DE GRUYTER Open Mathematics 2022; 20: 1246-1260

Research Article

Rahul Shukla and Rekha Panicker*

Some new fixed point theorems for
nonexpansive-type mappings in geodesic
spaces

https://doi.org/10.1515/math-2022-0497
received September 20, 2021; accepted September 8, 2022

Abstract: In this article, we present some new fixed point existence results for nonexpansive-type mappings
in geodesic spaces. We also give a number of illustrative examples to settle our claims. We study the
asymptotic behavior of Picard iterates generated by these class of mappings under different conditions.
Finally, we approximate the solutions of the constrained minimization problem in the setting of Cartan,
Alexandrov, and Toponogov (CAT(0)) spaces.
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1 Introduction and preliminaries

Let (H, {.,.)) be a Hilbert space and K be a closed-convex subset of . Browder [1] introduced the
following mapping known as firmly contractive if for all x,y € K

IGX) = GYIP < x =y, GX) = G(y)), (LD

where G : K — K is a mapping. This class of mapping has significance in the study of convergence of
sequences generated by nonlinear operators. Bruck [2] defined the following important class of mappings
(firmly nonexpansive) in the setting of Banach spaces if for all x,y € K

1GG) = Gl < 1A = A(Gx) = G(y)) + Alx = ), (1.2)

where A > 0. The class of mapping satisfying (1.2) is also known as A-firmly nonexpansive mappings. In
Hilbert spaces, the class of mappings satisfying (1.1) coincides with the class of mappings satisfying (1.2).
Firmly nonexpansive mappings have fruitful importance in nonlinear analysis due to the connection with
monotone operators. Monotone operators were introduced by Minty [3] in the setting of Hilbert spaces.
These operators have significant importance in modeling many problems arising in convex analysis and in
the theory of partial differential equations.

In regard to fixed point theory, firmly nonexpansive mappings show similar behavior to the nonex-
pansive mappings on closed-convex subsets. However, they behave differently on nonconnected subsets.
In fact, Smarzewski [4] proved the following interesting result.
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Theorem 1.1. Let & be a uniformly convex (UC) Banach space and K be a union of nonempty bounded closed-
convex subsets K; (fori=1,2,...,m) of &, that is, K = U, K;. Assume that G : K — K is A-firmly nonex-
pansive mapping for some A € (0, 1). Then, G admits a fixed point in K.

In [4], it is noted that Theorem 1.1 is not true if G is a nonexpansive mapping even in the real line. For
instance, if K =[-2,-1] U [1, 2], the mapping G : K — K defined by G(x) = —x is a fixed point free
nonexpansive.

In recent years, a number of articles have appeared dealing with the extension of well-established
techniques and results from linear spaces to nonlinear spaces (or from normed spaces to metric spaces, cf.
[5-16]). In this direction, Ariza-Ruiz et al. [17] extended Theorem 1.1 in more general setting of spaces
(geodesic spaces). For some applications of this class of mappings, see [18,19]. A number of extensions and
generalizations of A-firmly nonexpansive mapping have appeared in the literature, see [20,21].

Motivated by Smarzewski [4], Ariza-Ruiz et al. [17], and others, we study some fixed point theorems
similar to Theorem 1.1 for nonexpansive-type mappings in the setting of geodesic spaces. We provide some
suitable examples that ensure extensions of the results presented herein over those that appeared in the
literature. We obtain results concerning the exhibition of Picard iterates generated by these classes of
mappings under different conditions on spaces as well as on mappings. Finally, we utilize our results to
find the solutions of constrained minimization problem. This way, some results in [4,17, 22,23] are
extended, generalized, and complemented.

Now, we recall some notations, definitions, and results from the literature. Let (€, p) be a metric space.
Given a pair of points x, y € &, we say thatapath {: [0, 1] — & joins x and y if {(0) = x and {(1) = y. A path
( is called a geodesic if p({(s), {(¢)) = p({(0), {(1))|s — t| for every s, t € [0, 1]. A metric space (&, p) is said
to be a geodesic space if every two points x, y € & are connected by a geodesic. If geodesics are unique,
Q-hyperbolic spaces are precisely the Busemann spaces [24]. Some well-known spaces are special cases of
these spaces. For example, all normed spaces, the Cartan, Alexandrov, and Toponogov (CAT(0))-spaces,
Hadamard manifolds, and Hilbert open unit balls are equipped with the hyperbolic metric (cf. [17,25]).
The following precise formulation of hyperbolic spaces was introduced by Kohlenbach [25].

Definition 1.2. A triplet (&, p, Q) is called a hyperbolic metric space if (&, p) is a metric space and
Q:8Ex&Ex[0,1] - & is a function satisfying
(i) p@&, Qx,y, ©) <1 - 0)p&, x) + Op(&, y);
@ii) p(Qx,y,0), Qx,y,0)) = |6 - Olp(x, y);
(iii)) Q(x,y,0) = Q(y, x,1 - 0);
(iv) p(Qx, §,0), Uy, y, 0)) < (1 - 0)px,y) + 6p(§,y)

forall x,y, &,y € &and 6, 0 € [0, 1].

Remark 1.3. By taking Q(x, y, ©) = (1 - ©)x + Oy forallx, y € &, © € [0, 1], it is clear that all normed linear
spaces & are included in these spaces.

Remark 1.4. A triplet (&, p, Q) is a convex metric space in the sense of Takahashi [26] if only condition (i) is
satisfied. Goebel and Kirk [5] considered the class of hyperbolic-type spaces by assuming conditions (i)-(iii).
Reich and Shafrir [27] considered the class of hyperbolic metric spaces that contain a family of metric lines,
such that, for each pair of distinct points x, y € &, there is a unique metric line (an isometric image of the
real line) that passes through x and y. Therefore, hyperbolic conventions considered in Definition 1.2 are
less restrictive than those considered in [27]. Condition (iii) implies that seg[x, y] is an isometric image of
the real-line segment [0, p(x, y)].

We adopt the customary notations

Q(X,y, 6) =(1- G)X@ G)y
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to indicate the point Q(x, y, ®) in a given hyperbolic metric space. To indicate geodesic segments, we use
the following notation:
forx,y € &,

[x,y]={1-0)x® By : 0 ¢ [0,1]}.

A subset K of (&, p, Q) is said to be convex if [x, y] ¢ K whenever x, y € K. When there is no incertitude,
we adopt (&, p) for (&, p, Q).

Definition 1.5. [28] A hyperbolic space (&, p) is said to be UC if for any ¢t > 0 and ¢ € (0, 2], there exists
a6 € (0, 1] such that

pix,y) <t . )

Py <t b= p(—x oy, y) <(1- o)
2 2

p(x,y) = et

forall x,y,y € &.
Remark 1.6. Leustean [6] showed that the complete CAT(0) spaces are complete UC hyperbolic spaces.

A map v : [a, b] — & is an affinely reparametrized geodesic if v is a constant path or there exists an
interval [c, d] and a geodesic v’ : [c, d] — & such thatv = v’ o ¥, where Y : [a, b] — [c, d] is the unique
affine homeomorphism between the intervals [a, b] and [c, d]. A geodesic space (&, p) is a Busemann space
if for any two affinely reparametrized geodesics v : [a, b] —» & and V' : [c, d] — &, the map D, : [a, b] x
[c, d] — R defined as

Dy,u(s, ) = d(v(s), v'(1))

is convex, see [24,29]. If (&, p) is a Busemann space, then there exists a unique convexity mapping Q such
that (&, p, Q) is a uniquely geodesic Q-hyperbolic space. In other words, for any x # y € & and any
O € [0, 1], there exists a unique element y € & (namely y = Q(x, y, ©)) such that

p(x,y) =0p(x,y) and p(y,y) = (- 0)p(x,y).

Let x, y, and y be three points in metric space (&, p), the point y is said to lie between x and y if these points
are pairwise distinct and

px,y) = px, y) + p(y, y).
Clearly, if y lies between x and y, then y lies between y and x. Moreover, the relation of betweenness
satisfies a transitivity property.
Definition 1.7. [17] A metric space (&, p) satisfies the betweenness property if the following condition holds:

if y liesbetween x and y and, y lies between y and &,
then y and y both lie between x and ¢ forall x,y,y, & € &.

In general metric spaces, the betweenness property is not true.

Lemma 1.8. [17] Let (&, p) be a metric space with betweenness property. For alln > 2, and all xo, xi, ...,X, € &,
we have the following:

if xi lies between xx_, and xy.1, for all k =1,...,n -1,
then x; lies between xq and x,1 for all k =1,...,n — 1.

Lemma 1.9. [17] Every Busemann space satisfies the betweenness property. Therefore, Lemma 1.8 is true for
Busemann spaces.
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Lemma 1.10. [17] Let (&, p) be a geodesic space. Let x,y,y,é € & and [x,y] be a geodesic segment.
Ify, § € [x, yl, then either p(x, y) + p(y, §) = p(x, §) or p(§, y) + p(y,y) = p(§, ).

Let {x,,} be a bounded sequence in a metric space (&, p) and K be a nonempty subset of . A functional
r(-,{x.}) : & — [0, +00) can be defined as follows:

r(y, {xx}) = limsupp(y, x,).

n—+oo
The asymptotic radius of {x,} with respect to K is defined as
r(K, {x.}) = inf{r(y, {:Ply € K.

A point x in K is called an asymptotic center of {x,} with respect to K if

r(x, £xa}) = r(K, {xa}).
A(K, {x,}) is denoted as set of all asymptotic centers of {x,} with respect to K. A bounded sequence {x,} in a
metric space (&, p) is said to A-converge to x if x is the unique asymptotic center for every subsequence {u,}
of {x,}. Let C be a nonempty subset of metric space (&, p) and {x,,} be a sequence in E. A sequence {x,} is said
to be Fejér monotone with respect to C if for all x" € C,

PO, Xni1) < pOCT, Xq)

for alln > 0.

Proposition 1.11. [6] Let (&, p) be a complete UC-hyperbolic space, K be a nonempty closed-convex subset of
&, and {x,} a bounded sequence in E. Then {x,} has a unique asymptotic center with respect to K.

Lemma 1.12. [6] Let (&, p) be a metric space and K be a nonempty subset of E. Let {x,} be a bounded
sequence in & and A(K, {x,}) = {y}. Let {a,} and {b,} be two sequences in R such that a, € [0, +00) for all
n € N, limsupa, < 1 and limsupb, < 0. Suppose that y € K and there exists m, N € N such that

P(Y, Xnim) < anp(y, Xp) + by for all n > N.
Then, y =y.
Lemma 1.13. [17] Let (&, p) be a metric space, C be a nonempty subset of E. If {x,} is Fejér monotone with

respect to C, then A(C, {x,}) = {x} and A(E, {u,}) < C for every subsequence {u,} of {x,,}. Then, the sequence
{xn} A-converges to x € C.

Let K be a nonempty subset of a metric space (&, p). A mapping G : K — K is said to be compact if
G(K) has a compact closure.

Definition 1.14. [30] Let G : K — K with F(G) # &, where F(G) is a set of fixed points of G, that is,
F(G) = {x € K|G(x) = x} The mapping G satisfies condition (I) if there is a nondecreasing function
f: [0, +00) — [0, +00) with f(0) = 0, f(r) > O for r € (0, +00) such that p(x, G(x)) > f(p(x, F(G))) for all
x € K, where p(x, F(G)) = inf{p(x, y) : y € F(G)}.

2 Nonexpansive-type mappings

Definition 2.1. Let (&, p) be a hyperbolic space and K be a nonempty subset of £. Let G : K — & is said to
be A-firmly nonexpansive if for given A € (0, 1), the following condition holds:

p(G(x), G(y)) < p((1 - A)x & AG(x), (1 = D)y & AG(y))

for all x, y € K.
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Remark 2.2.
— In view of Definition 1.2 (iv), it follows that

p(G(x), G(y)) < p((1 = Dx @ AG(x), (1 - D)y @ AG(y)) < (1 - Dp(x, y) + A(G(X), G(y).  (21)

Thus, p(G(x), G(y)) < p(x, y). Therefore, every A-firmly nonexpansive mapping is nonexpansive.

- Let (&, p) be a CAT(0) space and K be a nonempty closed-convex subset of &. The metric projection
Py : & - K is a firmly nonexpansive mapping [17].

— Let (&, p) be a CAT(0) space and g : & — (-0, +00] be a proper, lower semicontinuous, and convex
function. Then, its resolvent J, (for any r > 0) is a firmly nonexpansive mapping [17].

Definition 2.3. Let (&, p) be a metric space and K be a nonempty subset of . Let G : K — & be a general-
ized nonexpansive if for all x, y € K,
p(G(x), G(y)) < ap(x, y) + bip(x, GX)) + p(y, G(¥)} + cip(x, G(¥)) + p(y, G(X))}, 22

where a, b, c > 0 witha + 2b + 2c = 1.

If b = 0 and ¢ > 0, then (2.2) reduced into the following condition:
p(G(x), G(y)) < ap(x, y) + c{p(x, G(y)) + p(y, G(x))} (2.3)
for all x, y € K, where a > 0 with a + 2c = 1. The class of mapping satisfying (2.3) has been studied and

investigated to obtain my fruitful fixed point theorems by many authors, see [22,23,31,32].

Proposition 2.4. Let (&, p) be a hyperbolic space and K be a nonempty subset of &. Let G : K - K
be a A-firmly nonexpansive for some A € (0, 1), then G is a mapping satisfying (2.3).

Proof. By the definition of mapping G and Definition 1.2 (i), we have

p(G(x), G(y) < p((1 - Dx & AG(x), (1 - Ay & AG(y))
<A -Dp( -x e AGK),y) + Ap((1 - Dx & AGK), G(y))
<1 = D{A - Vplx, y) + Ap(G(x), y)} + A1 - Dp(x, G(y)) + Ap(G(x), G(y))}-

This implies that
(1 - Pp(GM), G(y)) < A = A)’px, y) + A1l = D{p(GX), ¥) + p(y, GCx)}

and
1-2 A
p(G(x), G(y)) < o A)p(x, y) + o A){p(G(X),y) + p(y, GO}
Take ¢ = ﬁ, since A € (0,1),c = (HLA) > 0, and take a = 8;—2, then the above inequality becomes:
p(GC), G(y)) < ap(x, y) + cip(G(x), y) + p(y, G(X))},
where a + 2c = 1. O

We note that in the above proposition, the inclusion is strict as the following example shows.

Example 2.5. Let & =R be a metric space equipped with the usual metric and K = [0, 1] c R. Define
G:K - K by
s if x € [O, 1]
2

s ifxe(l,l].
2

G(x) =

IR w|R
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First, we show that G is a mapping satisfying (2.3) fora = % and ¢ = é. To show this, we distinguish three
cases as follows.

Casel. x,y € [0, %] Then,

2 1 1 2 2
gp(x, y) + gp(G(X), y)+ gp(G(y), X) 2 gp(x, y) = glx -yl = p(GX), G(¥)).

Case 2. x,y ¢ (%, 1] and x < y. Then,

2p06,9) + PG00, ) + £p(G), ) > \— _y

+—x
3 Ix -yl

>—|x -yl + =[x -
6| yl 3| yl

> 2 -yl > Lpx -y
6 10
= p(G(x), G(y)).

Case 3. x € [ R 2] and y € (%, 1] and% < x. Then,

1 1 2 % 1|7y
—p(x,y) + —p(G(x), y) + =p(G(y), x) = —|x - +——— + —|—= -X
3p( ) 6p( (x),y) 6p( ), x) 3I vl o3 y‘ |10 ‘

2 1 ) 1 7y
=Z(y-x0+|ly-=1|+x-
3(y ) 6(y 3) 6( 10)

43y 1x 43y 12x 42y 12x

60 18 60 18 = 60 18
= p(GOO), G(y)).

y
Again, if x < 0
1 1 2 2x 1|7y ’
—p(x, y) + =p(G(x), y) + =p(G(y), x) = —|x — +——— + == -X
20069) + £ ) + £p(G 0= -yl + £ 12 y] o
2 1 x\ 1(7y
==y -x)+—-|y-— —=-x
3V )+6(y 3)+6(10 )
60 18 60 18 60 18°
Slnce—>x,l65—g>5—x>—Thus
42y 1
—p(x y) + —p(G(x) y) + —p(G(y) X) > 6—0y -5 = PG00, G,

Since G is not continuous, G is not firmly nonexpansive mapping.

Remark 2.6. The class of nonexpansive mappings and that of mappings satisfying condition (2.3) are
independent in nature. It can be noticed that the class of mappings defined in Example 2.5 is not non-
expansive mapping but satisfying condition (2.3). We present the following example to complete our claim.

Example 2.7. Let K = [0, 1] ¢ R with usual metric and G : K — K be a mapping defined as

G(x)=1-x forall x € K.

Then, F(G) = {%} and G is a nonexpansive mapping. On the other hand, it can be seen that if ¢ > O,

then a < 1; thus, for x = 0.4 and y = 0.6, we have
p(G(x), G(y)) =0.2>a x 0.2 = ap(x, y) + cip(x, G(y)) + p(y, GOX))}.

And G does not satisfy condition (2.3).
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Lemma 2.8. [32] Let (&, p) be a bounded metric space and G : & — & be a mapping satisfying (2.3). Then, G is
asymptotically regular, that is, for any x € &,

lim p(G™(x), G"(x)) = 0.

3 Main results
First, we present the following useful lemma.

Lemma 3.1. Let (&, p) be a metric space and K be a union of nonempty subsets K; (fori =1, 2,..., m) of &,
thatis, K = UK. Let G : K — K be a mapping satisfying (2.3), suppose that G has bounded orbits and that
forsomey € K, the orbit {G"(y)} of G has a unique asymptotic center x; with respect to each K;,i =1, 2,..., m.
Then, there exists p in{1, 2,...,m} such that x, is a periodic point of G.

Proof. From the definition of G and triangle inequality, we have
p(G(x), G (y)) < ap(xi, G"(y)) + cip(xi, G"'(y)) + p(G(a), G"(y))}
< ap(x;, G"(y)) + cip(xi, G"(y)) + p(G"(y), G™(y))}
+ cip(G(a), G"'(y)) + p(G™(y), G"(y))}-
This implies that
(1 = 0)p(G(x), G (y)) < (a + c)p(xi, G"(y)) + 2cp(G™(y), G™(y))
and

(@a+c) 2c
a- C)p(xl, G"(y)) + a0

Sincea + 2c =1, a + ¢ =1 - ¢, and by triangle inequality,

p(G(xy), G™(y)) <

p(G"(y), G™(y)).

1+c¢

1-0
Since the mapping G has bounded orbits, by Lemma (2.8), G is asymptotically regular,

p(GO), G"(y)) < p(G(xy), G"(y)) + p(G"(y), G™'(¥)) < p(x;, G"(y)) + p(G"(y), G™1(y)).

limsupp(G(x;), G"(y)) < limsupp(x;, G"(y))

foralli=1,2,..., m. Thus,
r(G(x), {G"(¥)}) < r(x, {G"(Y)}). (3.1

If there exists ip in {1, 2, ...,m} such that G(x;,) € %, then by Lemma 1.12 (y = x;, ¥ = G(x,), an = 1, by, = 0,
m = 1, and x,, = G(y)), it follows that G(x;,) = x;, and x;, is a fixed point of G, in fact x;, is a periodic point of G.
Otherwise, suppose that G(x;) ¢ K; for all i €{1,2,...,m}, then there exist integers {my, m,,...,m;} €
{1,2,...,m}, j = 2, such that G(x,n,) € Kom,,, for all i € {1, 2,...,j — 1} and G(xn;) € Kp,. Using the fact that
Xm; is the unique asymptotic center of {G"(y)} with respect to Ky, and from (3.1), we have

r(Xmp {G"}) < 7(G(xm)> 16" X)) < 1(Ximp {G" (W) << 1(G(m,) 5 {G"W)}) < 1 (2omy G"P}).
Therefore,
r(%m» 16"} = 1(G(xm), {G"()}) and  r(G(xm), {G"W)}) = r(Xmsr {G"(V)})

for alli € {1, 2,...,j — 1}. By the uniqueness of the asymptotic centers,



DE GRUYTER Fixed point theorems for nonexpansive-type mappings = 1253

Xy = G(xm,.) and G(xm,.) = Xm,, forall ie{1,2, ...,j - 1}. (3.2)

Hence, Gf(xml) = Xm,, and xp, is a periodic point of G. Oa

The above lemma is generalization of [17, Lemma 4.4] for more general class of mappings.
Now, we present the following proposition, which is a generalization of [17, Proposition 4.3].

Proposition 3.2. Let (&, p) be a Busemann space, K be a nonempty subset of &, and G : K — K be
a mapping satisfying (2.3). Then, any periodic point of G is a fixed point of G.

Proof. Let x be a periodic point of G, then there is an m € N U {0} such that G™!(x) = x. If m = 0, then
obviously x is a fixed point of G, thus we suppose that m > 1. By the definition of mapping G and triangle
inequality,

p(G™(x), G™(x)) < ap(G™(x), G™ (X)) + c{p(G™(x), G™ (X)) + p(G™(x), G™(x))}
< ap(G™(x), G™ (X)) + c{p(G™}(x), G™(x)) + p(G™(x), G™ (x))}
and

PG00, 6700) < 9D p(Gmn), 677100 = pGm(0, 677 100).

1-0
Thus,
p(x, G™(x)) = p(G™*1(x), G™(x)) < p(G™(x), G™ (X)) <... p(G(x), x) = p(G(x), G™*(x)). (3.3)
Again, by the definition of mapping G,

p(G(x), G™(x)) < ap(x, G™(x)) + cip(x, G™(x)) + p(G(x), G™(x))}
<ap(x, G™(x)) + cip(x, G(x)) + p(x, G™(x))}

and

(a+c)

p(G(0), G™1(x)) = p(x, G(x)) < ——=
(1-0

p(x, G™(x)) = p(x, G™(x)). 3.4)

From (3.3) and (3.4),
p(x, G"(x)) = p(G™*(x), G"(x)) < p(G™(x), G" (X)) <... p(G(x), x) = p(G(x), G™(x)) < p(x, G™(x)).
Thus, we must have
p(G(), x) = p(G*(x), G() == p(G™(x), G™(x)) = p(x, G"(x)) = L. (3-5)

Since Gi(x) # G*'(x) for anyi = 1, 2,..., m, by the property of Busemann space &, for given y ¢ (0, 1), there
exists a unique element u; € & (namely u; = W(Gi(x), G*'(x), u)) such that

p(G'(0), w)) = up(G'(x), G'*1(x)) (3-6)
and
PG00, w) = (1 = WP(G(x), GH10x)). (3.7)

Again, Gi"1(x) # Gi(x) foranyi = 1, 2,..., m, by the property of Busemann space &, for given u € (0, 1), there
exists a unique element v; € & (namely v; = W(G'~'(x), Gi(x), u)) such that

p(G(x), vi) = up(G1(x), G'(x)) (3.8
and

p(G'(0), w) = (1 = WP(G(x), G'(X). 3.9
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Now, we show that
L = p(ui, %) = p(vi, G'((X)) + p(G'(0), wy).
From the triangle inequality, (3.6) and (3.9), we obtain
P, v) < p(v, G'00) + p(G(x), u) = (1 = WP(G'0), G'(x)) + pp(G'(x), G*'(x)) = (1 -~ WL + pL = L.

. . (3.10)
Furthermore, by the definition of mapping G,
L = p(G'*(x), G'(x)) < ap(G'(x), G"'(x)) + c{p(G'*1(x), G (X)) + p(G'(x), G'(x))}
<al + +c{p(G(x), w) + p(w;, ) + p(vis G710}
From (3.7) and (3.8),
L<al + +c{(1 - wp(G'(x), G (X)) + p(u;, vi) + pup(G~1(x), G'(0)}
<al + +c{(1 - L + p(ui, v) + pL}
<(a + o)L + cp(u;, vy).
This implies that
L<——p(u, ) = plu, v (3.11)
l-a-c
Combining (3.10) and (3.12), we obtain
L = p(u;, v) = p(vi G'(X)) + p(G'(X), wy). (3.12)

Now, we distinguish the following cases:
Case 1. If m = 1, hence i = 1. Then, G™ (x) = x and G%(x) = x,

u = W(G(), x, p) = W(x, G0, 1 - W)
and
vy = W(x, G(x), W).
From Definition 1.2 (ii), we have
L = p(u, v) = p(W(x, GO, 1 = ), W(x, G(x), W) = 1 - p — plp(x, G(x)) = |1 - (L.

Therefore, |1 — 2u| = 1, a contradiction, since u € (0, 1).

Case 2. If m > 2, then m — 1 > 1. From (3.12), the point Gi(x) lies between two points v; and u; for each
i=1,2,..., m, further y; lies between G'(x) and G**(x), by Lemma 1.9, we obtain that G(x) and u; both lies
between v; and Gi*1(x). Moreovet, v; lies between G'~1(x) and Gi(x), that G/(x) lies between G-!(x) and G'*'(x)
foralli =1,2,..., m. In view of Lemma 1.8, G™ !(x) lies between x and G™(x). Hence,

L = p(x, G™(x)) = p(x, G™'(x)) + p(G™(x), G"(x)) = L + p(x, G™(x)) > L

a contradiction, since G™1(x) # x. Therefore, L = 0. This completes the proof. a

Proposition 3.3. Let (&, p) be a complete UC-hyperbolic space and K be a union of nonempty closed-convex
subsets K; (fori=1,2,...,m) of &, that is, K = UI,K;. Let G : K — K be a mapping satisfying (2.3) with
bounded orbits. Then, G has periodic point.

Proof. For all y € K and for alli = 1,..., m, in view of Proposition 1.11, the orbit {G"(y)} has a unique
asymptotic center x; with respect to ;. From Lemma 3.1, it follows that one of the asymptotic centers x;,
i=1,...,m,is a periodic point of G. O

The above proposition is generalization of [17, Proposition 4.5] for more general class of mappings.
In this, we present the following fixed point theorem.
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Theorem 3.4. Let (&, p) be a complete UC-hyperbolic space and K be a union of nonempty closed-convex
subsets K; (fori = 1, 2,..., m) of &, that is, K = U", K. Let G : K — K be a mapping satisfying (2.3). Then the
following are equivalent:

— G has bounded orbits.

— G has fixed points.

Proof. In view of Propositions 3.3 and 3.2, one can complete the proof. O
The above theorem is a generalization of [17, Theorem 4.1] for the more general class of mappings.

Remark 3.5. It can be seen that Theorem 3.4 is not true for nonexpansive mappings. The following
illustrative example settles this claim:
Take x £y € &, K = {x}, & = {y}, and K = K; U K; and define G : K — K as follows:

G(x) =y, G(y) = x.

Then, G is fixed point-free nonexpansive mapping. On the other hand, if G is a mapping satisfying (2.3),
then we obtain the following contradiction:

0<p(x,y) = p(GX), G(y)) < ap(x, y) + c{p(x, G(¥)) + p(y, G(X))}
<ap(x,y) + c{p(x, x) + p(y, )} = ap(x, y) < p(x, y)

sincec>0,a < 1.

Lemma 3.6. Let (&, p) be a uniquely geodesic space, K be a nonempty closed-convex subset of &,
and G : K — K be a mapping satisfying (2.3). Then, F(G) is closed and convex.

Proof. First, we show that F(G) is closed. Let {x,} be a sequence in F(G) such that {x,} strongly converges to
x e K.
PG, xn) < p(G(x), G(xn)) < ap(x, Xn) + cip(x, G(xn)) + p(xn, G(X))}
and
p(G(x), xp) < p(x, x,) — 0 as n — +oo.

Thus, G(x) = x € F(G). Now, we show that F(G) is convex. Let x # y € F(G) and y € [x, y]. It can be seen that

p(x, G(y)) = p(G(x), G()) < p(x,y) (3.13)
and

p(y, G(y)) = p(G(y), G(y)) < p(y, y)- (3.14)
Then, from (3.13) and (3.14),

P y) < p(x, G(y)) + p(G(y), y) < p(x, y) + p(y,y) = p(x, y)-
Therefore,
p(x, G(y)) + p(G(y), y) = p(x,y)
and G(y) € [x, y]. From Lemma (1.10), we obtain the following:
PG, y) + p(y, G(Y)) = p(x, G(y)) = p(G(0), G(Y)) < p(x, ¥),

or

Py, y) + ply, Gy)) = p(y, G)) = p(G(y), G(y)) < p(y, y).
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In both occasions, we obtain y = G(y). O

Theorem 3.7. Let (&, p) be a complete UC-hyperbolic space, K be a nonempty closed-convex subset of &, and
G : K — K be a mapping satisfying (2.3) with F(G) + &. Then, the Picard iterate {G"(x)} (for any x € K)
A-converges to a point in F(G).

Proof. Take C = F(G), then from Lemma 3.6, C is closed and convex. Moreover, for all x' € C
p(G™1(x), x") < p(G™(x), x") forall n > 0.

Thus, {G™(x)} is Fejér monotone with respect to C and bounded. In view of Proposition 1.11, sequence {G"(x)}
has a unique asymptotic center with respect to C. Suppose {u,} is a subsequence of {G"(x)}, and y is its
unique asymptotic center. By the triangle inequality, we have

P(G(y), un) < p(G(y), G(un)) + p(un, G(un))
<ap(y, up) + c{p(y, G(un)) + p(G(Y), un)} + p(un, G(uy))
< ap(y, up) + C{p(y’ Uup) + p(up, G(un))} + cp(G(y), un) + p(un, G(uy)).

This implies that

p(G(y), up) < @+ C)p(y, Up) + (1+ E)

a-o a- )p(una G(uy))

and
1+c)
1-0

Since G is asymptotically regular at x € K, lim,_,.,p(G"(x), G"(x)) = 0 and lim,_, ,.,P(Uy, G(u,)) = O.
Thus, all the assumptions of Lemma 1.12 are fulfilled, and it follows that G(y) = y, that is, y € C. In view
of Lemma (1.13), we can conclude that the sequence {x,} A-converges to a point in F(G). O

P(G(Y), un) < p(y, Un) + (U, G(uy)).

Theorem 3.8. Let (&, p) be a complete UC-hyperbolic space, K be a nonempty closed-convex subset of &, and
G : K - K be a mapping satisfying (2.3) such that G has bounded orbits. Then, the Picard iterate {G"(x)}
(for any x € K) A-converges to a point in F(G).

Theorem 3.9. Let (8, p) be a Busemann space and K be a nonempty bounded closed-convex subset of &E.
Let G : K — K be a mapping satisfying (2.3), G satisfies condition (I) and F(G) + &. Then, the Picard iterate
{G™"(x)} (for any x € K) strongly converges to a point in F(G).

Proof. From Theorem 3.7, it can be seen that for all x" € F(G),

p(G™(x), x") < p(G"(x), x") forall n > 0.

Thus, the sequence {p(G"(x), x")} is non-increasing and lim,,_, ,,,0(G"(x), x") exists. Since, lim,,_, ,,0(G™(x), x")
exists for all x' € F(G), lim,_,,.,p(G"(x), F(G)) exists. Since K is bounded, by Lemma (2.8), G is asymptoti-
cally regular, that is,

lim p(G™'(x), G"(x)) = 0. (3.15)
n—+o0o
Take x, = G"(x). Since G satisfies condition (I) and (3.15), we obtain
POty GOtn)) 2 f(p(xn, F(G)))-
Thus,
lim p(xr, F(G)) = 0. (3.16)
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Now, it turns out that the sequence {x,} is Cauchy. For the sake of completeness, we include the argument.
For given € > 0, in view of (4.1), there exists a no € N such that for all n > n,,

£
PO, F(G)) < =.
4
In particular,
. €
inf{p(xn,» ¥) : ¥ € F(G)} < -
and there exists y € F(G) such that
€
p(n¥) < 5
Therefore, for all m, n > no,
£
p(Xer’ Xn) < P(Xn+m, y) + P(y, Xn) < P(Xm Y) < 25 =g,

and the sequence {x,} is Cauchy. Since K is a closed subset of &, so {x,,} converges to a point x' € C. From
the definition of mapping G,

P01, GOXN) = p(Gxn), GOXN) < ap(xn, x1) + cp(Glan), X + plxa, GO}
< apQan, X + ¢p(GOG), X1 + cp(%n, GOG)) + cp(G(xa), G(X1))

and

C C
P, X7) + ———p(Xps1, X7) +

a
1-0) 1-o0) 1-0)

from (3.15), x' = G(x"). Therefore, the sequence {x,,} converges strongly to a point in F(G). O

P41, G(x"M) <

P(xn, G(Xy))

Theorem 3.10. Let (&, p) be a Busemann space and K be a nonempty bounded closed-convex subset of &E.
LetG : K — K be a compact mapping satisfying (2.3) and F(G) # &. Then, the Picard iterate {G"(x)} (for any
x € K) strongly converges to a point in F(G).

4 An application to a constrained minimization problem

Let (&, p) be a complete CAT(0) space and ¥ : & — (-o0, +00] be a proper, lower semicontinuous and
convex function. We employ Theorem 3.7 to find the minimizers of ¥, that is, the solutions of the following
minimization problem:

min ¥(x). (4.1)

xe&
Take

argmin ¥(x) = {x € E|¥(x) < ¥(y) forall y € &},
ye&

the set of minimizers of W.

Proposition 4.1. [17] Let r > 0 and ], be a resolvent associated with Y. Then, F(J,) = argmin, ¥ (x).

Theorem 4.2. Suppose that the function ¥ has a minimizer. Then, for allr > 0 and all x € &, the Picard iterate
{J(x)} A-converges to some point in & which is a minimizer of V.

Proof. It can be easily seen that J, (a resolvent associated with V) satisfies (2.3). Therefore, conclusion
directly follows from Theorem 3.7. |
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5 Examples

In this section, we present couple of examples to illustrate facts.

Example 5.1. Let & = {(x®, x@) ¢ R2: x®, x® > 0}. Define p : & x & — [0, +00) by
p(X’ y) = |X(1) —_ y(1)| + |X(1)X(2) — y(l)y(z)l

forall x = (x®, x®@) and y = (y, y@) in &. Then, it can be easily seen that p is a metric on &, and (&, p) is
a metric space. Now, for © € [0, 1], define a function Q : & x & x [0, 1] — & by

1- @)X(I)X(z) + @y(l)y(z)
Qx,y,0) = 1—®x(1)+®(1),(

It is shown in [7] that (&, p, Q) is a hyperbolic metric space but not a normed linear space.
Take K = [1, 2] x [1, 2], Ko = [1, 2] x [2, 4], 9G = [2, 4] x [1, 2], and K = [2, 4] x [2, 4]. Then,

K= UK = [1, 4] x [1, 4]

i=1

and K is a nonempty closed-convex subset of &, and a mapping G : K — K is defined as follows:

1,1), if (xW, x@) # (4, 4)
G(x) = (g g) if (x®, x@) = (4, 4).

Now, we show that G is a mapping satisfying (2.3) fora = 0O and ¢ = % with F(G) = (1, 1). We distinguish two
cases:
Case 1. If x = (x®, x@), y = (y®, y@) + (4, 4), then

p(G(Xx), G(y)) =p((1,1),(1,1) =0 < %p(G(X), y) + %p(x, G(y)).

Case 2. Again, if x = (x®, x@) £ (4, 4), and y = (y©, y@) = (4, 4), then

1 1 _1 1 (o @ E_E)
(600, ) + 2p(x, ) = 2p((1, 1, (4, 4) + zp((xl,xz),(z, 2)

ﬂwm_ga
4

=9+ +

R
2

27 55
S p((l, (3, E)) = p(G(0), G()).

However, if G is not a continuous mapping on %, then G is neither nonexpansive nor firmly nonexpansive.

Now, we consider the well-known river metric p. A river metric space (R?, p) is a R-tree. Moreover,
CAT(0) spaces include the R -trees and CAT(0) are special cases of hyperbolic spaces (cf. [33]).

Example 5.2. Let & = R? be endowed with the river metric defined as

ly® — x@, if y® = x®

p(Xy ,V) = {IX(Z)I + Iy(z)l + Iy(l) _ X(l)" if y(l) + X(l),

forallx = (x®, x@),andy = (y®, y@)inR2 Take K; = [0, 2] x [0, 2], %G = [0, 2] x [2, 4], %G = [2, 4] x [0, 2],
and K, = [2, 4] x [2, 4]. Then,

4
%K = UK = [0, 4] x [0, 4]

i=1
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and K is a nonempty closed-convex subset of &, and G : K — K a mapping defined as follows:

NORe)
=, i (xO,xD) £ (4,4
G(x) = ( 4 2 ) ( )# (4 4)

©, 1), if (W, x?) = (4, 4).

We consider the following cases:
Case (i) If x = (x@, x@), y = (yO, y@) # (4, 4), then

%p(x, y) + %p(x,c(y» N %p(y, 6(0)) > %p(x, y) = p(GGO, G(Y)).

Case (i) If x = (x®, x@) # (4, 4), x® # 4, y = (0, y@) = (4, 4), then G(x) = (3 -

xZ @
T ).Ifx #+ 0, then

1 1 1 1 x®@ 1 x®@
=p(x, —p(x G —p(y, GOX) = —p(x,y) =— +2+ =(4 —xD) > Z— 41
2P(X y)+ 4p(X, ) + 4p()/ (0) 2p(x y) S t2T 2( x) > 5t

o
el p(G(X), G(y))

x|
4

since <1.If x® = 0, then

jue)

L= =] +1=p(G), G-

2 (x )/)Jrl (XG(}/))+l (y G(x))>l (x y)—4+ﬁ>
2,0 s 4P , 4P , > 2p s 5
Case (iii) If x = (4,x®), y = (yV, y®) = (4, 4), then

%p(x, y) + %p(x,c:(y» N %p(y, 6(0) > %p(x,c(y)) N ip(y, 6(0))

B X(z) 5 X(z) 7 B 3x(2)

4 4 8 4 8

2 2 @)
s 3’; F 2+ "? - "7 +2 = p(G(X), G(y)).

Therefore, G is a mapping satisfying (2.3) fora = % andc = % with F(G) = (0, 0). On the other hand, G is not
continuous, and G is not nonexpansive.
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