DE GRUYTER Open Mathematics 2022; 20: 1184-1194 a

Research Article

Xingxing Zha, Yongquan Zhang*, and Yiyuan Cheng*

On stochastic accelerated gradient with
convergence rate

https://doi.org/10.1515/math-2022-0499
received January 1, 2022; accepted September 11, 2022

Abstract: This article studies the regression learning problem from given sample data by using stochastic
approximation (SA) type algorithm, namely, the accelerated SA. We focus on problems without strong
convexity, for which all well-known algorithms achieve a convergence rate for function values of O(1/n).
We consider and analyze accelerated SA algorithm that achieves a rate of O(1/n) for classical least-square
regression and logistic regression problems, respectively. Comparing with the well-known results, we only
need fewer conditions to obtain the tight convergence rate for least-square regression and logistic regres-
sion problems.
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1 Introduction

Large-scale machine learning problems are becoming ubiquitous in science, engineering, government
business, and almost all areas. Faced with huge data, investigators typically prefer algorithms that process
each observation only once, or a few times. Stochastic approximation (SA) algorithms such as stochastic
gradient descent (SGD), although introduced more than 60 years ago [1], still were widely used and studied
method in some contexts (see [2-26]).

To our knowledge, Robbins and Monro [1] first proposed the SA on the gradient descent method. From
then on, SA algorithms were widely used in stochastic optimization and machine learning. Polyak [2] and
Polyak and Juditsky [3] developed an important improvement of the SA method by using longer stepsizes
with consequent averaging of the obtained iterates. The mirror-descent SA was demonstrated by Nemir-
ovski et al. [6] who showed that the mirror-descent SA exhibited an unimprovable expected rate for solving
nonstrongly convex programming (CP) problems. Shalev-Shwartz et al. [5] and Nemirovski et al. [6] studied
averaged SGD and achieved the rate of O(1/un) in the strongly convex case, and they obtained only O(1/+/n)
in the non strongly convex case. Bach and Moulines [10] considered and analyzed SA algorithms that
achieve a rate of O(1/n) for least-square regression and logistic regression learning problems in the non
strongly-convex case. The convergence rate of the SA algorithm for least-square regression and logistic
regression is almost optimal, respectively. However, they need some assumptions (A1-A6). It is natural to
ask that the convergence rate for least-square regression is O(1/n) under fewer assumptions. In this article,
we consider an accelerated SA type learning algorithm for solving the least-square regression and logistic
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regression problem and achieve a rate of O(1/n) for least-square regression learning problems under
assumptions A1-A4 in [10]. For solving a class of CP problems, Nesterov presented the accelerated gradient
method in a celebrated work [12]. Now, the accelerated gradient method has also been generalized by Beck
and Teboulle [13], Tseng [14], Nesterov [15,16] to solve an emerging class of composite CP problems. In 2012,
Lan [17] further showed that the accelerated gradient method is optimal for solving not only smooth CP
problems but also general nonsmooth and stochastic CP problems. The accelerated stochastic approxima-
tion (AC-SA) algorithm was proposed by Ghadimi and Lan [18,19] using properly modifying Nesterov’s
optimal method for smooth CP. Recently, they [20,21] also developed a generic AC-SA algorithmic frame-
work, which can be specialized to yield optimal or nearly optimal methods for solving strongly convex
stochastic composite optimization problems. Motivated by those mentioned jobs, we aim to consider and
analyze an accelerated SA algorithm that achieves a rate of O(1/n) for classical least-square regression and
logistic regression problems, respectively.

Zhu [25] introduced Katyusha, a direct, primal-only stochastic gradient method to fix this issue. It has a
provably accelerated convergence rate in convex (offline) stochastic optimization. It can be incorporated
into a variance-reduction-based algorithm and speed it up, in terms of both sequential and parallel per-
formance. A new gradient-based optimization approach by automatically adjusting the learning rate is
proposed by Cao [26]. This approach can be applied to design nonadaptive learning rate and adaptive
learning rate. This approach could be an alternative method to optimize the learning rate based on the SGD
algorithm besides the current nonadaptive learning rate methods e.g. SGD, momentum, Nesterov and the
adaptive learning rate methods, e.g., AdaGrad, AdaDelta, and Adam.

In this article, we consider minimizing a convex function f, which is defined on a closed convex set in
Euclidean space, given by f(0) = %[E[e(y, (8, x))], where (x,y) € X x R denotes the sample data and ¢
denotes a loss function that is convex with respect to the second variable. This loss function includes
least-square regression and logistic regression. In the SA framework, z = {z;}i-; = {(x;, Y}, € Z" denote
a set of random samples, which are independently drawn according to the unknown probability measure
p and the predictor defined by 0 is updated after each pair is seen.

The rest of this article is organized as follows. In Section 2, we give a brief introduction to the accel-
erated gradient algorithm for least-square regression. In Section 3, we study the accelerated gradient
algorithm for logistic regression. In Section 4, we compare our results with the known related work.
Finally, we conclude this article with the obtained results.

2 The stochastic accelerated gradient algorithm for least-square
regression

In this section, we consider the accelerated gradient algorithm for least-square regression. The novelty of

this article is that our convergence result can obtain a nonasymptotic rate O(1/n). To give the convergence

property of the stochastic accelerated gradient algorithm for the regression problem, we make the following

assumptions:

(a) F is a d-dimensional Euclidean space, with d > 1.

(b) Let(X, d) be a compact metric space and letY = R. Let p be a probability distributionon Z = ¥ x Y and
(X, Y) be a corresponding random variable.

(€) E|lx,|? is finite, i.e., E|x|*> < M for any k > 1.

(d) The global minimum of f(0) = %[E[(G, x)? - 2,(0, xi)] is attained at a certain 6* € R4. Let & =
O/ — (6%, xi))x, denote the residual. For any k > 1, we have E& = 0. We also assume that E&? < 02

for every k and & = %Zl{;l{i.

Assumptions (a)—(d) are standard in SA (see, e.g., [9,10,22]). Compared with the work of Bach and Moulines
[10], we do not need the conditions that the covariance operator H = E(x; X) xi) is invertible for any k > 1,
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and that the operator E(xx () xx) satisfies E[¢; & &] < 0?H and E(Ixi|?xx @ x) < R*H for a positive
number R.
Let xo € ¥, {a} satisfy ay = 1 and ay > O for any k > 2, B, > 0, and Ay.
(i) Set the initial 6% = 6, and

0/ = (1 - )0/, + b1 )

(i) Set
Ok = O-1 — AVF(OF'?) = Or_1 — AECOF, X)X — Yo} 2
0% = 00" — BV (O + &) = 00" — BIEWBI™, xi0xic = %) + &} 3)

(iii) Set k «— k + 1 and go to step (i).

To establish the convergence rate of the accelerated gradient algorithm, we need the following Lemma
(see Lemma 1 of [7]).

Lemma 1. Let a; be the stepsizes in the accelerated gradient algorithm and the sequence {n,} satisfies
M=0-aon_,+0% k=12,

where
1 k=1
r — bl bl
k {(1 — a)ly, k> 2. “)

ko

Then we have ;. < szizlr.

forany k > 1.

We establish the convergence rate of the developed algorithm. The goal is to estimate the bound on the
expectation E[f(05%) — f(0*)]. Theorem 1 describes the convergence property of the accelerated gradient
algorithm for least-square regression.

Theorem 1. Let {]™, 678} be computed by the accelerated gradient algorithm and Ty be defined in (4). Assume
(@)—(ad). If {a}, {6}, and {Ai} are chosen such that
1
Ay < By < i

x 26
> = >.
Alrl A2r2

then for any n > 1, we have

T 1B
E[£(0%) — f(69)] < <[00 — 0|7 + Mo’L,} —k_.
[f(6:%) - f( )]<2A1"0 I + Mo ,(Z:“lkl"k

Proof. By Taylor expansion of the function f and (2), we have
FO) = FOF) + (VF(OF'), 6 - 6% + (65 — O )TVPf (0768 - 67"
< FOFD) = BAVFOFDI? ~ BCVF (08D, &) + BEEIIPIVF (6) + &P
< FO) = BVFOFDIP = B(VFOFD, &) + BIMIVF(O1) + &P

where the last inequality follows from the assumption (c).
Since

FG) = f) = (U W), = V) + (= VTECGxOM - V),
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we have
fO) = fQ) = (VFW), v = p) = (u = TExx)(u - v) < (VF(), v - p),

where the inequality follows from the positive semidefinition of matrix E (xx ).
By (1) and (5), we have

FOF) - [ - a)f (65) + a f(O)] = [ FOF) - F(O)] + (1 — a)[F(6F) - f(65))]
< i (VF(OFD, 67 = 0) + (1 — a)(VF(OF'), 67 - 6%))
= (VF(O"), a (67" - 6) + (1 — @) - 6%))
= a(VF(O), Or_1 - 0).

So we obtain

F(O%) < (1 - a)f (B%) + a f(O) + ar(VF(O"), 61 — 6)
= BAVFOFDI? - BVFOF), &) + BEMIVF(OF) + &P
It follows from (2) that
16k — B2 = 1161 — AVF O D) — 12 = 61 — OIF — 2AK(VF(O"Y), Ox1 — 6) + AZ IVF(OF DI

Then, we have
(VFOF), 61 — 0) = —[IIGk 1- 01 = 116 - 0] + IIVf(9 rOIR,

and meanwhile,
IVFOFD) + &I = IVFBFDIP + 1EIP + 2(VF (6D, &).

Combining the aforementioned two equalities (6) and (7), we obtain

f(6#) <1 - a)f (6E) + arc f(0) + —[||9k 1= 6P = 116k - 01°]

- ﬁk(l % - BM )IIVf(G FOIP + MBZ &P + (& 2BIM — BOVF(O'D).

The aforementioned inequality is equal to
fOF) - f(O) <A - a)lf(6E) - f(O)] + %[IIGH - 0> — 116 - 0I°]
k

- ﬂk(l - % - ﬁkM)IIVf(G COIP + MBZ &P + (&, 2BIM — BOVF(BF'D).
k

By using Lemma 1, we have

n

f(6:%) - f(O)<T,

2B,
+ T, Z ||€k||2 + T Z <fk, (BZM - BIVF(6')).

O - 16, - 6] - T, Zrk( L )IVf(Gi"")Ilz

Since

then

02 — 6, — O] < X
[ "]<2AI‘

k= 111

1
6o — OI*] = =160 — OII*.
(160 — 61°] 22[1"0 I

5)

(6)

@)
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So we obtain

T nBIM S
F(6:5) = £(8) < ~T-160 = O + Ty, —— IGIP + LY (&, BIM — BOVF(O')), ®)
2 ic Tk i T
where the inequality follows from the assumption
1
Ak < B < —.
294V ﬁk M

Under assumption (d), we have
k k)2
] - 1 0?2
E§ = —YE&=0, E& =E| Y& <.
ki3 kS k

Taking expectation on both sides of the inequality (8) with respect to (x;, ;), we obtain for x € R4,

- B

EL£(62) - £(8)] < <16 — 61 + Mo,y 2k .
2Al k=1 ka

Now, fixing 6 = 6%, we have

F n‘BZ
E[f(6%) - f(6)] < —Z16p — 62 + Mo,y k.
[f(6:%) - f( )]<2A1||0 I + Mo kZ:lkrk

This finishes the proof of Theorem 2.2. O

In the following, we apply the results of Theorem 1 to some particular selections of {ax}, {,}, and {Ax}.
We obtain the following Corollary 1.

Corollary 1. Suppose that a; and B, in the accelerated gradient algorithm for regression learning are set to

1 1

= k+1 P = Mk +1)°

1
d AN=— Vk=1,
an k M 9)

then for any n > 1, we have

W10 - O°FF + 02

E[f(6,%) - f(6)] < Mo+ D)

Proof. In the view (4) and (9), we have for k > 2

k k-1 k-2 2 2
I =Q - a4 = X X XX —x I} =
k= Ol k+1 k k-1 3 k+1
It is easy to verify
1 1 1
Ay = ——<B = —— < —,
T Mk + 1) i Mk +1)  2M
S O
AL AL 4M’
Then, we obtain
B 202 & MZ(II(VI 2 02 i 1
+
anazz—k= Z x Z
,Hkl"k n+1l,7 =2X M(n +1) ,Hk(k+1)
= =1 k1 =

1 1 1}
__+...+ —_ —
3 n-1 n

N | =

0? { 1
=—— J1-=+
M(n + 1) 2
0-2
<—.
M(n +1)
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From the result of Theorem 1, we have

M o? M?|6y — 0% + o?
E[f(65) - f(69)] < 0o — 6% + =
[£(6:%) - f(67)] n+1||0 I Mo+ D) M s D)
The proof of Corollary 1 is completed. O

Corollary 1 shows that the developed algorithm is able to achieve a convergence rate of O(1/n) without
strong convexity and Lipschitz continuous gradient assumptions.

3 The stochastic accelerated gradient algorithm for logistic
regression

In this section, we consider the convergence property of the accelerated gradient algorithm for logistic
regression.
We make the following assumptions:
(B1) ¥ is a d-dimension Euclidean space, with d > 1.
(B2) The observations (x;, y;) € ¥ x {-1, 1} are independent and identically distributed.
(B3) E|x|? is finite, i.e., E||x|* < M for anyi > 1.
(B4) We consider I(6) = E[log(1 + exp(-i(X;, 6)))]. We denote by 6* € R a global minimizer of [ and thus
assume to exist. Let & = (y; — (0%, x;))x; denote the residual. For any i > 1, we have E¢; = 0. We also

assume that E&? < o2 for every i and & = %Zle.{i.
Let xo € 7, {a} satisfy ¢y = 1 and ax > O for any k > 2, B, > 0, and A;.
(i) Set the initial 6% = 6, and
6 = (1 - )6, + a1 (10)
(ii) Set

Y, €XP{—Y; Xks O Ity

O = 01 — AVIOFY) = 6 - A , 1
e = Ot = AVIOF™) = Or1 — Ak 1+ exploy e, 67 1
. ~Yi eXPL-Vi Xy OF DI
0% = 67 — BT + §) = o7 - ] LSRN I g | a2
1+ exp{-y, Xk, 0"}

(iii) Set k — k + 1 and go to step (i).

Theorem 2 describes the convergence property of the accelerated gradient algorithm for logistic
regression.

Theorem 2. Let {6, 07%} be computed by the accelerated gradient algorithm and Ty be defined in (4).
Assume (B1)—(B4). If {ax}, {B,}, and {A} are chosen such that

1
A < B < —,
Ak < By M

451 a
_ 2 _2 cery
/11F1 Azrz

and then for any n > 1, we have
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v B

L
E[f(6%) - f(6)] < =260 - 6*7 + Mo?T, .
[£(6;%) - S( )]<2A1||0 > + Mo 2%,

Proof. By Taylor expansion of the function I, there exists a 9 such that

1(B%) = 16" + (VIO), 62 - 6 + (7 — O VAONOE ~ 67"

exp{-y{X 9) i gas _ gmd (13)
o — 0.
1 + exp{-y,(xx, 9)}

=16/ — BIVIOFDI? + BAVIOM), &) + (62 - 67)E

It is easy to verify that the matrix

exp{-Y; Xk, 9) it
1 + exp{~y;{(xx, 9}

is positive semidefinite and the largest eigenvalue of it satisfies

Amax([E exp{-Y; (X, 9) ot ) CE < M.
1 + exp{-y (X, 9)}
Combining with (12) and (13), we have
1(6) < UOF) = BVIGIDIP + BAVIOBI), &) + BIMIVIEO) + &P
Similar to (13), there exists a { € R? satisfying

exp{-¥; (X Py
1+ exp{-y (X O}

) - I(v) = (VIW), u —v) + (u - V)TE - V), 4, v eRY,

and we have

T
1) — 1G2) = (VIE), v — o) — (g — vyl SRV Db
1+ exp{-y (x, O}

M -v) < VW), v -y,

exp{-y; Xk o

where the inequality follows from the positive semidefinition of matrix E .
1+ exp{-y;(xx, {)}

Similar to (5), we have
1O - [(1 - a)l(6%) + anl(6)] < ax(VI(OF'?), By — 6).
So we obtain
167%) < (1 - aI(B5) + al(6) + ar(VIOF'), b1 — 6)
= BAVIODIP + B VIO, &) + BEMIVIO) + &P
It follows from (11) that

16y — 612 = [|6x_1 — VIO - 0|2
=[10k-1 — O = 24(VIOY), Ok - 0) + IVIOFDIP.

Then, we have

m 1 /“ m
VIO, Oy - 6) = T [16k1 — 617 — 116k — 6121 + ZX Vi), (14)
k 2
However,

IVIBF) + &I = IVFOFDIP + IR + 2V, &) (15)

Combining the aforementioned two equalities (14) and (15), we obtain
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10%) < 1 - al(6E) + al(0) + —[Il9k 1= 6P = 16 - 6]

2B,

The aforementioned inequality is equal to

- ﬁk(l L ﬁkM)nvue PO+ MBZIIEIR + (&, BZM - BOVIO)).

Art

1685) - 1(6) < (1 - alBE,) - (O] + ~X[161 - O — 6 - OIF] - ﬁk(l o8
2 2B,

- BkM)uww,z"d)nz

+ MBZNIEIP + (& (2BZM — BIVIOL)).

By using Lemma 1, we have

=

Axax

10%%) - 16) <T; Z S 161 = OF = 16~ 6P] - Zrk( T ]wz(ez"d)nz
k

rnz krk I&IP + T Z <€k, (2BIM — BIVIOD).
k=1

Since

(3]

a
—> 5 a:r:ls
Al A 1 1

then

=

O — 6, — O] < X
[ "]<22l1"

— 141

1
8o — OI*] = =160 — OII*.
(160 — 6I°] 2/[1"0 I

So we obtain

L n ﬂz
6;%) - 16) < — Mo = OF + LY. = — II§IFP + T Z (G QBM - BOVIOD), (16)
1 k=1 k
where the inequality follows from the assumption
1
A < B < —.
Ak ﬂk M

Under assumption (d), we have
k k)2
.1 : 1 0?
E§=—YE&=0, E& =E[ Y& <.
ki3 ki3 k

Taking expectation on both sides of the inequality (16) with respect to (x;, );), we obtain for 6 € R9,

E[1(6%) - 1(6)] < L 160 - 67 + Mo, Z Fi
24 kI‘
Now, fixing 6 = 6*, we have
ag * 2 2 ﬁk
E[1(65%) - 1(67)] < —||eo "I + Mo’T;, Z,r
This finishes the proof of Theorem 2. O

Similar to Corollary 1, we specialize the results of Theorem 2 for some particular selections of {ax}, {5, }
and Ay.
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Corollary 2. Suppose that ay, B, and Ay in the accelerated gradient algorithm for regression learning are set to

1 1 1
=— B=——\ and M=—, Vk>1,
i1 P o

(493 s
Mk +1)

and then for any n > 1, we have

M?0y - 672 + 02

E[1(6,%) - 1(6M)] < Mot D)

4 Comparisons with related work

In Sections 2 and 3, we have studied the AC-SA type algorithms for least-square regression and least-square
learning problems, respectively. We have derived the upper bound of AC-SA learning algorithms by using
the convexity of the aim function. In this section, we discuss how our results relate to other recent studies.

4.1 Comparison with convergence rate for stochastic optimization

Our convergence analysis of SA learning algorithms is based on a similar analysis for stochastic composite
optimization by Ghadimi and Lan in [8]. There are two differences between our work and that of Ghadimi
and Lan. The first difference in our convergence analysis of SA algorithms compared with the problems of
stochastic optimization in [8] is for any iteration, rather than iteration limit, i.e., the parameters f,, A; of
Corollary 3 in [8] are in relation with iteration limit N, while we do not need this assumption. The second
difference is in the two error bounds. Ghadimi and Lan obtained a rate of O(1/+/n) for stochastic composite
optimization, while we obtain the rate of O(1/n) for the regression problem.

Our developed accelerated stochastic gradient algorithm (SA) for the least-square regression is sum-
marized in (1)-(3). The algorithm takes a stream of data (xi, y;) as input, and an initial guess of the
parameter 6y. The other requirements include {ay}, which satisfies ¢y =1 and a; > 0 for any k > 2,
B, > 0, and A > 0. The algorithm involves two intermediate variables 6,° (which is initialized to be 6,)
and 6™, 9,?“1 is updated as a linear combination of ;¢ and the current estimation of the parameter 6y (3),
where a is the coefficient. The parameter 0y is estimated in (2) taking A as a parameter. The residue ¢ and
the average residue ¢, of previous residues up to the kth data (i.e., & = %Zl{il.{i) are computed in (3). 6% is
then updated through a linear combination of 8], where By is taken as a parameter. The process continues
whenever a new pair of data is seen.

The unbiased estimate of the gradient, i.e., (8¢, x)xi — vixi) for each data point, (xk, y;) is used in (2).
From this perspective, it is seen that the update of 8y is actually the same as in the SGD (also called least-
mean-square) algorithm if we set ay = 1. Across the training, the relative residue ¢, is computed. All the
residues up to now are averaged, and the average relative residue takes effect on the update of 6,%. It differs
from the stochastic accelerated gradient algorithm in [22], where no residue is computed and used in
the training.

4.2 Comparison with the work of Bach and Moulines

The work that is perhaps closely related to ours is that of Bach and Moulines [10], who studied the SA
problem where a convex function has to be minimized, given only the knowledge of unbiased estimates of
its gradients at certain points, a framework that includes machine learning methods based on the mini-
mization of the empirical risk. The sample setting considered by Bach and Moulines is similar to ours: the
learner is given a sample set {(x;, ¥))}i-;, and the goal of the regression learning problem is to learn a liner
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function (0, x), which forecasts the other inputs in X according to random samples. Both we and Bach and
Moulines obtained the rates of O(1/n) of SA algorithm for the least-square regression, without strong-
convexity assumptions. To our knowledge, the convergence rate O(1/n) is optimal for least-square regres-
sion and logistic regression.

Although uniform convergence bounds for regression learning algorithms have replied on the assump-
tions of input x;, and the residual &, we have obtained the optimal upper bound O(1/n) of stochastic
learning algorithms and the order of the upper bound is independent of the dimension of input space.
There are some important differences between our work and that of [10]. Bach and Moulines considered
generalization properties of stochastic learning algorithms under the assumption that the covariance
operator [E(xx ® x) is invertible. However, some covariance operators may not be invertible, such as the
covariance operator E(x; ® xi) in R2, which is defined by

Ex? E XX,
E(x ® %) = ( a ki kz].

2
Exxixee Exg

When two random components xi; and x;;, in xi satisfies xx; = Xx», then the determinant of the covariance
operator E(x; ® xi) equals zero. However, only under the assumption of (a-d), the rate of our algorithm can
reach O(1/n).

5 Conclusion

In this article, we have considered two SA algorithms that can achieve rates of O(1/n) for the least-square
regression and logistic regression, respectively, without strong-convexity assumptions. Without strong
convexity, We focus on problems for which the well-known algorithms achieve a convergence rate for
function values of O(1/n). We consider and analyze accelerated SA algorithm that achieves a rate of 0(1/n)
for classical least-square regression and logistic regression problems. Comparing with the well-known
results, we only need fewer conditions to obtain the tight convergence rate for least-square regression
and logistic regression problems. For the accelerated SA algorithm, we provide a nonasymptotic analysis of
the generalization error (in expectation) and experimentally study our theoretical analysis.
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