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Abstract: In this article, the authors consider the commutators of strongly singular Calderón-Zygmund
operator with Lipschitz functions. A sufficient condition is given for the boundedness of the commutators
from Lebesgue spaces L p n�( ) to certain Campanato spaces Cp β n, �( ).
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1 Introduction and result

Let T be the classical singular integral operator, and the commutator Tb generated by T and a locally
integrable function b is given by

T f bT f T bf .b ( ) ( )= −

A well-known result by Coifman et al. [1] states that Tb is bounded on L p n�( ) for p1 < < ∞ when
b BMO n�( )∈ . They also gave some characterization of BMO n�( ) in virtue of the L p boundedness of the
aforementioned commutator (see also [2,3]).

In 1978, Janson [2] studied the boundedness of the commutator Tb when b Λ̇γ
n�( )∈ , the homogeneous

Lipschitz space of order γ0 1< < , which is the space of all functions b, such that

b b x b y
x y

sup .
x y

x y
γΛ̇

,
γ

n
n

�
�

∣ ( ) ( )∣
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( )‖ ‖ =

−

−

< ∞

∈

≠

(1.1)

Janson proved thatTb is bounded from L p n�( ) to Lq n�( ) for p q1 < < < ∞ if and only if b Λ̇γ
n�( )∈ with

γ n p q1 1( )= / − / . In 1995, Paluszyński [4] made a further study of the problem and proved that Tb is

bounded from L p n�( ) to some Triebel-Lizorkin spaces Ḟp
γ n,

�( )
∞

if and only if b Λ̇γ
n�( )∈ , for p1 < < ∞

and γ0 1< < .
In 2015, Zhang et al. [5] gave another kind of interesting results for Tb when b belongs to Lipschitz

spaces. They proved that Tb is bounded from L p n�( ) to Cp β n, �( ) if and only if b Λ̇γ
n�( )∈ , for p1 < < ∞,

n p β 0− / ≤ < and γ β n p0 1< = + / < , where Cp β n, �( ) is Campanato space (see Definition 1.2).
On the other hand, motivated by the study of multiplier operator with symbol given by e

ξ

i ξ α

β∣ ∣

∣ ∣

away from

the origin α β0 1, 0( )< < > , Alvarez and Milman [6] introduced the following strongly singular Calderón-
Zygmund operator.
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Definition 1.1. [6] Let T : � �→ ′ be a bounded linear operator. T is called a strongly singular Calderón-
Zygmund operator if the following conditions are fulfilled.
(1) T can be extended to a continuous operator from L2 into itself.
(2) There exists a continuous function K x y,( ) on x y x y, :{( ) }≠ such that

K x y K x z K y x K z x C y z
x z

, , , , ,
δ

n δ α∣ ( ) ( )∣ ∣ ( ) ( )∣
∣ ∣

∣ ∣
− + − ⩽

−

−

+ /

if y z x z2 α∣ ∣ ∣ ∣− ≤ − for some δ0 1< ≤ and α0 1< < , and,

Tf g K x y f y g x y x, , d d ,( ) ( ) ( )∫⟨ ⟩ =

for f g, �∈ with disjoint supports.
(3) For some α n η n1 2 2( )− / ≤ < / , both T and its conjugate operator T∗ can be extended to continuous

operators from Lq n�( ) into L n2 �( ), where q η n1 1 2/ = / + / .

In 1986, Alvarez and Milman studied the boundedness of strongly singular Calderón-Zygmund operator
on Lebesgue spaces and Hardy spaces in [6,7]. Later on, there are many authors discussed the mapping
properties of strongly singular Calderón-Zygmund operators in various spaces. See, for instance, [8–11].
Wewould like to note that, as stated in [6,7], the strongly singular Calderón-Zygmund operators include pseudo-
differential operator with a symbol in the Hörmander class Sα δ

η
,

− , where δ α0 1< ≤ < , α n η n1 2 2( )− / ≤ < / .

Now, we define the commutator generated by strongly singular Calderón-Zygmund operator T and
a locally integrable function b as follows:

T f x b x T f x T bf x .b ( ) ( ) ( )( ) ( )( )= −

The main result of Alvarez et al. in [8] yields the boundedness of Tb on L p n�( ), p1 < < ∞, when
b BMO n�( )∈ . Afterward, the mapping properties of Tb, when b belongs to BMO space or Lipschitz space,
on Lebesgue spaces, Morrey spaces, Herz type spaces, and Hardy spaces have been studied by several
authors. See [10–15] for example.

In this article, we will continue the study of the commutator of strongly singular Calderón-Zygmund
operator when the symbol b belongs to Lipschitz space. The aim is to extend some of the results in [5] to
a strongly singular Calderón-Zygmund operator.

As usual, let B B x r,0( )= denote the ball centered at x0 with radius r. For a 0> , aB stands for the ball
concentric with B having a times its radius, that is, aB B x ar,0( )= . Denote by B∣ ∣ the Lebesgue measure of
B and by χB its characteristic function. For f L n

loc
1 �( )∈ , we write

f
B

f x x1 d .B

B
∣ ∣

( )∫=

Definition 1.2. Let p1 ≤ < ∞, n p β 1− / ≤ < , the Campanato space Cp β n, �( ) is given by

C f L f, ,p β n p n
C

,
loc p β n,� � �( ) { ( ) }( )= ∈ ‖ ‖ < ∞

where

f
B B

f x f xsup 1 1 d ,C
B

β n
B

B
p

p1

p β n, �
∣ ∣

⎛

⎝

⎜⎜ ∣ ∣
∣ ( ) ∣

⎞

⎠

⎟⎟
( ) ∫‖ ‖ ≔ −

/

/

and the supremum is taken over all balls B in n� .

Our result can be stated as follows.
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Theorem 1.1. LetT be a strongly singular Calderón-Zygmund operator, and, α η, , and δ be as in Definition 1.1.

Suppose that pn α η
η

1 2
2

( )
< < ∞

− + , n p β 0− / ≤ < , and γ β n p0 1< = + / < . If b Λ̇γ
n�( )∈ , then Tb is bounded

from L p n�( ) to Cp β n, �( ), that is, there exists a constant C 0> such that for all f L p n�( )∈ ,

T f C b f .b C LΛ̇p β n γ
n p n, � � �( ) ( ) ( ) ( )‖ ‖ ≤ ‖ ‖ ‖ ‖

Remark 1.1. Theorem 1.1 gives a new kind of boundedness for commutator Tb when b belongs to certain
Lipschitz spaces, compared with the L L,p q( )-boundedness and the M M,p β q β γ, ,( )+ -boundedness ofTb, when

p qn α η
η

1 2
2

( )
< < < ∞

− + and γ n0 1p q
1 1

( )
< = − < , obtained in [12, Corollary 1] and [10, Theorem 2.2],

respectively.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we need some known results. The first one is due to DeVore and Sharpley [16] and
Janson et al. [17] (see also Paluszyński [4], Lemma 1.5).

Lemma 2.1. Let γ0 1< < and b Λ̇γ
n�( )∈ , then for all p1 ≤ < ∞,

b
B B

b x b x
B

b bsup 1 1 d sup 1 .
B

γ n
B

B
p

p

B
γ n B L BΛ̇

1

γ
n�

∣ ∣

⎛

⎝

⎜⎜ ∣ ∣
∣ ( ) ∣

⎞

⎠

⎟⎟ ∣ ∣
( ) ( )∫‖ ‖ ≈ − ≈ ‖ − ‖

/

/

/

∞

The next result is easy to check by using (1.1). See also DeVore and Sharpley [16], page 14.

Lemma 2.2. [16] Let γ0 1< < , b Λ̇γ
n�( )∈ , and B and B′ be balls in n� . If B B′ ⊂ , then

b b C b B .B B
γ n

Λ̇γ
n�∣ ∣ ∣ ∣( )− ≤ ‖ ‖

′

/

Nowwe recall the boundedness of strongly singular Calderón-Zygmund operatorT on Lebesgue spaces.
Let us observe thatT is bounded from L∞ to BMO ([6], Theorem 2.1), from L1 to L1,∞ ([7], Theorem 4.1), and
from H 1 to L1 ([12], Lemma 2), and note the assumption (3) in Definition 1.1, and by interpolation between
these estimates, we achieve the following L p-boundedness ofT . We refer to [12] (page 1052) and [11] (pages
42 and 43), for details.

Lemma 2.3. Let T be a strongly singular Calderón-Zygmund operator, and, α η, , and δ be the same as in
Definition 1.1.
(i) If p1 < < ∞, then T is bounded from L p n�( ) to itself.

(ii) If un α η
η

1 2
2

( )
≤ < ∞

− + , then there is a positive number v satisfying u v α0 < / ≤ , such thatT is bounded from

Lu n�( ) to Lv n�( ).

Furthermore, the index v can be chosen as v uq
q uq u2 2 2=

′

′ − ′ + −

when u 2n α η
η

1 2
2

( )
≤ ≤

− + and v uq
2=

′ when

u2 ≤ < ∞, where q is given in Definition 1.1 and q′ is its conjugate index.

Now, let us prove Theorem 1.1.

Proof of Theorem 1.1. For any f L p n�( )∈ , it suffices to prove
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B B
T f y T f y C b f1 1 d ,β n

B

b b B
p

p

L

1

Λ̇γ
n p n

� �
∣ ∣

⎛

⎝

⎜⎜ ∣ ∣
∣ ( ) ( ) ∣

⎞

⎠
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( ) ( )∫ − ≤ ‖ ‖ ‖ ‖

/

/

(2.1)

for all balls B in n� .
For any ball B B x r,0( )= centered at x0 with radius r, we divide the proof into two cases.
Case 1. The case when r 1> . Denote by B B B x r8 , 80( )= =

∗ the ball with the same center as B and 8
times the radius. Let f fχB1 = ∗ and f f f2 1= − . For any real number c, by Minkowski’s inequality and Hölder’s
inequality, we have

B B
T f y T f y

B B
T f y c y

B B
T f c y

B B
T f y c y

B
T f c
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Let c T b b fB B2( (( ) ))= − − and notice that T f T fb b bB=
−

, one has

B B
T f y T f y

B B
T f y T b b f y

B B
b y b Tf y y

B B
T b b f y y

B B
T b b f y T b b f y

I I I
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(2.2)

For I1, note that p1 < < ∞ and γ β n p0 1< = + / < , it follows from Lemmas 2.1 and 2.3 that

I
B

b y b Tf y y

B
b b Tf y y

2 d
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B

B
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C b Tf
C b f .

L
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γ
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Next we estimate I2. Again we note that p1 < < ∞ and γ β n p0 1< = + / < . By Lemmas 2.1, 2.2, and 2.3,
we deduce

I
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T b b f

C
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b b f

C
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C
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Now, let us consider I3. Since for any w y B B x r, ,0( )∈ = and any z B c( )∈

∗ one has y w z w2 α∣ ∣ ∣ ∣− < − ,
it follows from Definition 1.1 that
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C y w
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Cr
B
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d

d

2
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d .
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B

B

B
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(2.3)

Observe that the last term of (2.3) is always independent of w and y, for any w y B, ∈ . Then we can write

I
B B

T b b f y T b b f y

B B B
T b b f y T b b f w w y

B B B
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B
b z b f z z w y
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p
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(2.4)
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Applying Hölder’s inequality, Lemma 2.1, and noting that γ β n p0 1< = + / < , we obtain

I Cr
B B

b z b z f z z

Cr
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p
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where in the last step we made use of the fact that r 1δ α1 1( )
≤

− / since r 1> and δ α1 1 0( )− / < and the fact
that the series 2k

k β δ α
1

( )
∑

=

∞
− / is convergent since β δ α 0− / < .

For I3,2, noting that γ β n p0 1< = + / < and applying Lemma 2.2 and Hölder’s inequality, we have

I Cr
B B

b b f z z

Cr
B B

b B f z z

C b r
B B

B f z z B

C b f r
B

B

C b f r

C b f

2
2

d

2
2

2 d

2
2

2 d 2

2 2

2

,

δ α

β n
k

kδ α

k
B

B B

δ α

β n
k

kδ α

k
k γ n

B

δ α

β n
k

kδ α

k
k γ n

B

p

p

k p

L
δ α

β n
k

kδ α k β n

L
δ α

k

k β δ α

L

3,2
1 1

1 2

2

1 1

1
Λ̇

2

Λ̇
1 1

1 2

1

1 1

Λ̇
1 1

1

Λ̇
1 1

1

Λ̇

k

k

γ
n

k

γ
n

k

γ
n p n

γ
n p n

γ
n p n

�

�

� �

� �

� �

∣ ∣ ∣ ∣
∣ ∣∣ ( )∣

∣ ∣ ∣ ∣
∣ ∣ ∣ ( )∣

∣ ∣ ∣ ∣
∣ ∣

⎛

⎝

⎜⎜
∣ ( )∣

⎞

⎠

⎟⎟
∣ ∣

∣ ∣
∣ ∣

( )

( )

( )

( )

( )

( ) ( )

( )

( ) ( )
( ) ( )

( ) ( )

∫

∫

∫

∑

∑

∑

∑

∑

= −

≤ ‖ ‖

≤ ‖ ‖

≤ ‖ ‖ ‖ ‖

≤ ‖ ‖ ‖ ‖

≤ ‖ ‖ ‖ ‖

− /

/

=

∞
− /

∗

− /

/

=

∞
− /

∗

∗ /

− /

/

=

∞
− /

∗

∗ /

/

∗ − /

− /

/

=

∞

− / ∗ /

− /

=

∞

− /

∗

∗

∗

∗

where in the last step we also made use of the fact that r 1δ α1 1( )
≤

− / and 2k
k β δ α

1
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∞
− / is convergent. This,

together with the estimates for I3,1, yields
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Combining the estimates for I1, I2, and I3 leads to (2.1) for the case r 1> .
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Similar to I1, we have
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where the last two steps follow from the condition γ β n p0 1< = + / < and the fact that r 1α β α p s n1 1( ) ( )
≤

− + / − /

since r0 1< ≤ and α β α p s n1 1 0( ) ( )− + / − / > .
Finally, let us consider J3. Since r0 1< ≤ and y w z w2 α∣ ∣ ∣ ∣− < − for any w y B B x r, ,0( )∈ = and

z B̃ c( )∈

∗ , similar to (2.3), we have

T b b f y T b b f w K y z K w z b z b f z z

C y w
z w

b z b f z z

C y w
z w

b z b f z z

C
B

b z b f z z

, , d

d

d

2
2 ˜ d .

B B B

B

δ

n δ α B

k B B

δ

n δ α B

k

kδ α

k
B

B

4 4 4

˜

1 2 ˜ \2 ˜

1 2 ˜

n

c

k k

k

1

�

∣ (( ) )( ) (( ) )( )∣ ∣ ( ) ( )∣∣( ( ) ) ( )∣

∣ ∣

∣ ∣
∣ ( ) ∣∣ ( )∣

∣ ∣

∣ ∣
∣ ( ) ∣∣ ( )∣

∣ ∣
∣ ( ) ∣∣ ( )∣

( )

∫

∫

∫

∫

∑

∑

− − − ≤ − −

≤

−

−

−

≤

−

−

−

≤ −

+ /

=

∞

+ /

=

∞
− /

∗

∗

∗
−

∗

∗

Reasoning as in (2.4), we can also write
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To estimate J3,1, we first observe the fact that r 1β α 1( )
≤

− since r0 1< ≤ and β α 1 0( )− > and the series
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For J3,2, applying Lemma 2.2 and Hölder’s inequality, and observing again the fact that r 1β α 1( )
≤

− ,

the series 2k
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The estimate for J3,2, together with the ones for J3,1, yields
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Combining the estimates for J1, J2, and J3, we deduce (2.1) for the case r0 1< ≤ .
Now, we finish the proof of Theorem 1.1. □
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