case 3, respectively. Consequently, our proposed ESL method is better than
the others in terms of performance of prediction when data set contains outliers. For comparison, we also
use the functional linear regression model to fit the data. We only consider case 2, that is, the response Y
of training data has 10 high leverage outliers, with 200-time repetitions, the mean values of MSE based on
ESL, QR, and LS are shown to be 0.067, 0.102, and 3.187. This result reveals that our proposed model and
estimation method can improve the accuracy of the prediction when data sets are subjected to high
outliers in the response.
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Figure 1: The estimated curves of functions ﬁi(u), j=1,2,3and a(t) when € ~ 0.9N(0, 1) + 0.1N(0, 10) and n = 100.
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Figure 2: The estimated curves of functions ,Bi(u), j=1,2,3and a(t) when € ~ Cauchy and n = 100.
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Table 4: Mean values of the RT values

n Method N(0,1) t(3) 0.9N(0, 1) + 0.1N(0, 10)
100 LS 1 1 1
QR 0.8919 1.1438 2.0084
ESL 0.9515 1.1743 2.4272
200 LS 1 1 1
QR 0.8646 1.1153 2.0176
ESL 0.9245 1.1504 2.3424
600 LS 1 1 1
QR 0.8821 1.1553 1.9079
ESL 0.9435 1.2241 2.1859

7 Concluding remarks

In this article, we provide a robust and efficient estimation approach for VCPFLRMs based on the ESL
function. The varying coefficients are approximated by B-splines, and the slope function is estimated by the
FPC basis. The theoretical properties of proposed estimators are established under some conditions.
Furthermore, we develop a computation algorithm to solve the optimization problems and then introduce
a data-driven procedure to select the tuning parameters. The outstanding feature of the newly proposed
method is that it can achieve good performance for a wide class of errors by selecting an appropriate tuning
parameter h based on observed real data. The good properties of this method have also been demonstrated
through both numeric examples and real data analysis. As discussed in [28], the FPC-based methods select
data-driven basis functions relying on the decomposition of covariance function of the functional predictor
X(t). To compensate for this defect, we could use B-spline basis functions to approximate the slope function
for its efficiency in function approximation and numerical computation. In addition, the method proposed
here may be extended to other functional regression models, which could be considered in future research.
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Appendix
In the proofs, we use C to denote a generic constant that might assume different values at different places.

Proof of Theorem 1. Suppose BT(u)noj is the best approximating spline function for ;(u). Under the
conditions (C4) and (C5) together with a constant C, we have

sup |B;(w) - BT (gl < Ck;'"

uel0,1]
Let § = n~"/@+D 4 n—(zb—l)/[Z(a+2b)]’ Sy = 5—1(,1 _ ,10), Sy = 5—1(y _ YO) with Mo = (’YoTp'--”lg;,)T and s = (S1T, SZT)T’
and 6y = (qu , yOT )T. We want to show that for any given p > 0, there exists a sufficiently large constant C
such that

P{sup Qn(0y + 8s) < Q,,(Go)} >1-p. (A1)
Isl=C

This implies that there is a local minimum in the ball {8, + &s : ||s|| < C} with probability tending to 1. Using
the Taylor expansion, we have

n 1 n Y 1 n
Qn(0o + 65) — Qu(B0) <—8 ) Wyfe: + ZT Ry + Roi}Q; + 552 Y Wyfei + ZT Ry + Ru}Qf - 563 PRVIE@ 10
i=1 i=1 i=1
= I] + 12 + 13,

where (; is between & + Z/Ry; + Ry and & + Z[Ry + Ry — 6Qi, Q; = sy + Visy, Ry = 2 Boi(UD) - 7 n,,
Ry = (Xi(t), ap(t)) — ViTyO. From Conditions (C4) and (C5) and Corollary 6.21 in [29], we can derive that
Rli = Op(kr?’)-

Next, we consider Ry. By ll¢; - t;lA>j||2 = 0,(nY?) (see, e.g., [15,21]), one has

2

1 2
IRy P = j X(Oao(t)dt — Vy,| <2
0

2

Y (X dvyj| = 2A1 + 2A,.

j=m+1

+ 2

Y Xis b — D)¥y
j=1

For Ay, by Conditions (C1) and (C2) and the Holder inequality, it is obtained as follows:

2

m m
~ 9 _a+4b-4 . —
A= <cm E ||¢j - ¢1’"2|y0i P <cem E Op(nj? e Op<n a+2b ) = op(n (@b-a+2b)y,

j=1 j=1

Y (Xir by — D))y,
j=1

As for A, due to

E{ Z X, ¢j>)’0j} =0,

j=m+1

Var{ Z (X;, ¢j>y0j}= Z /\ijjZ <c Z jolar2b) = O(n,a;g;),

j=m+1 j=m+1 j=m+1

one has 4, = 0p<n‘%§£l). Taking these together, we have |Ry; |? = Op(n‘ﬁﬁ'l).

Moreover, by Taylor expansion, we have

n n

Zl/);:{gi + Z{Ry + Ry}Q; = Z{ll’;'l(gi) + Y, (E)[Z Ry + Ryl + ¥, (e[ Z{ Ry + Rl

i=1 i=1
where g/ is between ¢; and ZR;; + Ry;. Invoking conditions (C1) and (C7) and after some direct calculations,
we obtain ||| = 0,(né?|s|)). For L, we can prove L = E{F(Z, U, S, h)}0,(né?|s|?). Therefore, choosing a
sufficiently large C, I, dominates L uniformly |s| = C. Similarly, we can prove that = 0,(né’||s|®). Since
ky ~ nV@*D, m ~ n¥@+2b) it follows that 8||s| — O with |ls| = C, which leads to L = op(L). Therefore, L is
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also dominated by L in ||s|| = C. Hence, by choosing a sufficiently large C together with the condition (C6),
(A.1) holds, and there exist local maximizers 7} and y such that [[1] — nyll = 0,(8), 7 — Yl = 0x(6).

1
Let & = .[B(u)BT(u)du and Ry(u) = f,;(w) — B'(w)n,;, we have
0

1
1) - By = [ i) - Boydu
)
- [ 870, - BlGony + Ryyau
0 ) 1
<2 (Bl - B @y au + 2 [ Ry
0 0

1
= 207, - )8, - o) + 2 [ Ry
0

Then, invoking | Z] = O(1), a simple calculation yields (ﬁi - Uo;)TE (ﬁj = Ty) = 0,(6?). In addition, it is easy
to show I;Rli(u)zdu = Op(nz%'l). Thus, we have ||/%-(~) = Boj()IF = 0,(6%).
Observe that

2

lat) - ao(®I? =

m (ee]
2% = Doty
j=1 j=1

2 2

m m o0
<2208 - 2wyl t2|| 2 vod
j=1 j=1 j=m+1
m " 2 m " 2 0
<S4yl +4 || Dre - D) +2 Y vg 2 4h+ 4k + 2.
j=1 j=1 j=m+1

By Condition (C2) and the orthogonality of {(f)l.} and [l¢; — <IA>,~||2 = 0p(n7Y?), one has

m 2 om
h= Z(V, - ij)¢,‘ < ZW] — Yo |2 = ")7 - YOHZ = Op(‘sz)- (A2)
j=1 j=1
m " 2 m n m m
k= Zij(‘;bj - (,b]) =m Z"d)l - ¢,~||2)/§,~ < ;Op ZJZY(i
j=1 j=1 j=1 (A3)
m
- Op[n‘lm ij‘zb] = Op(n"'m) = op(n‘ﬁ%i),
j=1
and
B= Y yp<C Y j%=0(mm). (A%)

j=m+1 j=m+1

Then, combining equations (A.2)-(A.4), we have [[a(t) — a(t)|? = 0,(6?) = Op(nz% + n*ﬁ%i). Thus, we com-
plete the proof of Theorem 1. O
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