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Abstract: In this article, a generalization of the well-known Stein-Weiss inequality for the fractional integral
operator on functions with different integrability properties in the radial and the angular direction in local
Morrey spaces is established. We find that some conditions can be relaxed for the Stein-Weiss inequality for
local mixed radial-angular Morrey spaces.
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1 Introduction

In this article, we devote to extending the celebrated Stein-Weiss inequality to local mixed radial-angular
Morrey spaces.

The Stein-Weiss inequality [1] gives the two power-weighted norm inequalities for fractional integral
operator. After that, the two-weighted inequalities for fractional integral operator were extended to general
weight functions. For instance, the weighted norm inequalities with Muckenhoupt weights for fractional
integral operator were considered in [2–5]. Note that, if we consider the power weights, De Nápoli et al. [6]
and Hidano and Kurokawa [7] proved that some conditions in [1] can be relaxed. And more generally, if the
functions under consideration have different integrability properties in the radial and the angular direction,
i.e., mixed radial-angular spaces, D’Ancona and Luca’ [8] pointed out that the conditions in [1,6,7] can be
extended to amore general setting. Obviously, the functionswith different integrability properties in the radial
and the angular direction may not be radial functions, and the result in [8, Theorem 1.3] essentially improves
the results of [6,7]. Note that recently the mixed radial-angular spaces have been successfully used to study
Strichartz estimates and partial differential equations to improve the corresponding results (see [9–13], etc.).

As we know, Morrey spaces, initially introduced by Morrey in [14], are natural generalizations of
Lebesgue spaces. Many important results in harmonic analysis, such as the mapping properties of some
important integral operators, have been extended to Morrey spaces. Particularly, the boundedness of the
fractional integral operator on Morrey-type spaces was established in [15–19]. Nowadays, the Stein-Weiss
inequality has been successfully generalized to weighted Morrey spaces by Ho [20]. Recently, based on the
results of [6, Theorem 1.2] and [7, Theorem 2.1], Ho [21] considered the Stein-Weiss inequality for radial
functions in local Morrey spaces and showed that some conditions can be relaxed. Inspired by [8,21],
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we will consider the Stein-Weiss inequality for functions with different integrability properties in the radial
and the angular direction in local Morrey spaces.

In view of [8, Theorem 1.3], it is expectable that when we consider functions with different integrability
properties in local Morrey spaces, the conditions of [21, Theorem 3.1] can also be relaxed. As the central
versions of the classical Morrey spaces, the local Morrey spaces are also important function spaces to study
the mapping properties of integral operators. We refer the readers to [22–25] for more studies of local Morrey
spaces. See also [26] for the extrapolation theory on local Morrey spaces with variable exponents.

The main result of this article can be seen as a complement of the mapping properties of fractional
integral operator acting on local Morrey spaces. As applications of the main result, we obtain the Poincaré
and Sobolev inequalities for local mixed radial-angular Morrey spaces.

The organization of the remainder of this article is as follows. Section 2 contains the definitions of local
Morrey spaces and local mixed radial-angular Morrey spaces used in this article. The celebrated Stein-Weiss
inequality and some extensions of it to radial functions will also be presented in this section. The main
result of this article, Stein-Weiss inequality for local mixed radial-angular Morrey spaces, is proved in
Section 3. As applications, we give the Poincaré and Sobolev inequalities for functions with different
integrability properties in the radial and the angular direction in local Morrey spaces in Section 4.

2 Definitions and preliminaries

Throughout the article, we use the following notations.
For any r 0> and x n�∈ , let B x r y y x r, :( ) { ∣ ∣ }= − < be the ball centered at x with radius r. Let

B x r x r, : , 0n� �{ ( ) }= ∈ > be the set of all such balls. We use χE and E∣ ∣ to denote the characteristic
function and the Lebesgue measure of a measurable set E. Let E� ( ) be the class of Lebesgue measurable
functions on E. For a nonnegative function w L n

loc
1 �( )∈ and p1 ≤ < ∞, the weighted Lebesgue space

Lw
p n�( ) consists of all f n�� ( )∈ such that f f x w x xdL

p
p1

w
p

n�
∣ ( )∣ ( )( )∫‖ ‖ ≔ < ∞

∕

. In particular, if w x x αp( ) ∣ ∣= ,

then we write L Lw
p n

α
p n� �( ) ( )= . By A B≲ , we mean that A CB≤ for some constant C 0> .

Let γ n0 < < , the fractional integral operator Iγ is defined by

I f x f y
x y

y xd , ,γ γ
n

n

�

�

( )
( )

∣ ∣
∫=

−

∈

where f L n
loc
1 �( )∈ .

We first recall the famous Stein-Weiss inequality for the fractional integral operator.

Theorem 2.1. Letn 1≥ , γ n0 < < , p1 < < ∞,α n
p<

′

, β n
q< ,α β 0+ ≥ ,and 1q p

γ α β
n

1 1
= + −

+ + . If p q≤ < ∞,
then for all f Lα

p n�( )∈ , we have

I f f .γ L Lβ
q

α
p‖ ‖ ≲ ‖ ‖

−

The reader is referred to [1, Theorem B*], for the proof of the above theorem.

Define by

f f x f y x y: , if .n n� �� �( ) { ( ) ( ) ( ) ∣ ∣ ∣ ∣}= ∈ = =

For any p1 ≤ < ∞ and α �∈ , define L Lα
p n

α
p n n

,rad � � ��( ) ( ) ( )= ∩ . Then the Stein-Weiss inequality for the
radial functions can be stated as follows.

Theorem 2.2. Letn 1≥ , γ n0 < < , p1 < < ∞,α n
p<

′

, β n
q< ,α β n 1 q p

1 1
( )( )+ ≥ − − , and 1q p

γ α β
n

1 1
= + −

+ + .
If p q≤ < ∞, then for all f Lα

p n
,rad �( )∈ , we have
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I f f .γ L Lβ
q

α
p‖ ‖ ≲ ‖ ‖

−

The proof of Theorem 2.2 can be found in [6, Theorem 1.2] and [7, Theorem 2.1].

Next, we give the definition of local Morrey spaces.

Definition 2.1. Let p1 ≤ < ∞, w : 0,n� [ )→ ∞ , and u : 0, 0,( ) ( )∞ ⟶ ∞ be Lebesgue measurable func-
tions. The local Morrey spaces LMw

p u n, �( ) consist of all f n�� ( )∈ such that

f
u r

fχsup 1 .LM
r

B r L
0

0,w
p u

w
p,

( )
( )‖ ‖ = ‖ ‖ < ∞

>

In particular, if w x x αp( ) ∣ ∣= , then we write LM LMw
p u n

α
p u n, ,� �( ) ( )= .

We refer the readers to [22–25] for the mapping properties for various integral operators on local Morrey
spaces. For p1 ≤ < ∞, α �∈ , and u : 0, 0,( ) ( )∞ ⟶ ∞ , the radial local Morrey spaces LMα

p u n
,rad
, �( ) consist

of all radial functions f LMα
p u n, �( )∈ , i.e.,

LM LM .α
p u n

α
p u n n

,rad
, ,� � ��( ) ( ) ( )= ∩

The Stein-Weiss inequality for radial local Morrey spaces is as follows, see [21], Theorem 3.1] for the proof.

Theorem 2.3. Let n 1≥ , γ n0 < < , p1 < < ∞, α n
p<

′

, β n
q< , α β n 1 q p

1 1
( )( )+ ≥ − − , and 1q p

γ α β
n

1 1
= + −

+ +

and u : 0, 0,( ) ( )∞ ⟶ ∞ . If p q≤ < ∞ and there exists a constant C 0> such that for any r 0> , u satisfies

u r Cu r2 ,( ) ( )≤ (2.1)

u r Cu r2 2 ,
j

j β j

0

1 1n
q ( ) ( )( )( )

∑ ≤

=

∞

− + − + (2.2)

then for any f LMα
p u n
,rad
, �( )∈ , we have

I f f .γ LM LMβ
q u

α
p u, ,‖ ‖ ≲ ‖ ‖

−

Note that when n 1= , Theorem 2.2 coincides with Theorem 2.1. And in this case, the conditions imposed
on p q α β, , , of Theorems 2.1, 2.2, and 2.3 are the same. However, when n 2≥ , the condition α β+ ≥

n 1 q p
1 1

( )( )− − in Theorems 2.2 and 2.3 implies that α β+ may be negative, while Theorem 2.1 requires

α β 0+ ≥ . This observation yields that the Stein-Weiss inequality imposed on radial functions has better
performance.

The mixed radial-angular spaces, including the functions with different integrability properties in the
radial and the angular direction may not be radial functions, are extensions of Lebesgue spaces. Now we
recall their definitions.

Definition 2.2. For n 1≥ , p p1 , ¯≤ ≤ ∞, the mixed radial-angular space L Lx
p

θ
p n¯ �( )

∣ ∣
consist of all functions

f n�� ( )∈ for which

f f r θ θ r r, d d ,L L
p

p p

n

p

0

¯

¯

1

1

x
p

θ
p

n

¯

1
�

⎛

⎝

⎜
⎜

⎛

⎝

⎜⎜
∣ ( )∣

⎞

⎠

⎟⎟

⎞

⎠

⎟
⎟

∫ ∫‖ ‖ ≔ < ∞

∞
∕

−

∕

∣ ∣

−

where n 1� − denotes the unit sphere in n� . If p = ∞ or p̄ = ∞, then we have to make appropriate
modifications.

Similar to the power-weighted Lebesgue spaces, we can define the power-weighted mixed radial-
angular spaces.
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Definition 2.3. For n 1≥ , α �∈ , p p1 , ¯≤ ≤ ∞, the power-weighted mixed radial-angular spaces L Lx
p α

θ
p n, ¯ �( )

∣ ∣

consists of all f n�� ( )∈ such that

f fv ,L L L Lx
p α

θ
p

x
p

θ
p, ¯ ¯‖ ‖ ≔ ‖ ‖ < ∞

∣ ∣ ∣ ∣

where v x x α( ) ∣ ∣= .

The mixed radial-angular spaces were initially introduced to improve some classical results in PDE, see
[9–12]. Later, the mixed radial-angular spaces were frequently used in harmonic analysis. For instance, Liu
et al. [27–29] considered the mapping properties of various operators with rough kernels on mixed radial-
angular spaces. See also [30] for the extrapolation theorems on mixed radial-angular spaces. One can see
that the mixed radial-angular spaces are particular cases of mixed-norm Lebesgue spaces studied by
Benedek and Panzone [31]. The readers are referred to [32–38] for more studies on mixed-norm Lebesgue
spaces.

When we consider function with different integrability properties in the radial and the angular direc-
tion, D’Ancona and Luca’ [8, Theorem 1.3] obtained the following extensions of Stein-Weiss inequality for
mixed radial-angular spaces.

Theorem 2.4. Let n 1≥ , γ n0 < < , p1 < < ∞, α n
p<

′

, β n
q< , α β n 1 q p p q

1 1 1
¯

1
¯( )( )+ ≥ − − + − , and q p

1 1
= +

1γ α β
n −

+ + . If p q≤ < ∞ and p q1 ¯ ¯≤ ≤ ≤ ∞, then for all f L Lx
p α

θ
p n, ¯ �( )∈

∣ ∣
, we have

I f f .γ L L L Lx
q β

θ
q

x
p α

θ
p, ¯ , ¯‖ ‖ ≲ ‖ ‖

∣ ∣

−

∣ ∣

By combining the definitions of local Morrey spaces and mixed radial-angular spaces, we can define
local mixed radial-angular Morrey spaces as follows:

Definition 2.4. Let p p1 , ¯≤ ≤ ∞, and u : 0, 0,( ) ( )∞ ⟶ ∞ be a Lebesgue measurable function. The local
mixed radial-angular Morrey spaces LMu

p p n, ¯ �( ) consist of all f n�� ( )∈ such that

f
u r

fχsup 1 .LM
r

B r L L
0

0,u
p p

x
p

θ
p, ¯ ¯

( )
( )‖ ‖ = ‖ ‖ < ∞

>

∣ ∣

Roughly speaking, the local mixed radial-angular Morrey spaces are just the functions in local Morrey
spaces which have different integrability properties in the radial and the angular direction. Therefore, local
mixed radial-angular Morrey spaces are extensions of radial local Morrey spaces, since the integrability in
the angular direction holds automatically for radial functions. Consequently, it is meaningful to consider
Stein-Weiss inequality for local mixed radial-angular Morrey spaces.

3 Main result

This section establishes the Stein-Weiss inequality on local mixed radial-angular Morrey spaces. To do this,
we first give the definition of power-weighted local mixed radial-angular Morrey spaces, which are combi-
nations of power-weighted mixed radial-angular spaces and local Morrey spaces.

Definition 3.1. Let α �∈ , p p1 , ¯≤ ≤ ∞, and u : 0, 0,( ) ( )∞ ⟶ ∞ be a Lebesgue measurable function.
The power-weighted local mixed radial-angular Morrey space LMα u

p p n
,
, ¯ �( ) consists of all f n�� ( )∈ such that

f
u r

fχsup 1 .LM
r

B r L L
0

0,α u
p p

x
p α

θ
p

,
, ¯ , ¯

( )
( )‖ ‖ = ‖ ‖ < ∞

>

∣ ∣

Now we are in a position to state our main result in this article.
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Theorem 3.1. Let n 1≥ , γ n0 < < , p1 < < ∞, α n
p<

′

, β n
q< , α β n 1 q p p q

1 1 1
¯

1
¯( )( )+ ≥ − − + − , q p

1 1
= +

1γ α β
n −

+ + , and u : 0, 0,( ) ( )∞ ⟶ ∞ be a Lebesgue measurable function. If p q≤ < ∞ and p q1 ¯ ¯≤ ≤ ≤ ∞

and there is a constant C 0> such that for any r 0> , u satisfies (2.1) and (2.2) in Theorem 2.3, then for any
f LMα u

p p n
,
, ¯ �( )∈ , we have

I f f .γ LM LMβ u
q q

α u
p p

,
, ¯

,
, ¯‖ ‖ ≲ ‖ ‖

−

Proof. Let f LMα u
p p n
,
, ¯ �( )∈ . For any r 0> , define

D B B k0, 2 \ 0, 2 , \ 0 .k
k k1 �( ) ( ) { }= ∈

+

Denote by f fk k0= ∑
=

∞ , where f fχk Dk
= , k 1≥ , and f fχB r0 0,2( )= .

Noting that Iγ is a sublinear operator, there holds

I f I f .γ
k

γ k
0

∣ ∣ ∣ ∣∑≤

=

∞

(3.1)

Since f LMα u
p p n
,
, ¯ �( )∈ , we have f LMα u

p p n
,
, ¯ �∣ ∣ ( )∈ . As a consequence, Theorem 2.4 guarantees

u r
χ I f

u r
I f

u r
f1 1 1 .B r γ L L γ L L L L0, 0 0 0x

q β
θ
q

x
q β

θ
q

x
p α

θ
p, ¯ , ¯ , ¯

( )
∣ ∣

( )
∣ ∣

( )
( )‖ ‖ ≤ ‖ ‖ ≲ ‖ ‖

∣ ∣

−

∣ ∣

−

∣ ∣

Consequently, (2.1) implies

u r
χ I f

u r
fχ f1 1

2
.B r γ L L B r L L LM0, 0 0,2x

q β
θ
q

x
p α

θ
p

α u
p p, ¯ , ¯
,
, ¯

( )
∣ ∣

( )
( ) ( )‖ ‖ ≲ ‖ ‖ ≲ ‖ ‖

∣ ∣

−

∣ ∣
(3.2)

Next we consider the terms I fγ k, where k 1≥ . From the definitions of Iγ, for any x B r0,( )∈ , we have

I f x
r

f y y1
2

d .γ k kγ γ
D

k

k

∣ ∣( ) ∣ ( )∣∫≲

By using Hölder’s inequality on mixed Lebesgue spaces (see [31]), we obtain

I f x
r

f χ1
2

.γ k kγ γ k L L B r0,2x
p α

θ
p k

L x
p αLθ

p, ¯ 1 , ¯∣ ∣( ) ( )≲ ‖ ‖ ‖ ‖
∣ ∣

+

∣ ∣

′ − ′
(3.3)

A direct calculation yields

χ w r r

w r
p α n

C r

d

2

2

B r n
p

r
p α n

p

n
p

k α n p

k α n p α n p

0,2
1 ¯

0

2
1

1

1 ¯
1

1

k
L x

p αLθ
p

k

1 , ¯

1
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )

( )

( )( )

∫‖ ‖ =

=

− ′ +

=

∕ ′ − ′ + −

∕ ′

∕ ′

+ − + ∕ ′

+ − + ∕ ′ − + ∕ ′

+

∣ ∣

′ − ′

+

(3.4)

for some constant C 0> , where wn is the induced Lebesgue measure of n 1� − .

From the assumption 1q p
γ α β

n
1 1

= + −
+ + , we obtain

α n
p

γ α n
p

γ β n
q

1 1 .⎜ ⎟
⎛

⎝

⎞

⎠
− +

′

− = − + − − = − (3.5)

Inequality (3.3), together with (3.4) and (3.5), shows that

I f x r f

r f

2

2 .
γ k

k α n p γ α n p γ
k L L

k β n q β n q
k L L

1

1
x
p α

θ
p

x
p α

θ
p

, ¯

, ¯

∣ ∣( ) ( )( )

( )( )

≲ ‖ ‖

= ‖ ‖

+ − + ∕ ′− − + ∕ ′−

+ − ∕ − ∕

∣ ∣

∣ ∣

(3.6)
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By multiplying χB r0,( ) on both sides of inequality (3.3), and then using (3.4) and (3.6), we arrive at

χ I f r f χ

r f r

f

2

2

2 .

B r γ k L L
k β n q β n q

k L L B r L L

k β n q β n q
k L L

β n q

k β n q
k L L

0,
1

0,

1

1

x
q β

θ
q

x
p α

θ
p

x
q β

θ
q

x
p α

θ
p

x
p α

θ
p

, ¯ , ¯ , ¯

, ¯

, ¯

∣ ∣( )
( )( )

( )

( )( )

( )( )

‖ ‖ ≲ ‖ ‖ ‖ ‖

≲ ‖ ‖ ×

≲ ‖ ‖

+ − ∕ − ∕

+ − ∕ − ∕ − + ∕

+ − ∕

∣ ∣

−

∣ ∣ ∣ ∣

−

∣ ∣

∣ ∣

As a consequence,

u r
χ I f u r

u r u r
fχ

u r
u r

f

1 2 2 1
2

2 2 .

B r γ k L L

k
k β n q

k B r L L

k
k β n q

LM

0,

1
1

1 0,2

1
1

x
q β

θ
q k

x
p α

θ
p

α u
p p

, ¯ 1 , ¯

,
, ¯

( )
∣ ∣

( )

( ) ( )

( )

( )

( )
( )( )

( )

( )( )

‖ ‖ ≲ ‖ ‖

≲ ‖ ‖

+

+ − ∕

+

+

+ − ∕

∣ ∣

− +

∣ ∣

(3.7)

As a result of (2.2), (3.1), (3.2), and (3.7), there holds

u r
χ I f u r

u r
f f1 1 2 2 ,

k
B r γ k L L

k

k
k β n q

LM LM
0

0,
0

1
1

x
q β

θ
q

α u
p p

α u
p p, ¯

,
, ¯

,
, ¯⎜ ⎟

( )
∣ ∣

⎛

⎝

( )

( )

⎞

⎠
( )

( )( )
∑ ∑‖ ‖ ≲ + ‖ ‖ ≲ ‖ ‖

=

∞

=

∞
+

+ − ∕

∣ ∣

−

since β n q< ∕ .
By taking the supremum over r 0> on the above inequalities, one obtains

I f
u r

χ I f

u r
χ I f

f

sup 1

sup 1

,

γ LM
r

B r γ L L

r k
B r γ k L L

LM

0
0,

0 0
0,

β u
q q

x
q β

θ
q

x
q β

θ
q

α u
p p

,
, ¯ , ¯

, ¯

,
, ¯

( )
∣ ∣

( )
∣ ∣

( )

( )∑

‖ ‖ = ‖ ‖

≲ ‖ ‖

≲ ‖ ‖

>

>
=

∞

− ∣ ∣

−

∣ ∣

−

which finishes the proof. □

Remark 3.1.
(i) When the functions under consideration in Theorem 3.1 are radial, we can choose p q s¯ ¯= = for some

s1 < < ∞. In this sense, we obtain Theorem 2.3 as a consequence of Theorem 3.1.
(ii) Conditions (2.1) and (2.2) are satisfied for many functions u. For instance, if we take u r rσ( ) = for some

σ β0 n
q< < − , then u fulfills (2.1) and (2.2).

4 Applications

By applying Theorem 3.1, we will establish the Poincaré and Sobolev inequalities for local mixed radial-
angular Morrey spaces.

The Poincaré inequality is closely related to the Harnack’s inequalities, see [39]. Now we give the first
result of this section.

Theorem 4.1. Let n 1> , p1 < < ∞, α n
p<

′

, β n
q< , α β n 1 q p p q

1 1 1
¯

1
¯( )( )+ ≥ − − + − , q p

α β
n

1 1 1
= +

+ − , and

u : 0, 0,( ) ( )∞ ⟶ ∞ be a Lebesgue measurable function. If p q≤ < ∞ and p q1 ¯ ¯≤ ≤ ≤ ∞ and there is

a constantC 0> such that for any r 0> , u satisfies (2.1) and (2.2) in Theorem 2.3, then for any D �∈ and any

continuous differentiable function f satisfying either f x xd 0
D

( )∫ = or f Dsupp ⊆ , there holds

u r
fχ

u r
fχsup 1 sup 1 .

r
D B r L L

r
B r L L

0
0,

0
0,x

q β
θ
q

x
p α

θ
p, ¯ , ¯

( ) ( )
( ) ( )‖ ‖ ≲ ‖∇ ‖

>

∩

>
∣ ∣

−

∣ ∣

where ∇ is the gradient operator.
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Proof. By virtue of [40, (4.34) and (4.35)], we know that for any x D∈ ,

f x I f x χ x .n D1∣ ( )∣ (∣ ( )∣ ( ))≲ ∇−

By using Theorem 3.1 with γ n 1= − , we obtain the desired result. □

The second application is connected with the Sobolev inequality. As we know, the Sobolev inequality
gives a two-weighted norm inequality for the Laplacian operator Δ. Next we present the Sobolev inequality
for local mixed radial-angular Morrey spaces.

Theorem 4.2. Let n 2> , p1 < < ∞, α n
p<

′

, β n
q< , α β n 1 q p p q

1 1 1
¯

1
¯( )( )+ ≥ − − + − , q p

α β
n

1 1 2
= +

+ − , and

u : 0, 0,( ) ( )∞ ⟶ ∞ be a Lebesgue measurable function. If p q≤ < ∞ and p q1 ¯ ¯≤ ≤ ≤ ∞ and there is
a constant C 0> such that for any r 0> , u satisfies (2.1) and (2.2) in Theorem 2.3, then for any D �∈ and
any twice continuous differentiable function f satisfying f Dsupp ⊆ , there holds

u r
fχ

u r
fχsup 1 sup 1 Δ .

r
D B r L L

r
B r L L

0
0,

0
0,x

q β
θ
q

x
p α

θ
p, ¯ , ¯

( ) ( )
( ) ( )‖ ‖ ≲ ‖ ‖

>

∩

>
∣ ∣

−

∣ ∣
(4.1)

Proof. Noting that f I fΔn 2( )= − , (4.1) is a consequence of Theorem 3.1 with γ n 2= − . □
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